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Abstract— Many nonlinear regularization methods may 
converge to local minima in numerical implementation for 
the complexity of nonlinear operator. Under some not very 
strict assumptions, we implement our proposed nonlinear 
implicit iterative method and have a global convergence 
results. Using the convexity property of the modified 
Tikhonov functional, it combines nonlinear implicit iterative 
method with a gradient method for solving ill-posed 
problems. Finally we present two numerical results for 
integral equation and parameter identification. 
 
Index Terms—nonlinear, gradient method, regularization, 
implicit iterative  
 

I.  INTRODUCTION 

This paper is dedicated to the computation of an 
approximation to a nonlinear operator equation    

F(x) = y,                                              (1) 
where F:D(F) X→Y is a nonlinear operator between two 
real Hilbert spaces X and Y. If only noisy data yδ with 

‖yδ-y‖≤ δ                                       (2) 
are available, then the problem of solving (1) has to be 
regularized. Nonlinear ill-posed problems are more 
different to solve than linear. Due to the importance for 
technical applications, many of the known linear 
regularization methods have been generalized to 
nonlinear equations[1,2].  

In [3], we extend the implicit iterative method for 
linear ill-posed operator equations to solve nonlinear ill-
posed problems, named nonlinear implicit iterative 

method. Under some conditions, the error sequence of 
solutions of the nonlinear implicit iterative method is 
monotonically decreasing. And with this monotonicity, 
we prove the convergence of our method for both the 
exact and perturbed equations. In this paper, we focus on 
the numerical implementation of nonlinear implicit 
iterative method. The main part in the numerical 
implementation is how to minimize the Tikhonov 
functional in each iteration. When regularization 
parameter is fixed, how to minimize the Tikhonov 
functional (3) is a well-posed optimization problem. In 
principle, all of nonlinear optimization methods can be 
implied to implement the nonlinear implicit iterative 
method. But, the convergence may not be hold since the 
local convergence of some methods and the non-strictly 
convex of the Tikhonov functional. 

Jα(x)=‖yδ- F(x)‖2 +α‖x- x0‖
2            (3)  

In the numerical implementation of nonlinear implicit 
iterative method, we combine this method with the 
steepest descent method and develop an iterative 
algorithm for solving nonlinear ill-posed problems. It 
maintains the advantage of iteration methods in numerical 
realization and get a convergence result under some not 
very strict assumptions. In every iteration, we modify 
Tikhonov functional by idea of nonlinear implicit 
iterative method, replacing x+ with xδ 

n : 
Jα(x, xδ 

n )=‖yδ- F(x)‖2 + α‖x- xδ 
n‖

2           (4) 
The resulting method will be defined by 

xδ     
n,k+1 = xδ 

n,k + βk▽Jα(xδ  
n,k, xδ 

n )                        (5) 
Here, βk denotes a scaling parameter. Since it is based 

on the interaction of nonlinear implicit iterative method 
with the gradient method, we feel that 'Implicit Iterative--
GRAdient method ' (IIGRA) is an appropriate name for 
the iteration. 

The structure of the paper will be as follows. In 
section II, it will be shown that the modified Tikhonov 
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functional (4) has a convexity property in the 
neighbourhood of a global minimizer of the functional. A 
convergence analysis for the steepest descent algorithm 
for minimizing (4) is given in section III. It is shown that 
the algorithm converges to a global minimizer of (4) if a 
starting value for the iteration within the above-
mentioned neighbourhood is known. Finally, in section 
IV, we will give two applications. Conclusion is in 
section V. 

 II. RESULTS ON THE CONVEXITY PROPERTY OF  
MODIFIED TIKHONOV FUNCTIONAL 

Throughout this paper we have the following 
assumption: 
Assumption 1 Suppose there is a ball B(x+, r)⊂ D(F) 
with radius r around x+ and in the ball operator F satisfies: 

(i) F is twice Fréchet differentiable with a continuous 
second derivative; 

(ii) local Lipschitz condition: for x1, x2∈B(x+, r) there 
holds 

‖F'(x1)- F'(x2)‖ ≤ L‖x1-x2‖;                (6) 
(iii) ∃ some const η > 0, for all x1, x2∈B(x+, r) there 

holds  
‖F(x1)-F(x2)-F'(x2)(x1-x2)‖≤η‖x1-x2‖‖F(x1)-F(x2)‖; 
As a deduction, we can conclude that F' is local bounded 
in B(x+, r) from assumption 1 (i), i.e. 

M = sup{‖F'(x)|x∈ B(x+, r)‖} < ∞           (7) 
Our aim is to use the steepest descent method for 

minimizing Jα(x, xδ
n ). It is well known that the steepest 

descent method will converge to (the global) minimizer 
of a functional, if it is convex. So we will prove that the 
modified Tikhonov functional has a convexity property in 
the neighbourhood of a global minimizer of the 
functional. Since limited by pages, we only give the 
convergence results without proof in the following, detail 
seen in [4]. 

