
I.J. Information Technology and Computer Science, 2011, 4, 16-22 
Published Online August 2011 in MECS (http://www.mecs-press.org/) 

Copyright © 2011 MECS                                                                 I.J. Information Technology and Computer Science, 2011, 4, 16-22 

Structural Conditions on Observability of 
Nonlinear Systems 

 
Qiang. Ma 

School of Power and Energy Engineering, Wuhan University of Technology, Wuhan, China  
Email: richardkinbvle@yahoo.com.cn 

 
 

Abstract—In this paper parameter space and Lebesgue 
measurement are introduced into analysis of nonlinear 
systems. Structural observability rank condition is defined 
and together with the distinguishabililty the structural 
observability criterions of nonlinear systems are obtained. It 
proves that when the parameters are not identifiable the 
solutions with the same time but different parameters are 
also indistinguishable. Differential geometry and algebraic 
methods are used to investigate the observability problem, 
and it is proved that there are some relations between these 
two methods. Finally, examples are used to illustrate 
applications of the structural observability criterions. 
 
Index Terms—structural observability; identifiability; 
nonlinear systems; parameter space 
 

I.  INTRODUCTION 

During the analysis of process, a basic question is that 
whether the system states are uniquely determined by 
output data. Especially, for a given dynamic description 
and observation of a system, we need to know the 
conditions by which the initial states are uniquely 
determined by output data in a given time interval. This is 
observability. For observability, it is a property of 
systems, which is determined by two aspects: the 
differential equations and outputs [1]. 

Hwang and Seinfeld [2] investigated the observability 
of nonlinear systems and got the sufficient and necessary 
conditions of observability. They extended the sufficient 
and necessary conditions of observability in linear time 
varying systems to the nonlinear systems with linearized 
states form. It can be determined the local observability 
with any initial conditions and calculated for the whole 
initial domain. Hermann and Kerner[3] summarized the 
controllability of nonlinear systems and gave the 
conceptions of observability of nonlinear systems. These 
conceptions were defined with the method as that of 
controllability. The observability rank condition and 
observability criterion were given by using Lie algebra. 
Knobloch[1] explored a class of autonomous nonlinear 
system. The observability criterion was obtained by 
evaluation of “approximation first integrals”. This 
concept is borrowed from nonlinear control theory where 

it appears under the label “Dissipation Inequality”. 
Bartosiewicz[4] researched the local observability of 
nonlinear systems. The sufficient and necessary 
conditions of analytical systems were obtained. These 
conditons are expressed with the language of ideals of 
germs of analytic or smooth functions and real radicals of 
such ideals. 

In the presented paper, parameter space is introduced 
to the analysis of nonlinear systems and used to research 
the observability. Lu etc [5-8, 11] studied the linear 
systems and electrical networks with parameter space 
conception first. Some structural observability conditions 
for linear systems were obtained and applied to analyze 
linear systems over the field of F(z). The obtained 
conditions in this paper are called structural observability 
conditions of nonlinear systems, because parameter 
vector is contained in this observability condition, i.e., 
these conditions can show the effects of parameters to 
systems observability. Parameters taking values in 
parameter space maybe change the observability of the 
system, so measurement conception is introduced and 
shows that if the system is structural observable then the 
measurement of points set which make the system is not 
observable is zero.  

The rest of this paper is organized as follow: in section 
2 the structural observability rank condition and 
distinguishability are given; in section 3 the structural 
observability condition and unidentifiability of solutions 
are given based on differential geometry; in section 4 we 
research the structural observability problem by algebraic 
method; in section 5 examples are used to illustrate the 
application of condition. 

II.  STRUCTURAL OBSERVABILITY RANK CONDITION AND 

DISTINGUISHABILITY 

In this section the conception of structural 
observability rank condition for nonlinear systems is 
presented, which is important to obtain the structural 
observability criterion. The way to obtain the structural 
observability condition is similar to that in [3]. The 
relationship between observability and distinguishability 
is discussed also. 

A.  Structural Observability Rank Condition 

Here we consider a class of nonlinear system with the 
form  

( , , )

( , )

x f x u z

y h x z

=

=

&
                                (1) 
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where u U∈ , U is a subset of lR , x M∈ , M is the 

connected smooth manifold with dimension n. my R∈ , f 

and h are smooth functions, 1( , , ) q
qz z z R= ∈L  is a 

parameter vector with dimension q of the system, qR  is 
called the parameter space.  

