

# Two SAOR Iterative Formats for Solving Linear Complementarity Problems

## Xian-li Han

College of Mathematics Science, Yangzhou University, Yangzhou, China Email: hanxianli330@126.com

#### Dong-jin Yuan

College of Mathematics Science, Yangzhou University, Yangzhou, China Email: djyuan@yzu.edu.cn

## Shan Jiang

College of Mathematics Science, Yangzhou University, Yangzhou, China Email: jiangshan@yzu.edu.cn

Abstract-In this paper, we propose two new iterative SAOR methods to solve the linear complementarity problem. Some sufficient conditions for the convergence of two new iterative methods are presented, when the system matrix M is an M-matrix. Moreover, when M is an L-matrix, we discuss the monotone convergence of the new methods. And in the numerical experiments we report some computational results with the two proposed SAOR formats.

Index Terms - SAOR method, linear complementarity problem, convergence, H-matrix, M-matrix, monotone

## I. INTRODUCTION

For given matrix and vector, the linear complementarity problem (LCP) consists of finding a vector which satisfies the conditions

$$z \ge 0, Mz + q \ge 0, z^{T} (Mz + q) = 0$$
 (1.1)

Because the has a variety of applications such as the Nash equilibrium point of a bi-matrix game, contact problems, the free boundary problem, etc. (see [1,2]). The researches on the numerical methods for solving (1.1) have attracted much attention.

A large number of papers have studied LCP [3-14]. Numerical methods for LCP fall into two major categories: direct methods and iterative methods. In [10], several basic iterative methods to solve LCP are discussed. Recently, some new iterative methods have been proposed to solve LCP. For example, Koulisianis and Papatheodorou [14] present an improved projected successive overrelaxation (IPSOR) for the solution of an important class of linear complementarity problems. When M is a 2-cyclic matrix, Yuan and Song [15] proposed a class of modified AOR(MAOR) methods to solve it. In [16], a class of generalized AOR(GAOR) methods for solving (1.1) is introduce by applying the multi-splitting techniques. Bai [17,18] proposed a class of

parallel iterative methods for a large linear complementarity problem.

In this paper, by applying the SAOR splitting, we propose SAOR method I and II for solving the linear complementarity problem. Convergence results for these two methods are presented when is an H-matrix (and also an M-matrix). Finally, numerical examples are given to show the efficiency of the presented methods.

We briefly introduce some essential notations. Let  $C = (c_{i,j}) \in R^{n \times n}$  be an  $n \times n$  matrix, diag(C) denotes the  $n \times n$  diagonal matrix coinciding in its diagonal with C. For  $A = (a_{i,j}), B = (b_{i,j}) \in R^{n \times n}$ , we write  $A \ge B$  if  $(a_{i,j}) \ge (b_{i,j})$  holds for all i, j=1,2,...,n. Calling A nonnegative if  $A \ge 0$ , we say that  $B \le C$  if and only if  $-B \ge -C$ . These definitions carry immediately over to vectors by identifying them with  $n \times n$  matrices. By  $|A| = (|a_{i,j}|)$ , we define the absolute value of  $A \in R^{n \times n}$ . We denote by  $\langle A \rangle = (\langle a_{i,j} \rangle)$  the comparison matrix of  $A \in R^{n \times n}$  where  $\langle a_{i,j} \rangle = |a_{i,j}|$  for k=j and  $\langle a_{i,j} \rangle = -|a_{i,j}|$  for k  $\ne$  j, k, j=1,2,...,n. Spectral radius of a matrix A is denoted by  $\rho(A)$ .

**Definition 1.** Let  $A = (a_{i,j}) \in R^{n \times n}$ . It is called

- (1) L-matrix if  $a_{kk} > 0, k = 1, 2, \mathbf{K}, n$ , and  $a_{ki} \le 0, k \ne j, k, j = 1, 2, \mathbf{K}, n$ ;
- (2) M-matrix if it is a nonsingular L-matrix satisfying  $A^{-1} \ge 0$ ;
- (3) S- matrix if  $\exists x > 0, Ax > 0$
- (4) H-matrix if  $\langle A \rangle$  is an M-matrix.
- (5)  $H_{\perp}$ -matrix if A is an H-matrix and  $a_{kk} > 0, k = 1, 2, K, n$ .