From now on we will set 
Cx(t)(h, h):=∫1 

0 (1-τ) F''(x + tτh)(h, h)dτ.           (8) 
By Taylor formula in integral form 
F(x + th)=F(x) + tF'(x)h+∫1 

0 (1-τ) F''(x + tτh)(h, h)dτ, 
we have 

F(x+th)=F(x)+tF'(x)h+t2Cx(t)(h,h).              (9) 
Let 

φα,h(t)= Jα(xδ
n+1+th, xδ

n ),t∈R, h∈X, ‖h‖=1,  
using (9) we get 
Jα(x+th, xδ 

n )=Jα(x, xδ
n )-2t(〈yδ-F(x),F'(x)h〉-α〈x-xδ

n , 〉) 
+t2(‖F'(x)h‖2-2〈yδ-F(x), Cx(t)(h, h)〉+α‖h‖2)  
+2t3〈F'(x)h, Cx(t)(h, h)〉+t4‖Cx(t)(h, h)‖2    (10) 

Proposition 2 Let Cx(t)(h, h) be defined as in (8), and 
define g(t):R+→Y by  

g(t):= t2Cx(t)(h,h)                         (11) 
Then g(t) is twice differentiable and the following 
properties hold: 
(i) g(t)= ∫t 0(t-τ) F''(x + τh)(h, h)dτ. 
(ii) g'(t)= ∫t 0 F''(x + τh)(h, h)dτ=t ∫1 

0 F''(x + tτh)(h, h)dτ. 
(iii) g''(t)= F''(x + τh)(h, h) 
(iv) [‖g(t)‖2]''=2(〈g''(t), g(t)〉+‖g'(t)‖2). 
 

Proposition 3 Let Cx(t)(h, h) be as in (8) and Ĉx
δ 

n+1(t)(h, h) 
be defined by  

Ĉx
δ n

+1 (t)(h, h):= ∫1 
0 F''(xδ 

n+1+tτh)(h, h)dτ,              (12) 
Then we obtain for the second derivative of φα,h(t) 
with ‖h‖=1 
φ'' 

α,h(t)=2‖F'(xδ 
n+1)h‖2+2α+2 t2‖Ĉx

δ 

n+1(t)(h, h)‖2 

-2〈yδ- F(xδ 
n+1), F''(xδ 

n+1+th) (h, h)〉 
+t〈F'(xδ 

n+1)h,4 Ĉx
δ 

n+1(t)(h, h)+2 F''(xδ 
n+1+th) (h, h)〉 

+2t2〈F''(xδ 
n+1+th) (h, h), Ĉx

δ 

n+1(t)(h, h)〉.              (13) 
To simplify the notation, we will define 
a(t,h):= 2〈F''(xδ 

n+1+th)(h,h),Ĉx
δ 

n+1(t)(h,h)〉 
+2‖Ĉx

δ n

+1 (t)(h,h)‖2,                                          (14) 
b(t,h):=〈F'(xδ  

n+1)h,4 Ĉx
δ n

+ 1(t)(h, h) 
+ 2 F''(xδ 

n+1+th) (h, h)〉,                                  (15) 
c(t,h):=2α-2〈yδ-F(xδ 

n+1),F''(xδ 
n+1+th)(h, h)〉 

+ 2‖F'(xδ 
n+1)h‖2                                                                         (16) 

and have therefore 
φ'' 

α,h(t) = c(t, h) + tb(t, h) + t2a(t, h)                   (17) 
Proposition 4 Let a(t, h), b(t, h) and c(t, h) be defined as 
in (13)-(15). If 1-L‖yδ-F(xδ 

0 )‖/α > 0, then there must be 
some γ> 0 such that 

γ + L‖yδ-F(xδ 
0 )‖/α < 1                        (18) 

holds. Then a(t, h), b(t, h) and c(t, h) can be estimated 
independently of t, h: 

| a(t, h) | ≤ 3L2                                        (19) 
|b(t, h) | ≤ 6LM                                      (20) 
c(t, h) > 2γα,                                            (21) 

where L and M are defined as (6) and (7). 
Proof. For a Lipschitz-continuous first Fréchet derivative 
with (6), the second derivative can be globally estimated 
using 

‖F''(x)(h, h)‖ ≤ L‖h‖2                      (22) 

According to the definition of Cx(t)(h, h) as in (8) and 
Ĉx

δ 

n+1(t)(h, h) as in (12) we have with ‖h‖=1 

‖C x
δ 

n+1 (t)(h, h)‖ ≤  ∫1 
0 (1-τ)‖ F''(xδ

n+1 + tτh)(h, h)‖dτ≤ 
L
2 , 

‖Ĉx
δ 

n+1(t)(h, h)‖ ≤  ∫1 
0‖ F''(xδ

n+1 + tτh)(h, h) ‖dτ ≤ L. 
and thus 
|a(t, h)| ≤ 2‖ F''(xδ

n+1 + th)(h, h) ‖‖C x
δ 

n+1 (t)(h, h)‖ 

+ 2‖Ĉx
δ n

+1 (t)(h, h)‖2≤ 3L2.                           (23) 
Similarly 

|b(t, h)| ≤ ‖ F'(xδ
n+1) ‖(4‖Ĉx

δ 

n+1(t)(h, h)‖ 

+2‖ F''(xδ
n+1 + th)(h, h) ‖)  