The set of all smooth vector field on M is a infinite 

dimension real vector space, denoted by ( )X M . Lie 

algebra is denoted by the multiplication of Jacobi bracket 

1 2[ , ]g g  as follow: 

2 1
1 2 1 2[ , ] ( ) ( ) ( ) ( )

g g
g g x g x x g x

x x

∂ ∂
= −

∂ ∂
            (2) 

where 1 2,g g  and 1 2[ , ] ( )g g X M∈ , then the member of 

( )X M  is denoted to column n-vector valued functions of 

x. For any fixed 1 ( )g X M∈ , a real linear transformation 

from ( )X M  to itself is a map with the form 

2 1 2[ , ]g g g→ , and is called Lie derivative respect to 1g , 

denoted by 
1gL . 

Let ( )C M∞  denote the infinite real vector space 

consisted of all smooth real functions on M. ( )X M  can 

be acted as a linear operator on ( )C M∞  by the definition 

of Lie derivative. If ( )g X M∈ , ( )C Mϕ ∞∈ , then 

( ) ( )gL C Mϕ ∞∈ , denoted by 

( )( ) ( ) ( )gL x x g x
x

ϕ
ϕ

∂
=

∂
 

For nonlinear system (1), we denote by 0H  the subset 

of ( )C M∞  containing 1, , mh hL , and by 0F  the subset of 

( )C M∞  containing 1, , nf fL . Let H denote the smallest 

linear subspace of ( )C M∞  containing 0H  which is 

closed with respect to Lie derivative by elements of 0F . 
(it should be note that ,i jf h  are functions with parameter 

z, 1, , 1, ,i n j m= =L L ). A member of H is a finite linear 

combination of functions of the form: 

1 ( ) ( )
( ( ( )) )k if z f z

L L h zL L                     (3) 

where ( ) ( , , )j
jf z f x u z=  is a vector field with some 

constant ju U∈ . 

Clearly, if 1 2( ), ( ) ( )g z g z X M∈  and ( ) ( )z C Mϕ ∞∈  

then 

1 2 2 1 1 2( ) ( ) ( ) ( ) [ , ]( ( )) ( ( )) ( )g z g z g z g z g gL L z L L z L zϕ ϕ ϕ− =   (4) 

Let 1( )X M  denote the linear space of all 1-form on M, 

that is, the finite combination of gradient of elements on 

( )C M∞ . We can define a subset of 1( )X M , denoted by 

{ }0 0:dH d Hφ φ= ∈  and a subspace denoted by 

{ }:dH d Hφ φ= ∈ . Just as vector fields act on functions 

and other vector fields by Lie derivative, they act on 1-
forms by the definition as follow: 

( )( ) ( ) ( ) ( ) ( )
T

T
g

w g
L w x g x s w x x

x x

∂ ∂
= +

∂ ∂
         (5) 

where 1( )w X M∈ , ( )g X M∈ . If w dϕ= , then gL and 

d can exchange as： 

( ) ( )g gL d d Lϕ ϕ=  

From the above, we can see that dH  is the smallest 

linear space of 1-form containing 0dH . The element of 

dH  is the finite linear combination with the form: 

1 1( ) ( ) ( ) ( )
( ( ( ( )) )) ( ( ( )) )k ki if z f z f z f z

d L L g z L L dg z=L L L L (6) 

also where ( ) ( , , )j
jf z f x u z=  is a vector field with some 

constant ju U∈ . 

Definition 2.1: Nonlinear system (1) is said to satisfy 

the structural observability rank condition at 0 ( )x z , if 
0dim  ( ( ))dH x z n= ; if for any ( )x z M∈ , 

dim  ( ( ))dH x z n=  holds, then systems (1) is said to 

satisfy the structural observability rank condition. 
Remark 2.1: For there contains parameter vector z in 

Definition 2.1, this rank condition is said to be structural 
observability rank condition, which show the effects of 
parameter vector z to this condition, i.e., parameter vector 
z taking values in parameter space maybe lead to 
dim  ( ( ))dH x z n< . All the parameter vector z such that 

dim  ( ( ))dH x z n<  may form a set denoted by S, but for a 

nonlinear system who satisfy the structural observability 
rank condition the Lebesgue measurement of set S is zero, 
which is the meaning of term “structure”.  