**Definition 2.** For  $A = (a_{i,j}) \in R^{n \times n}$ , vector  $x_+$  is defined such that  $(x_+)_i = \max\{0, x_j\}$ , j = 1, 2, K, n. Then for any

 $x, y \in \mathbb{R}^n$ , the following facts hold in [19]

(1)  $(x+y)_{+} \leq x_{+} + y_{+};$ 

This work is supported by NSF Grant #11026113 to S. Jiang. Corresponding author: Dong-jin Yuan.

 $(2) x_1 - y_1 \le (x - y)$ ;

 $(3)|_{x}|_{=x_{+}+(-x)}$ ;

$$(4) x \le y \Longrightarrow x_{\perp} \le y_{\perp}.$$

**Lemma 1.1** [20] Let A = M - N be an M-splitting, then  $\rho(M^{-1}N) < 1 \Leftrightarrow A$  is a nonsingular M-matrix.

**Lemma 1.2** [21] Let M  $H_+$ -matrix, then LCP (M,q) has a unique solution  $z \in \mathbb{R}^n$ .

**Lemma 1.3** [22] A is an M-matrix if and only if A is a Z-matrix and an S-matrix.

**Lemma 1.4** [23] Let  $A_1$  is an M-matrix,  $D_1 = diag(A_1)$ ,  $C_1 = D_1 - A_1$ . If  $D_2 \ge 0 \in R^{p \times n}$  is a diagonally matrix and  $C_2 \in R^{n \times n}$ ,  $0 \le C_2 \le C_1$ , then  $A = (D_1 - D_2) - (C_1 - C_2)$  and  $A^{-1} \le A_1^{-1}$ 

#### II. SAOR METHOD FOR LCP(M.O)

Let where M = D - B = D - L - U,  $D = diag(M) = (d_{ij})$ ,  $L = (l_{ij})$ , and  $U = (u_{ij})$ , i; j = 1, 2, 3, ...n are diagonal, strictly lower and upper triangular matrices obtained from M, respectively. It has been shown in [24,25] that  $z^*$  solves LCP (M,q) (1.1) if and only if it satisfies

$$Z^* = (Z^* - D(MZ+q))$$

where D = diag(M).

Now we propose two new iterative methods for solving LCP (M,q) (1.1) as follows.

# Format I (SAOR method)

Step 1: Choose an initial vector  $z^0 \in R^n$  and a parameter  $\omega, r \in R^+$ , set k = 0;

Step 2: Calculate

$$z^{k+1} = (z^k - D^{-1} \{ -\gamma L z^{k+1} + [\omega(2-\omega)M + \gamma L] z^k \}$$

$$+\omega(2-\omega)q$$
)

Step 3: If  $z^{k+1} = z^k$ , then stop; Else set k = k+1 and go to step 2.

### Format II (SAOR method)

Step 1: Choose an initial vector  $z^0 \in \mathbb{R}^n$  and a parameter  $\omega, r \in \mathbb{R}^+$ , set k = 0;

Step 2: Calculate

$$z^{k+1} = (z^k - D^{-1} \{ -\gamma U z^{k+1} + [\omega(2-\omega)M + \gamma U] \} z^k$$

$$+\omega(2-\omega)q$$
)

Step 3: If  $z^{k+1} = z^k$ , then stop; Else set k = k+1 and go to step 2.

# Remark

- (1) If M is a symmetric matrix, then method I and II coincide;
- (2) If  $\omega = \gamma$ , then SAOR method reduces to SSOR method:
- (3) If  $\omega = 1$ , then SAOR method reduces to AOR method;
- (4) If  $\omega = \gamma = 1$ , then SAOR method reduces to SOR method.

## III. CONVERGENCE ANALYSIS FOR $H_{\perp}$ -MATRIX

At first we define the operator  $f: \mathbb{R}^n \to \mathbb{R}^n$  in accordance with the rule:  $f(z) = \xi$ , where  $\xi$  is the fixed point of the system of equations

$$\xi = \left(z - D^{-1} \left\{ -\gamma L \xi + \left[\omega (2 - \omega) M + \gamma L\right] z + \omega (2 - \omega) q \right\} \right)_{+}$$
(3.1)

and  $g: R^n \to R^n$  such that  $g(z) = \eta$ , where is the fixed point of the following system of equations

$$\eta = \left(z - D^{-1}\left\{-\gamma U \eta + \left[\omega(2 - \omega)M + \gamma U\right]z + \omega(2 - \omega)q\right\}\right)_{+}$$
(3.2)

we can prove the following convergence theorem for the SAOR method.