≤ 6L‖ F'(xδn
+1 ) ‖≤ 6LM.                         (24) 

c(t,h) can be estimated as follows: 
c(t,h) - 2γα = 2‖F'(xδ

n+1)h‖2+2α 
-2〈yδ- F(xδ 

n+1), F''(xδ 
n+1+th) (h, h)〉-2γα 

 ≥ 2α-2L‖yδ-F(xδ
n+1)‖-2γα 

≥ 2α-2L‖yδ-F(xδ
0 )‖-2γα 

= 2α(1-L‖yδ-F(xδ 
0 )‖/α-γ) > 0.             (25) 

Theorem 5 Under assumption (18) and ‖h‖=1, the 
functional φα,h(t) is a convex function for all 

|t| ≤ 
1

L(1+ 2)
 min{

2κα
3  ,

2κα
3M }:= r(α),          (26) 

where κ=1-L‖yδ-F(xδ 
0 )‖/α-γ. Particularly, it holds 
φ'' 

α,h(t) ≥ 2γα                                  (27) 



 Numerical Implementation of Nonlinear Implicit Iterative Method for Solving Ill-posed Problems 11 

Copyright © 2011 MECS                                                                   I.J. Information Technology and Computer Science, 2011, 4, 9-15 

for |t| ≤ r(α). 
Proof. We have 

φ'' 
α,h(t)=c(t, h)+tb(t, h)+t2a(t, h) 

We have to consider two cases: 
(1) Let t>0. Then 
φ'' 

α,h(t) ≥ c(t, h) - t| b(t, h) | - t2| a(t, h) |  for b(t, h)  ≤ 0   (28) 
φ'' 

α,h(t) ≥ c(t, h)  - t2| a(t, h) |                   for b(t, h)  > 0   (29) 
(2) Let t≤0. Then we have 

φ'' 
α,h(t) ≥ c(t, h) -t2| a(t, h) |              for b(t, h)  ≤ 0 

φ'' 
α,h(t) ≥ c(t, h)-t| b(t, h) |-t2| a(t, h) | for b(t, h)  > 0 

Thus it is sufficient to consider the first case only. Setting 
κ=1-L‖yδ-F(xδ 

0 )‖/α-γ,                     (30) 
then κ>0 because of (18). 

From (29) it follows, with (19) and (25), that 
φ'' 

α,h(t) - 2γα ≥ 2κα - 3L2t2 =: p1(t). 
p1(t) has the zeros 

t1,2=±
2κ
3L2 α                                  (31) 

and because p1(0) > 0, it holds that 
φ'' 

α,h(t)≥2γα 
for | t |≤| t1,2 |. 

From (28) it follows, with (19) and (20) that 
φ'' 

α,h(t)- -2γα ≥ 2κα-3LMt-3L2t2 =:p2(t). 
and p2(t) has the zeros 

t1,2=
1
L [-M± M2+

2κα
3  ]. 

Now let tmin=min{| t1 |,|t2 |}. Then 

tmin = 
1
L [-M+ M2+

2κα
3  ]                                 (32) 

= 
2

3L 
κα

M+ M2+
2
3 κα

  

≥ 
1

L( )1+ 2
 

⎩⎪
⎨
⎪⎧

2κα
3M      if 

2
3 κα ≤ M2

 
2
3 κα     if 

2
3 κα > M2

         (33) 

Combining (31), (33) we have shown that φ'' 
α,h(t) ≥ 2γα for  

| t | ≤ 
1
L min{

2κα
3  , 

1
1+ 2

 
2κα

3  , 
2κα

3M( )1+ 2
 } 

= 
1

L(1+ 2)
 min{

2κα
3  ,

2κα
3M }.                   (34) 

III.  A STEEPEST DESCENT METHOD 

The steepest descent method is a widely used iteration 
method for minimizing a functional. Although it is 
sometimes slow to converge, it seldom fails to converge 
to a minimum of the functional. The method is defined by 

xδ     
n,k+1= xδ    

 n,k+βk▽Jα(xδ    
 n,k, xδ

n )       k=0,1,2,….., 
where ▽Jα(xδ    

 n,k, xδ
n ) denotes the direction of steepest 

descent of Jα(x, xδ 
n ) at point xδ    

 n,k, and βk ∈R+ is a step size 
or scaling parameter which has to be chosen according to 

βk=arg
0

min
≥β

{Jα(xδ    
 n,k+β▽Jα(xδ    

 n,k, xδ
 n ), xδ

 n )}.        (35) 

According to (10) we find 
▽Jα(xδ  

n,k, xδ
n )=-2(F'(xδ  

n,k)*( yδ- F(xδ  
n,k))-α(xδ  

n,k- xδ
n )). 