B.  Observability and Distinguishability 

We know that we can define the observability of 
systems by the definition of distinguishability.  

Definition 2.2: Given two system states 1x  and 2x , we 

call them indistinguishable, denoted by 1 2x Ix , if there 

exists a input ( )u t , 0 1[ , ]t t t∈  such that 1( ( ( )))y x u t  

2( ( ( )))y x u t= .  

Definition 2.3: Let { }g  denote a set and { }*s g  denote 

the Lebesgue measurement. For any qz R∈ , if the 
Lebesgue measurement of a set whose elements make 
nonlinear system (1) indistinguishable is zero, then this 
system is said to be structural distinguishable. 

Definition 2.4: Nonlinear system (1) is said to be 

structurally observable at 0 ( )x z , if { }0 0( ( )) ( )I x z x z= ; if 

for arbitrary ( )x z M∈ , { }( ( )) ( )I x z x z=  holds then the 

system is said to be structurally observable. 
Definition 2.5: Nonlinear system (1) is said to be 

structurally weak observable at 0 ( )x z , if there exist a 

neighborhood of 0 ( )x z  such that { }0 0( ( )) ( )I x z x z D= I ; 

if for arbitrary ( )x z M∈ , { }( ( )) ( )I x z D x z=I  holds 

then the system is said to be structurally weak observable. 

Ⅲ.  STRUCTURAL OBSERVABILITY CONDITION OF 

NONLINEAR SYSTEM 
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In this section the structural observability condition of 
nonlinear system (1) will be presented after a Lemma is 
introduced first which is important to prove the condition.  

Lemma 3.1: Let V be a open subset of M, if 
0 1( ), ( )x z x z V∈  and 0 1( ) ( )x z Ix z , then for arbitrary 

( ( ))x z Hϕ ∈ , 0 1( ( )) ( ( ))x z x zϕ ϕ=  holds.  

Proof: If 0 1( ) ( )x z Ix z , then for arbitrary 0k ≥ , any 

piecewise constant ju U∈ , small time js , 1, ,j k= L  

and output function ih , 1, ,i m= L , by Definition 2.2 we 

have 

2 1 2 1

2 1 0 2 1 1( ( ( ))) ( ( ( )))
k k

k k
i s s s i s s sh r r r x z h r r r x z=oLo o oLo o   (7) 

where 
k

k
sr denotes the flow of ( ) ( , , )k

kf x f x u z= . Then 

we get the derivative respect to the times 2 1, , ,ks s sL  in 

equation (7) in turn, and because 

k

k

k k

k
s ki i i

ik k f
k ks s

drdh h h
f L h

ds dsr r

∂ ∂
= ⋅ = ⋅ =

∂ ∂
              (8) 

Then 

1 1

0 1

( ) ( ) ( ) ( )
( ( ) )( ( )) ( ( ) )( ( ))k ki if z f z f z f z

L L h x z L L h x z=L L L L

                                                                                         (9) 

i.e., H is spanned by the form 1 ( ) ( )
( ( ( )) )k if z f z

L L h zL L , 

so 0 1( ( )) ( ( ))x z x zϕ ϕ= .                                                   

Theorem 3.1: If nonlinear system (1) satisfy the 

structural observability rank condition at 0 ( )x z , then the 

system is locally structural weak observable at 0 ( )x z . 

Proof: For the system (1) satisfy the structural 

observability condition at 0 ( )x z , i.e., 0dim  ( ( ))dH x z  

n= , there exists n functions 1, , n Hϕ ϕ ∈L  such that 

1, , nd dϕ ϕL  are linear independent. Then we can define a 

mapping as follow: 

1( ) ( , , )nx x ϕ ϕ→ Φ = L                       (10) 

Then dΦ  is nonsingular at 0 ( )x z . So Φ  is a one-to-one 

mapping in the neighborhood D of 0 ( )x z . Let V D⊆  is 

a open neighborhood of 0 ( )x z , then according to Lemma 

3.1 we know that there exist no 1( )x z V∈  such that 
0 1( ) ( )Vx z I x z  for Φ  is a one-to-one mapping. So 

{ }0 0( ) ( )VI x z x z= , i.e., system (1) is locally structural 

weak observable at 0 ( )x z .                                               

Remark 3.1: Parameter z taking values in parameter 

space qR  does not change the distinguishability of the 
same state with different parameter z if system is 

structural observable. If two parameter 1 2, qp p R∈  are 

indistinguishable then we can have the following 
Theorem.  