**Theorem 3.1.** Let M = D - B = D - L - U be an  $H_+$ -matrix and D = diag(M),  $L_+U$  be diagonal, strictly lower and upper triangular matrices obtained from M, respectively. If  $0 < \gamma \le \omega \le 1$ , then for any initial vector  $z^0$ , Method I and II converge to the unique solution of LCP (M,q).

**Proof.** First we consider the sequence  $\{z^k\}$  generated by Method I. By Lemma 1.2, LCP(M,q) has a unique solution  $z^* \in \mathbb{R}^n$ , that is

$$f(z^*) = z^*.$$

Suppose that  $\eta = f(y)$ ,

i.e..

$$\eta = \left(y - D^{-1} \left\{ -\gamma L \eta + \left[\omega (2 - \omega) M + \gamma L\right] y + \omega (2 - \omega) q \right\} \right)_{+}$$
(3.3)

Then by subtracting (3.3) from (3.1), we get

$$\begin{split} \xi - \eta &= \left(z - D^{-1} \left\{ -\gamma L \xi + \left[ \omega (2 - \omega) M + \gamma L \right] z + \omega (2 - \omega) q \right\} \right)_{+} \\ &- \left( y - D^{-1} \left\{ -\gamma L \eta + \left[ \omega (2 - \omega) M + \gamma L \right] y + \omega (2 - \omega) q \right\} \right)_{+} \\ &\leq \left( (z - y) - D^{-1} \left\{ -\gamma L \xi + \left[ \omega (2 - \omega) M + \gamma L \right] (z - y) \right\} \right)_{+} \\ &= \left( \gamma D^{-1} L (\xi - \eta) + \left( \left\{ I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right\} (z - y) \right) \right) \end{split}$$

So we can get

$$(\xi - \eta)_{+} \leq (\gamma D^{-1}L(\xi - \eta))_{+}$$

$$+((I - D^{-1}[\omega(2 - \omega)M + \gamma L])(z - y))_{+}$$
(3.4)

Analogously, we can obtain

$$(\eta - \xi)_{+} \leq (\gamma D^{-1}L(\eta - \xi))_{+} + (I - D^{-1}[\omega(2 - \omega)M + \gamma L])(y - z)_{+}$$

Now, the combination of (3.4) and (3.5) directly give the following estimates

$$\begin{aligned} & \left| \xi - \eta \right| = \left( \xi - \eta \right)_{+} + \left( \eta - \xi \right)_{+} \\ & \leq \left( \gamma D^{-1} L \left( \xi - \eta \right) \right)_{+} + \left( \gamma D^{-1} L \left( \eta - \xi \right) \right)_{+} \\ & + \left( \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) (z - y) \right)_{+} \\ & + \left( \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) (y - z) \right)_{-} \end{aligned}$$

$$\begin{split} &= \left| \gamma D^{-1} L (\xi - \eta) \right| + \left| \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) (z - y) \right| \\ &\leq \gamma D^{-1} \left| L \right| \left| (\xi - \eta) \right| + \left| \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) \right| \left| z - y \right| \\ &\text{i.e.,} \\ & \left( I - \gamma D^{-1} \left| L \right| \right) \left| \xi - \eta \right| \leq \left| I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right| \left| z - y \right|, \\ &\text{let} \end{split}$$

$$Q = I - \gamma D^{-1} |L|, R = I - D^{-1} [\omega(2 - \omega)M + \gamma L].$$

Then, we can get

$$|\xi - \eta| \le Q^{-1}R|z - y|.$$
 (3.6)

According to the definition of Method I and (3.6), we can get

$$|z^{k+1} - z^*| = |f(z^k - z^*)| \le Q^{-1}R|z^k - z^*|$$

According to Lemma 1.2, It is easy to see that the iterative sequence  $\{z^k\}, k = 0, 1, 2, \mathbf{K}$  generated by Method

I converges to the unique solution  $z^*$  if  $\rho(M^{-1}N) < 1$ .