For the following, we might use the notation 

Kr(α)( xδ
n+1):={x∈X|x= xδ

n+1+th, t∈R, h∈X, ‖th‖≤r(α)}. 
(36) 

Define 
hk: =  xδ 

n+1- xδ    
 n,k,                                           (37) 

and functions φ1, φ2 by  
φ1(t) = Jα(xδ    

 n,k+th, xδ
 n )                                 (38) 

φ2(t) = Jα(xδ    
 n,k-th, xδ

 n )                                  (39) 
φ1 and φ2 can be rewritten as 

φ1(t)=φ1(0)+2〈▽Jα(xδ  
n,k, xδ

n ) ,hk〉t + c1(t, hk)t2 

+ b1(t, hk)t3+a1(t, hk)t4                                    (40) 
φ2(t)=φ2(0)-2〈▽Jα(xδ     

n+1 , xδ 
n ) ,hk〉 t + c2(t, hk)t2 

+ b2(t, hk)t3+a2(t, hk)t4                                  (41) 
where the coefficients c1(t, hk), b1(t, hk), a1(t, hk), c2(t, hk),  
b2(t, hk), a2(t, hk) can be determined as in (10), eg. 
c1(t,hk) =‖F’(xδ

n,k) hk‖
2-2〈yδ-F(xδ 

n,k), C x
δ 

n,k (t) hk, hk〉〉, 
b1(t,hk)= 2〈F'(xδ

n,k) hk, C x
δ 

n,k (t) hk, hk)〉 
a1(t,hk) =‖C x

δ 

n,k (t) hk, hk)‖2 
Proposition 6 Let the assumption of theorem 5 hold, and 
letφ1 (t) be defined as in (40) and xδ 

n,k∈Kr(α)( xδ   
n+1). Then 

we have 
 φ1' (t) < 0   for t∈[0,1], 
φ1'(t) = 0   for t = 1. 

and  
φ1'' (t)  ≥ 2γα‖hk‖

2,  t [0,1].∈         (41) 
Proposition 7 Assume that x δ 

n,k K∈ r(α)( x δ   
n+1 ). Then an 

interval I=( 0, β0 ], 

β0 =
〈-▽Jα(xδ    

 n,k, xδ 
n )，hk〉

 ‖▽Jα(xδ    
 n,k, xδ 

n ) ‖2  ,k� � , xδ 
n ) ‖2) .            (42) 

exists such that the iterate xδ 
n,k+1 = xδ 

n,k-βk ▽Jα(xδ    
 n,k, xδ 

n ) is 
closer to xδ 

n+1 than xδ 
n,k for βk∈I: 

‖xδ 
n+1- xδ 

n,k+1‖≤‖xδ 
n+1- xδ 

n,k‖. 
In particular, xδ 

n,k+1∈Kr(α)( xδ   
n+1). 

Proposition 8 Let the assumptions of theorem 3 hold, 
and x δ 

n,j , j=0,…,k be the steepest descent iterates for 
minimizing Jα(x, x δ 

n ), and hk be defined as in (37) 
Moreover assume xδ 

n,j K∈ r(α)( xδ   
n+1) j=0,…k. Then 

〈- J▽ α(xδ    
 n,k, xδ 

n ), hk〉≥ γα‖hk‖
2            (43) 

Define 

λ=
4γα

4M2+4α+4L‖yδ-F(xδ 
0 )‖+4LM+L2 +L2) .      (44) 

Proposition 9 Let the assumptions of theorem 5 hold, 
and x δ 

n,j , j=0,…,k be the steepest descent iterates for 
minimizing Jα(x, xδ 

n ). If  xδ 
n,j K∈ r(α)( xδ   

n+1), j=0,…k, and the 
scaling parameter βk is chosen such that 

βk ≤ min{
γα

‖▽Jα(xδ  
n,k, xδ

n )‖2 □ δ n� � )‖2) , 

λ
Jα(xδ  

n,k, xδ
n )-θmin k

‖▽Jα(xδ  
n,k, xδ 

n )‖2 n,k� � , xδ 
n )‖2) } 

holds, then the new iterate xδ 
n,k+1 is closer to xδ  

n+1 than xδ 
n,k. 

Here, 
θmin,k=min{Jα(xδ  

n,k-t▽Jα(xδ  
n,k, xδ 

n ), xδ 
n ): t R∈ +}.    (45) 

In particular, xδ 
n,k+1 K∈ r(α)(xδ   

n+1).  
Proof. Let φ1(t), φ2(t) be defined as in (38)-(41). We will 
first estimate ‖hk‖from below by φ1(0)- φ1(1). Keeping 
in mind that φ1(t)= φ1(1-t) and ▽Jα(xδ  

n+1, xδ 
n ) = 0 hold, we 

get from (41) 
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φ1(0)- φ1(1) = φ2(1)- φ2(0) 

= c2(t, hk)+ b2(t, hk)+ a2(t, hk).       (46) 
On setting 

C k,x
δ    

n+1 (t)( hk, hk)= ∫1 
0 (1-τ) F''(xδ   

n+1 + tτhk)( hk, hk)dτ,  (47) 
the coefficients in (46) can be determined from  
c2(t,hk) =‖F'(xδ

n+1) hk‖
2-2〈yδ-F(xδ 

n+1), C k,x
δ 

n+1 (t)( hk, hk)〉, 
b2(t,hk) = 2〈F'(xδ

n+1) hk, C k,x
δ 

n+1 (t)( hk, hk)〉 
a2(t,hk) =‖C k,x

δ 

n+1 (t)( hk, hk)‖2 
Using  

‖C k,x
δ 

n+1 (t)( hk, hk)‖≤L∫1 
0 (1-τ) dτ‖hk‖

2=
L
2 ‖hk‖

2, 

we obtain  
|c2(t,hk)| ≤ (M2+α+L‖yδ-F(xδ

0 )‖) ‖hk‖
2 

=: c2  ‖hk‖
2,                                             (48) 

|b2(t,hk)| ≤ LM‖hk‖
3=: b2  ‖hk‖

3,           (49) 

|a2(t,hk)| ≤ 
L2

4  ‖hk‖
4=: a2  ‖hk‖

4.             (50) 