Theorem 3.2: For two parameters 1 2, qp p R∈ , if 

1 2Vp I p  and 1p  such that system (1) satisfy the 

observability rank condition at 1( )x p , then there exist a 

neighborhood 
2pV of 2( )x p  and a mapping 

2 1
: p pV Vλ →  

such that 2 1( ( )) ( )x p x pλ = .  

Proof: Since 1 2Vp I p , the output ( , )y h x z=  of (1) 

satisfy   

1 21 2( , ) ( , )p py h p h p y= = =g g  

i.e., 1 2( , ) ( , )i ih p h p=g g , then  

1 1( ) ( ) ( ) ( )
( ( ) ) ( ( ) )k ki if z f z f z f z

L L h L L h=L L L L . 

For a neighborhood W  of 1( )x p , we have  

2 1 12 1( ( )) ( ( )) ( )p p pH x p H x p H W= ∈ , 

then for the neighborhood 
2pV  of 2( )x p , 

2 2 1
( ) ( )p p pH V H W⊂  holds. Take 

1

2 1 2
: ( ( ))p p pV H H xλ

−

→ , 

then for state 2( )x p  there exist a transformation λ  such 

that 2 1( ( )) ( )x p x pλ = .                                                     

Remark 3.2: For system (1), since the non-

distinguishability of parameters 1 2, qp p R∈ , then there 

exists a transformation between the solutions 1( )x p  and 

2( )x p  with same time but different parameters such that 

2 1( ( )) ( )x p x pλ = . At the same time, the non-

distinguishability of parameters leads to the non-
observability of systems. 

Ⅳ.  ALGEBRAIC CRITERION ON STRUCTURAL 

OBSERVABILITY CONDITION OF NONLINEAR SYSTEMS 

In section Ⅲ we discuss the structural condition on 
observability of nonlinear systems from the view point of 
differential geometry. Here we will consider the 
observability problem based on algebra. Some basic 
notations and terminologies we refer readers to reference 
[12]. 

Definition 4.1: The element of quotient field K of the 
ring of analytic functions is called meromorphic function. 

Here we just consider the so-called input affine 
nonlinear system, that is, in system (1) the state equation 
can be described as the combination of input u and 
another function in state x, which is of the form as 
follows: 

( , ) ( , )

( , )

x f x z g x z u

y h x z

= +

=

&
                       (11) 

where state nx R∈ , input mu R∈ and output py R∈ . The 

elements of function vectors f and g are meromorphic 
functions. The notation z is also the parameter vector, 
which has q dimension and belongs to parameter space 

qR . 

Now we can define three spaces X, Y and U 

respectively, which denote X= span { }K dx , 

U= span { , 0}j
K du j ≥  and Y 0i≥= U  Y(i), where Y(i) 

= span { ,0 }j
K dy j i≤ ≤ . The subscript K denotes the field 

of meromorphic function, that is, all the elements of these 
three spaces are meromorphic functions. Then a sequence 
of subspace is obtained as follows: 
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0 ⊂ O0 ⊂ O1 ⊂ O2⋯⊂ Ok ⊂⋯               (12) 

where the notation Ok @  XI  ( Y(k)+ U) is said to be the 

observability filtration.  
Naturally, we take the limit of observability filtration 

to infinite, which can be denoted as O∞, then easily we 

get  

O∞ @  X I ( Y + U)                     (13) 

We take a linear system as an example to show how to 

get the k-th observability filtration Ok. Given a linear 

system as follows: 
x Ax Bu

y Cx

= +

=

&
                          (14) 

According to the construction of space Y(i), we 

continue step to step to get Ok: 

First step: dy Cdx= ; 

Second step: dy CAdx CBdu= +& ; 

Third step: (2) 2dy CA dx CABdu CBdu= + + &  

M  

Since X= span { }K dx , then by k step we get  

Ok= span { , , , }k
K Cdx CAdx CA dxL  

Remark 4.1: For system (11), we know that it contains 

the parameter vector z, all the spaces X, Y and U and 

subspaces Ok and O∞ are spaces in parameter vector z. It 

is very important to notice parameter vector z in these 
spaces, because the parameter vector z may change the 
property of these spaces, which we are interested in.  