Altogether this yields  
φ1(0)- φ1(1) ≤ c2  ‖hk‖

2+ b2  ‖hk‖
3+ a2  ‖hk‖

4 
The minimal value of Jα(x δ

n+1 , x δ
n )= φ1(1) is usually 

unknown, but θmin,k , defined in (45), can be computable. 
In the case of ‖hk‖≤1 we find 
φ1(0)- θmin,k  ≤ φ1(0)- φ1(1)  

≤ (M2+α+L‖yδ-F(xδ
0 )‖)‖hk‖

2 

+ LM‖hk‖
3+

L2

4  ‖hk‖
4 

≤ (M2+α+L‖yδ-F(xδ
0 )‖ 

+ LM+
L2

4  )‖hk‖
2.                                   (51) 

Thus it follows by using () for ‖hk‖≤1 that 
〈-▽Jα(xδ  

n,k, xδ
n , hk)〉≥ λ(φ1(0)- θmin,k) 

=  λ(Jα(xδ
n,k, xδ

n )- θmin,k). 
In the case of ‖hk‖≥1 we get from () 

〈-▽Jα(xδ  
n,k, xδ

n , hk)〉≥γα. 
Inserting the above estimates for 〈-▽Jα(xδ  

n,k, xδ
n , hk)〉in 

(42) shows that βk≤β0, and, by proposition , the new 
iterate is therefore closer to xδ  

n+1 than the old one. 
Let  
κ1:=Lr(α)+M,  

rδ:=
‖yδ-F(xδ 

0 )‖
 α

 ,α)) ,  

κ2 
3 :=α2(r2(α)+(rδ)2), 

κ2:=‖yδ-F(xδ
0 )‖2+Mr(α)+

L
2 r(α)2. 

Theorem 10 Let the assumptions of theorem 5 hold, 
Kr(α)(xδ    

n+1) be defined as in (36), xδ 
n,0=xδ

n ∈Kr(α)(xδ    
n+1), and 

{x δ 
n,k }k N∈  be the iterates of steepest descent for the 

modified Tikhonov functional with βk chosen according 
to proposition 9. Then, there exists a constant 

K:=2κ2 
1 +2Lκ2+2α+6κ1κ*+3L2κ3,                   (52) 

κ*:=2(κ1κ2+κ3),                                              (53) 
such that the second derivative of 

θk(t):= Jα(xδ  
n,k-t▽Jα(xδ  

n,k, xδ
n ), xδ

n )    t [0,1]∈            (54) 
is bounded by 

|θ''(t)| ≤ K‖▽Jα(xδ  
n,k, xδ

n )‖2. 
Proof. According to the choice βk all iterates are in  
Kr(α)(x δ    

n+1 ). The definition  of ▽Jα(x δ  
n,k , x δ

n ) shows 
that ‖▽Jα(x δ  

n,k , x δ
n )‖is bounded in Kr(α)(x δ    

n+1 ) by a 
constant κ* defined in (53), we have  
‖▽Jα(xδ  

n,k, xδ
n )‖ 

≤  2(‖F'(xδ  
n,k) ‖‖yδ- F'(xδ  

n,k)‖+α‖xδ  
n,k- xδ 

 n‖). 
and  
‖F'(xδ  

n,k) ‖≤‖F'(xδ  
n,k)- F'(xδ    

n+1) ‖+‖F'(xδ    
n+1) ‖ 

≤ L‖xδ  n
+1  -xδ  

n,k‖≤M+Lr(α) = κ1,             (55) 
‖yδ- F'(xδ  

n,k)‖≤‖yδ- F'(xδ  
n+1)‖‖F'(xδ  

n+1) - F'(xδ  
n,k)‖ 

≤‖yδ- F'(xδ 
 0)‖+‖F'(xδ

n+1) ‖‖xδ  
n+1 -xδ  

n,k‖ 

+
L
2 ‖xδ  

n+1 -xδ  
n,k‖

2 

≤‖yδ- F'(xδ 
 0)‖+M r(α)+ 

L
2  r(α)2 =κ2,                 (56) 