Definition 4.2: The subspace O∞ is called the 

structural observability space of nonlinear system (11). 
We will first give a Lemma before giving the algebraic 

criterion on structural observability of nonlinear system 
(11). This Lemma can describe a property of structural 

observability space O∞.  

Lemma 4.1: The structural observability space O∞ of 

nonlinear system (11) satisfies the following equality: 

dim O∞=
( 1)( , , , )

rank[ ]
ny y y

x

−∂

∂

& L
 

Proof: According to the construction of structural 

observability space O∞, we know that dimO∞ = min (dim 

X, dim (Y + U)). Of course the dimension of X is n, 

because space X is spanned by the differential of n states. 

Since Y 0i≥= U  Y(i) and Y(i)= span { ,0 }j
K dy j i≤ ≤ , space 

Y can be denoted as Y= span { ,0 }j
K dy j≤ , that is, any 

idy and jdy  are independent with each other, , 0i j ≥ , 

i j≠ . If dim(Y + U) ≥  n, the dimO∞ =dimX= n. If 

dim(Y + U) < n, for example k, then the dimO∞ = dim(Y 

+ U) = k. Now we chose the first n elements from space Y, 

that is, idy , 0,1, 2, , 1i n= −L , and we know the n 

elements are independent with each other. So we 
differentiate them with respect state x with the form  

( 1)( , , , )ny y y

x

−∂

∂

& L
, 

it is clearly that the Jacobin matrix has the full column 
rank n. so the maximum dimension of structural 

observability space O∞ is n. If we chose the first k (< n) 

elements from space Y, the dimension of structural 

observability space O∞ is equal to number of elements 

chosen from space Y.  

Thus we complete the proof.                                      
According to Lemma 4.1, we know the structural 

observability space O∞ has some relation to space Y. 

Following we will give the structural observable 
algebraic criterion. 

Theorem 4.1: Nonlinear system (11) is said to be 

structural observable if and only if O∞=X. 

Proof: For sufficiency: we know O∞ @  X I ( Y + U) 

=X, then we can chose first n elements from Y, that is, 
idy ( 0,1, 2, , 1i n= −L ). According to Lemma 4.1 it is 

known that the Jacobin matrix 
( 1)( , , , )ny y y

x

−∂

∂

& L
 

has full column rank n. then we can say that the state x of 
nonlinear system (11) is determined by output data y and 
its differentials only, which is the meaning of structural 
observable. 

For necessity: since nonlinear system (11) is structural 
observable, then its output has (n-1)-order differential, 

idy ( 0,1, 2, , 1i n= −L ) and any two different idy  are 

independent with each other. Then by Lemma 4.1 it is 
known that  

dimO∞ =dimX= n 

and O∞=X holds. 

Here we complete the Theorem.                                 
From Lemma 4.1 and Theorem 4.1 immediately we get 

the following Theorem. 
Theorem 4.2: Nonlinear system (11) is said to be 

structural observable if and only if 
( 1)( , , , )

rank[ ]
ny y y

x

−∂

∂

& L
= n 

Proof: According to Lemma 4.1 and Theorem 4.1 the 
proof of Theorem 4.2 is obviously.                                 

Ⅴ.  APPLICATIONS 

In this section, we will use several examples to show 
the applications of structural observability condition.  

Example 5.1: First we consider a linear system with 
the form as follow: 

( ) ( )

( )

x A z x B z u

y C z x

= +

=

&
                      (15) 
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where, ( )A z , ( )B z  and ( )C z  are matrices in parameter z 

with proper dimensions as that in system (1). Clearly, 
0 { ( ) ( )F A z x B z u= + , }u U∈ . So the Lie algebra 

generated by 0F  is { }( ) , ( ), 1, ,iA z x b z i l= L , where 

( )ib z  is the i-th column of ( )B z . By calculation it is 

known that the smallest subalgebra containing 0F  is 
spanned by 

{ }( ) , ( ) ( ), 1, , , 0,1, , 1j
iA z x A z b z i l j n= = −L L . 