α2‖xδ  
n,k- xδ 

 n‖
2 ≤ α2 (‖xδ  

n,k- xδ  
n+1 ‖2+ ‖ xδ  

n+1- xδ 
 n‖

2)  
≤ α 2 (r(α)2+( rδ)2) = κ2 

3 .                     (57) 
Thus  

‖▽Jα(xδ  
n,k, xδ

n )‖≤κ*.                           (58) 
holds for all k. Defining C k,x

δ 

n+1 (t)( hk, hk) as in (47) with 
hk replaced by -▽Jα(xδ  

n,k, xδ
n ) and setting   

C    k,x
δ 

n+1 (t)( -▽Jα(xδ  
n,k, xδ

n ), -▽Jα(xδ  
n,k, xδ

n ))  
=∫1 

0 F''(xδ   
n,k- tτ▽Jα(xδ  

n,k, xδ
n ))( -▽Jα(xδ  

n,k, xδ
n ), -▽Jα(xδ  

n,k, xδ
n ))dτ 

we find 
θ'' 

k(t)  
= 2‖F'(xδ  

n,k)▽Jα(xδ  
n,k, xδ

n )‖-2〈yδ- F(xδ  
n,k),  

F''(xδ  
n,k-t▽Jα(xδ  

n,k, xδ
n ))(- ▽Jα(xδ  

n,k, xδ
n ),- ▽Jα(xδ  

n,k, xδ
n ))〉

+2α‖▽Jα(xδ  
n,k, xδ

n )‖2 

-4t〈F'(xδ  
n,k) ▽Jα(xδ  

n,k, xδ
n ), C    k,x

δ 

n+1 (t)(- ▽Jα(xδ  
n,k, xδ

n ), 

- ▽Jα(xδ  
n,k, xδ

n ))〉 
-2t〈F'(xδ  

n,k) ▽Jα(xδ  
n,k, xδ

n ), F''(xδ  
n,k-t▽Jα(xδ  

n,k, xδ
n )) 

·(- ▽Jα(xδ  
n,k, xδ

n ),- ▽Jα(xδ  
n,k, xδ

n ))〉 
+2t2〈F''(xδ  

n,k-t▽Jα(xδ  
n,k, xδ

n ))(- ▽Jα(xδ  
n,k, xδ

n ),- ▽Jα(xδ  
n,k, xδ

n )), 
C k,x

δ 

n+1 (t) (- ▽Jα(xδ  
n,k, xδ

n ),- ▽Jα(xδ  
n,k, xδ

n ))〉 
+2t2‖ C    k,x

δ 

n+1 (t) (- ▽Jα(xδ  
n,k, xδ

n ),- ▽Jα(xδ  
n,k, xδ

n )) ‖2. 

The norm of C k,x
δ 

n+1 (t) (- ▽Jα(xδ  
n,k, xδ

n ),- ▽Jα(xδ  
n,k, xδ

n )) and 
C    k,x

δ 

n+1  (t)( -▽Jα(x δ  
n,k , x δ

n ), -▽Jα(x δ  
n,k , x δ

n )) can be 
estimated similarly C k,x

δ 

n+1 (t)( hk, hk):  
‖C k,x

δ 

n+1 (t) (- ▽Jα(xδ  
n,k, xδ

n ),- ▽Jα(xδ  
n,k, xδ

n ))‖ 

≤ 
L
2 ‖▽Jα(xδ  

n,k, xδ
n )‖2. 

‖ C    k,x
δ 

n+1 (t)( -▽Jα(xδ  
n,k, xδ

n ), -▽Jα(xδ  
n,k, xδ

n ))‖ 

≤ L‖▽Jα(xδ  
n,k, xδ

n )‖2. 
Using the above-given estimates, we can finally estimate 
|θ'' 

k(t)| for t ∈[0,1] by  
|θ'' 

k(t)| ≤ (2κ2 
1 +2Lκ2+2α)‖▽Jα(xδ  

n,k, xδ
n )‖2  

+ 6tκ1L‖▽Jα(xδ  
n,k, xδ

n )‖3 

+ 3t2L2‖▽Jα(xδ  
n,k, xδ

n )‖4 

≤ (2κ2 
1 +2Lκ2+2α+6κ1κ*L+3L2(κ*)2)  

·‖▽Jα(xδ  
n,k, xδ

n )‖2 

= K‖▽Jα(xδ  
n,k, xδ

n )‖2.                                      (59) 
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Now all ingredients for the final convergence proof of 
the steepest descent method have been collected: 

Theorem 11 Let the assumptions of theorem 5 hold, 
Kr(α)(xδ    

n+1) be defined as in (36), xδ 
n,0=xδ

n ∈Kr(α)(xδ    
n+1) and 

{x δ 
n,k }k N∈  be the iterates of steepest descent for the 

modified Tikhonov functional with βk chosen such that 
proposition 4 and 

βk≤min{
1
K ,1},                                 (60) 

where K is defined as in (52). Then { xδ 
n,k }k N∈  converges 

to a global minimizer of Jα(x, xδ
n ): 

∞→k
lim xδ 

n,k= xδ   
n+1=arg

x
min Jα(x, xδ

n ) 

Proof. According to the choice βk and xδ 
n,0∈Kr(α)( xδ   

n+1), we 
have  

xδ 
n,k∈Kr(α)( xδ   

n+1) k∈N. 
The sequence {x δ  

n,k } is monotonously decreasing and 
bounded from below, thus there exists J0 

α s.t Jα(xδ  
n,k, xδ

n )↓J0 
α 

for k→∞. First we will show that βk are bounded from 
below β, βk ≥ β for all k. 
By the definition (33), we have 

θk(t) - θk(0) = - t‖▽Jα(xδ  
n,k, xδ

n )‖2 + 
t2

2 θ'' 
k( t  )    0≤ t  ≤t. 

According to theorem  , |θ '' 
k (t)| ≤K‖▽Jα(xδ  

n,k, xδ
n )‖2. 

Without loss of generality we can assume K≥1. It follows 
for 0 < t ≤ 1 
θk(t) - θk(0)  ≤ - t‖▽Jα(xδ  

n,k, xδ
n )‖2 

+ 
t2

2 K‖▽Jα(xδ  
n,k, xδ

n )‖2 

= (-t+
t2

2 K) ‖▽Jα(xδ  
n,k, xδ

n )‖2.                  (61) 

If we set esp. t = 
1
K  ≤ 1,then  

θk(
1
K ) - θk(0)  ≤ - 

1
2K ‖▽Jα(xδ  

n,k, xδ
n )‖2 < 0. 

With the definition of θmin,k in (), we find 
1

2K ‖▽Jα(xδ  
n,k, xδ

n )‖2≤θk(0)-θk(
1
K )≤θk(0)- θmin,k 

i.e. 
θk(0)- θmin，k

 ‖▽Jα(xδ  
n,k, xδ

n )‖2 □δn� � )‖2)  ≥ 
1

2K .                        (6

2) 
and from (58) follows 

1
 ‖▽Jα(xδ  

n,k, xδ
n )‖ □δn� � )‖) ≥

1
 κ* .                           (63) 

Inserting (62), (63) in (60) yields 

βk≥min{
γα
 κ* ,

λ
2K ,

1
K ,1}=:β.                        (64) 

Next, we show ▽ Jα(x δ  
n,k , x δ

n )→0 for k→0 by 
contradiction. Let us suppose  ▽Jα(x δ  

n,k , xδ
n ) does not 

converge to zero. Then there exists ε0>0 s.t. for every 
N0∈N exists k > N0 with  

‖▽Jα(xδ  
n,k, xδ

n )‖≥ε0.                                (65) 
Because Jα(xδ  

n,k, xδ
n )= θk(0) converge monotonously from 

above to J0 
α, we can moreover assume that  

|θk(0)- J0 
α|≤

β
4 ε2 

0≤
βk
4  ε2 

0 . 

holds for k large enough. Setting t=βk ≤
1
K , we get  

θk(βk) - θk(0) ≤ βk (-1+
βk K

2  )‖▽Jα(xδ  
n,k, xδ

n )‖2 

≤ - 
βk

2  ‖▽Jα(xδ  
n,k, xδ

n )‖2 ≤ -
βk

2  ε2 
0  

or  
Jα(xδ  

n,k+1, xδ
n ) - J0 

α = θk(βk) - J0 
α 

≤ θk(0)- J0 
α-
βk

2  ε2 
0  

                          ≤ 
βk
4  ε2 

0  - 
βk

2  ε2 
0  = - 

βk
4  ε2 

0  < 0, 

which is a contradiction to ▽ Jα(x δ  
n,k , x δ

n )↓J 0 
α . As a 

consequence, ▽Jα(xδ  
n,k, xδ

n ) converges to zero. Now by the 
definition of  hk in (37), we finally get by using (43) 
γα‖hk‖

2 ≤〈-▽Jα(xδ  
n,k, xδ

n ), hk〉 
≤ ‖▽Jα(xδ  

n,k, xδ
n )‖‖hk‖→0, 

and  
xδ  

n,k→xδ
n+1   for ‖hk‖→0. 

VI.  THE IIGRA ALGORITHM 

Theorem 12 For the nonlinear implicit iterative 
method, so long as xδ

0  and α is chosen by 

(i) ‖xδ
0 -x+‖< 

(2τ-2)α2 
0 -2τα0-τ

2τ(
L
α

+η+
η
τ)α2 

0

 2 
0 ) ; 

(ii) 1-L‖yδ-F(xδ
0 )‖ > γ > 0; 

(iii) α ≥ min{α2 
0 M2,

3
2κ L(1+ 2 )‖yδ-F(xδ

0 )‖, 

(
3(1+ 2)LM

2κ  ‖yδ-F(xδ
0 )‖)

3

2
 }; 

(iv) α0 > 
τ+ 3τ2-2τ

2τ-2  , 

then, the minima x δ    
n+1  of every functional Jα(x, x δ

n ), 
n=0,1,…can be given by steepest descent method. The 
steepest descent method is convergent as xδ

n  is chosen as 
iterative value for calculating x δ    

n+1 . When stopping 
iterative number is determined by discrepancy principle, 
we have 

xδ 
n(δ)→x+      δ→0. 

Proof. The condition (ii) assures theorem holds, the 
condition (i), (iii) and (iv) assure theorem holds and the 
condition (iii) assures rδ≤r(α). Therefore, we can always 
get  

xδ 
 n∈Kr

δ( xδ   
n+1)∈Kr(α)( xδ   

n+1) 
with x δ  

n+1∈Kr
δ( x δ  

 n ). The following conclusion can be 
gotten by theorem and induction. 