Let ( )kc z  denote the k-th row of ( )C z , then for 

0, 0r ρ≥ ≥ , we have  
1

( ) ( ) ( ) ( ) ( )r r
A z x k kL c z A z x c z A z x+=  

( ) ( )
( ) ( ) ( ) ( ) ( )r

i

r
k k iA z b z

L c z A z x c z A z b zρ ρ+=  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 0r

i
A z x k i k iA z b z

L c z A z b z L c z A z b zρ ρ= =  

So by Cayley-Hamilton Theorem it is known that H is 
spanned by  

{ ( ) ( ) , ( ) ( ) ( ),r r
k k ic z A z x c z A z b z  

1, , , 1, , , 0,1, , 1}k m i l r n= = = −L L L ,  

then ( ( ))dH x z  is spanned by  

{ }( ) ( ), 1, , , 0,1, , 1r
kc z A z k m r n= = −L L . 

So ( ( ))dH x z  has the constant dimension. If the 

dimension of ( ( ))dH x z  is n, then by Theorem 3.1 the 

linear system (15) is structural observable (we should 
notice that for linear system there is no difference 
between local observability and global observability).  

We continue to consider this example from the view 
point of algebra. For linear system the structural 
observability condition can be changed to the well known 

rank condition. From section Ⅳ  it is known that for 

linear system (14), the k-th observability filtration Ok 

= span { , , , }k
K Cdx CAdx CA dxL . Then we just need to 

ensure that whether the space of On-1 is equal to space X. 

For linear system (15), structural observability space On-1 

= 1span { ( ) , ( ) ( ) , , ( ) ( ) }n
K C z dx C z A z dx C z A z dx−L . So if 

the rank of matrix 1[ ( ), ( ) ( ), , ( ) ( ) ]n TC z C z A z C z A z −L  is n, 

we can say that the basis spanning space On-1 is 

transformed by basis of space X, so space On-1 and X are 

same, that is, by Theorem 4.1 O∞=X holds which implies 

the linear system (15) is structural observable. Using 
Theorem 4.2 we can get the similar calculation and the 
same conclusion that linear system (15) is structural 
observable. 

According to [5,6], if we want to justify whether a 
linear system over F(z) such as system (15) we can 

calculate whether ( ( ))orank T z n= is true or not, where 
1( ) [ ( ), ( ) ( ), , ( ) ( ) ]n T

oT z C z C z A z C z A z −= L  is called the 

observability matrix of this linear system. Linear system 

is structural observable iff det( ( ) ( )) 0T
o oT z T z ≠ .  

Example 5.2: We still consider a linear network shown 
by Fig. 5.1. It is a multi-input multi-output system 
containing two sub-networks. 

 
Fig. 5.1 Network structure 

The system has five physical parameters 1 1 1 2, , ,R L C R  

and 2C . The state equation of the system is 

,X AX BU Y CX= + =& , where  

1 1

2 1

3 2

c

c

x i

X x u

x u

  
  

= =   
   
   

, 1

2

u
U

u

 
=  

 
, 1 1

1 2c

i x
Y

u x

   
= =   

  
 

1

1 1

1

2 2

1
0

1
0 0

1
0 0

R

L L

A
C

R C

 
− − 

 
 

=  
 
 −
  
 

, 
1

2 2

1
0

0 0

1
0

L

B

R C

 
 
 
 =
 
 
 
 

, and 
1 0 0

0 1 0

C

 
 

=  
 
 

. 

In order to test whether this electrical network is 
structural observable or not, we want to use the condition 
in Theorem 4.2. So we need to get the expressions of Y&  
and Y&& . It is easily to get the output Y by output equation, 
that is, 1 2( , )TY x x= . By calculation the expressions of Y&  

and Y&&  are respectively shown with notations a, b and c as 
follows: 

1 1 2

2 1

x ax bx
Y

x cx

+   
= =   

   

&
&

&
 

2
1 2

1 2

( )a bc x abx
Y

acx bcx

 + +
=  

+ 

&&  

where a denotes 1 1R L− , b denotes 11 L−  and c denotes 

11 C . Now we can calculate rank of Jacobin matrix 

( , , )Y Y Y

x

∂

∂

& &&
.  