As mentioned earlier, the IIGRA algorithm is a 
combination of the steepest descent method for the 
minimization of the modified Tikhonov functional and an 
optimization routine for finding a regularization 
parameter α such that Morozov’s discrepancy principle[1] 
holds. The algorithm is defined as follows: 

Algorithm 13 IIGRA 
step(1) choose xδ

0  and α satisfied theorem 7, give τ > 1 
and ε > 0, let n=0; 
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step(2) let k=0, xδ    
 n,k = xδ

n ; 
step(3) calculate ▽Jα(xδ     

n+1,k, xδ
n ); 

step(4) if ‖▽Jα(xδ   
n+1,k, xδ

n )‖≤ ε, goto step(6); 
step(5) choose βk by theorem 6 and calculate 

x δ    
n,k+1 = x δ  

n,k +βk▽Jα(x δ  
n,k , x δ

n ), k=k+1, goto 
step(3); 

step(6) xδ
n+1= xδ    

 n,k; 
step(7) if ‖yδ-F(xδ 

n+1)‖≤ τδ, stop, otherwise let n=n+1 
and  goto step(2). 

V.  TWO NUMERICAL EXPERIMENTS 

Within this section we will give two practical relevant 
examples that meet the requirements of the IIGRA 
algorithm. 

Example 1: nonlinear Hammerstein integral equation 
F(x)s:=∫t 0φ(x(s))ds=yδ                              
D(F):=H1[0,1]→L2[0,1]                          

where assumption 1 are satisfied[2].  
The first Fréchet derivate and transposition of 

operator F have the following form: 
(F'(x)h)(t) = ∫t 0 φ' (x(s))h(s)ds, 
(F'(x)*h)(t) = B-1[φ'(x(s)) ∫1 

s h(t)dt. ] 
where  

(B-1z)(s) = ∫1 
0 k(s,t)z(t)dt. 

k(s,t): = 

⎩⎪
⎨
⎪⎧

cosh(1-s)cosh(t)
sinh(1)      t ≤ s

 
cosh(1-t)cosh(s)

sinh(1)      t > s

  

Therefore, the iterative scheme of IIGRA is: 
B-1[φ'(x(s)) ∫1 

s h(t)dt. ]  
 =  ∫1 

0 k(s,t) φ'(x(t))[ ∫1 
t yδ(ξ)dξ-∫1 

t ∫ξ 0φ(x(η))dηdξ]dt. 
Set φ(x)=ex, then true solution x+=sin(t). We use 

IIGRA algorithm solve example 1 in different error level 
δ with iteration initial value x0(t)=t, τ=1.1, ε=1e-5, α=50. 

Table I shows the calculation results of example 1 
where e0=‖a δ

0 -a+‖L
2, en=‖a δ  

n -a+‖L
2and n(δ) is 

iteration numbers. We can see that absolute error en 
decreases with δ minishing. This is consistent of the 
conclusion in theorem 11. Fig.1-Fig.4 give the figures of 
x0, x+ and xδ

n  in different δ. 

TABLE I.   
 THE  NUMERICAL RESULTS OF EXAMPLE 1  IN DIFFERENT δ 

δ n(δ) e0 en en/ e0 
1e-2 93 6.059e-2 1.808e-2 0.289 
5e-3 118 6.059e-2 1.131e-2 0.187 
1e-3 233 6.059e-2 3.720e-3 6.159e-2 
5e-4 78 6.059e-2 3.281e-3 5.415e-2 
1e-5 72 6.059e-2 2.001e-3 3.303e-2 
5e-6 84 6.059e-2 9.804e-4 1.618e-2 
1e-7 84 6.059e-2 1.205e-4 1.989e-3 
5e-8 84 6.059e-2 5.356e-5 8.840e-4 

 

 
Figure 1.  The numerical effect figure with δ=1e-2. 

 
Figure 2.  The numerical effect figure with δ=1e-3. 

 
Figure 3.  The numerical effect figure with δ=5e-4. 
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Figure 4.  The numerical effect figure with δ=5e-8. 

Example 2: parameter identification a(x) in BVP 

⎩⎪
⎨
⎪⎧

-(aux)x=-ex

u(0)=1

u(1)=e

  

where a(x)∈H1[0,1] and assumption 1 are satisfied[5]. 
Indeed, example 2 defines a nonlinear operator F: 

F(a)=u(a)                                                  
D(F)={H1[0,1]| a ≥ a* > 0}.                     

TABLE II.   
 THE  NUMERICAL RESULTS OF EXAMPLE 2  IN DIFFERENT aδ 

0  

aδ 
0  n(δ) e0 en en/ e0 

0.7 67 0.298 0.138 0.463 
3 79 1.98 1.243 0.628 
7 332 5.953 3.992 0.671 

1+0.05sin(10πt) 44 3.532e-2 5.421e-3 0.153 
1+0.1sin(10πt) 49 7.067e-2 8.564e-3 0.121 
1+0.3sin(10πt) 58 0.212 8.772e-2 0.413 

I. CONCLUSION 
Under some not very strict assumptions, we overcome 

the difficulty of local convergence for nonlinear ill-posed 

operator in numerical implementation. Results of 
examples show its convergence and effectivity. In the 
next work, we will focus on weakening the restrictions on 
the property of nonlinear operator. 
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