By calculating the Jacobin matrix is with the form as 
follows:  

2

1 0 0

0 1 0

0

0 0

0

0

a b

c

a bc ab

ac bc

 
 
 
 
 
 
 +
  
 

 

It is clearly the rank of this Jacobin matrix is 2, which is 
less then the dimension of state. So this electrical network 
is not structural observable. In fact the state 3x , that is, 

2cu , is not observed from the outputs. 

Example 5.3: Now we consider a nonlinear passive 
RLC network showed in Fig. 5.2, where the nonlinear 

resistance voltage is 2
Ru ki= , k is a gain, the inductance 

is L, the capacitance is C. suppose that the input voltage 
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is iu and the output voltage is ou . Then by KVL , we 

have: 

2d 1
d

d

1
d

i

o

i
L i t ki u

t C

u i t
C


+ + =


 =


∫

∫
 

Let 1 2, , ,o i ox i x u u u y u= = = = , then we can get the state 

space description as follow 

2
1 2 1

2 1

2

1
( )

1

x u x kx
L

x x
C

y x


= − −




=


=



&

&  

where the parameter 3( , , )z L C k R= ∈ .  

 
Fig 5.2 a nonlinear passive RLC network 

So according to the output equation it is known that 

{ }0
2H x= , by calculation, the smallest linear subspace H 

containing 0H  is  

{ } 2 1

1
,  ,  fH span h L h span x x

C

 
= =  

 
 

So the space dH  has the constant dimension n=2, which 

implies that parameter vector ( , , )z L C k= can arbitrarily 

take values in parameter space, and the nonlinear system 
is observable, i.e., this system is structural observable. 

Using Theorem 4.2 we also get the same result easily. 

The output is 2y x=  and the differential of output is 

1y x C=& . So the Jacobin matrix is as follows: 

0 1

1 0C

 
 
 

 

Obviously, the rank of this Jacobin matrix is 2, which is 
equal to the number of states, that is, this nonlinear 
system is structural observable. 

Example 5.4: We continue the example 5.3. In this 
case we add a separable sub-network on Fig. 5.2, which is 
shown by Fig. 5.3. 

 
Fig 5.3 a separable nonlinear passive network 

In the added separable sub-network 2L  is a inductor and 

1R  is a constant resistance. So let the voltages across C 

and 1R  be outputs denoted by 1ou and 2ou  respectively. 

Then by KVL , we have: 

21
1 1 1

1 1

2
2 1 2

d 1
d

d

1
d

d
0

d

i

o

i
L i t ki u

t C

u i t
C

i
L R i

t


+ + =




=



+ =


∫

∫  

Let 
11 1 2 1 2 2 1 2 2, , , , ,o i o ox i x u x i u u y u y u= = = = = = , then 

the state equation and output equation is as follows: 

2
1 2 1

1

2 1

1
3 3

2

1 2

2 1 3

1
( )

1

x u x kx
L

x x
C

R
x x

L

y x

y R x


= − −




=



= −

 =


=




&

&

&  

According to Theorem 4.2, we need to calculate the 
Jacobin matrix, which is of the following form: 

1

2
1 2

1 1 1

3 2
1 2

0 1 0

0 0

1 0 0

0 0

2 1 0

0 0

R

C

R L

kx L C L C

R L

 
 
 
 
 

− 
 − −
  − 

 

It is clearly the rank of this matrix is 3, and then the 
separable nonlinear passive network is structural 
observable; however, if we just chose the voltage across 
capacitor C as output, the separable nonlinear passive 
network is not structural observable.  This is obviously 

because in the separable sub-network the state 3x  is not 

observed by the voltage across capacitor C. Further more 
the whole separable nonlinear passive network is not 
structural controllable. 

Ⅵ.  CONCLUSIONS 

In this presented paper structural observability of a 
class of nonlinear system is considered. Together with the 
conception of parameter space and indistinguishability of 
states the structural observability rank condition is 
defined and structural observability criterions of 
nonlinear system are obtained. No mater what methods 
used, i.e., differential geometry and algebraic method, the 
final work is to test the dimension of structural 
observability space. In fact the structural observability 

space is just the 1-form defined by space H in section Ⅲ. 
If the parameters are indistinguishable, the solutions with 
the same time but different parameters are also 
indistinguishable. In section Ⅴ it is known that these 
criterions can imply the well known rank condition for 
linear system, so these structural properties are more  
general and usful for nonlinear observability analysis. 
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