Let T = Q - R, then we know that  $Q = I - \gamma D^{-1} |L|$  is an M-matrix, and  $R = |I - D^{-1}[\omega(2 - \omega)M + \gamma L]| \ge 0$ , and since  $0 < \gamma \le \omega \le 1$ ,

SO 
$$T = Q - R \ge \omega (2 - \omega) D^{-1} (D - |B|) @ \mathring{T}$$
,

since M is an  $H_{\perp}$ -matrix,

so  $D - |B| = \langle M \rangle$  is an M-matrix, then for any  $0 < \gamma \le \omega \le 1$ ,  $\exists x \ge 0$  such that

$$\mathring{T}X = \omega(2-\omega)D^{-1}(D-|B|)x > 0,$$

Therefore,  $\mathring{T}$  is an M-matrix.

Since T is a Z-matrix and  $T \ge \mathring{T}$ , according to Lemma 1.4, It is easy to see that T is an M-matrix, i.e.,  $T^{-1} \ge 0$ .

In addition, T is nonsingular and T = Q - R is M-splitting, according to Lemma 1.1,  $T^{-1} \ge 0 \Leftrightarrow \rho(Q^{-1}R) < 1$ . Hence  $\rho(Q^{-1}R) < 1$ .

Similarly, we can obtain the above results if we consider the sequence  $\{z^k\}$  generated by Method II. **W** 

**Corollary 3.2.** Let M=D-B=D-L-U be an M-matrix and D=diag(M), L,U be diagonal, strictly lower and upper triangular matrices obtained from M. If  $0<\gamma\leq\omega<2$ , then for any initial vector  $z^0$ , Method I and II converge to the unique solution of LCP (M,q).

**Proof.** First we consider the sequence  $\{z^k\}$  generated by Method I. By Lemma 1.2. I.CP (Ma) has a unique

Method I. By Lemma 1.2, LCP (M,q) has a unique solution  $z^* \in \mathbb{R}^n$ , that is

$$f(z^*) = z^* \cdot$$

Suppose that  $\eta = f(y)$ , i.e.,

$$\eta = \left(y - D^{-1}\left\{-\gamma L \eta + \left[\omega(2-\omega)M + \gamma L\right]y + \omega(2-\omega)q\right\}\right)_{+}$$
(3.7)  
Then by subtracting (3.3) from (3.1), we get  
$$\xi - \eta = \left(z - D^{-1}\left\{-\gamma L \xi + \left[\omega(2-\omega)M + \gamma L\right]z + \omega(2-\omega)q\right\}\right)_{+}$$
$$-\left(y - D^{-1}\left\{-\gamma L \eta + \left[\omega(2-\omega)M + \gamma L\right]y + \omega(2-\omega)q\right\}\right)$$

$$\leq ((z-y)-D^{-1}\{-\gamma L\xi + [\omega(2-\omega)M + \gamma L](z-y)\})_{+}$$
$$= (\gamma D^{-1}L(\xi-\eta) + (\{I-D^{-1}[\omega(2-\omega)M + \gamma L]\}(z-y)))_{+}$$

So, we can get

$$(\xi - \eta)_{+} \leq (\gamma D^{-1} L(\xi - \eta))_{+}$$

$$+ (I - D^{-1} [\omega(2 - \omega)M + \gamma L])(z - y))_{+}$$
(3.8)

Analogously, we can obtain

$$(\eta - \xi)_{+} \leq (\gamma D^{-1}L(\eta - \xi))_{+} + ((I - D^{-1}[\omega(2 - \omega)M + \gamma L])(y - z))_{+}$$

$$(3.9)$$

Now, the combination of (3.8) and (3.9) directly gives the following estimates

$$\begin{split} & \left| \xi - \eta \right| = (\xi - \eta)_{+} + (\eta - \xi)_{+} \\ & \leq \left( \gamma D^{-1} L(\xi - \eta) \right)_{+} + \left( \gamma D^{-1} L(\eta - \xi) \right)_{+} \\ & + \left( \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) (z - y) \right)_{+} \\ & + \left( \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) (y - z) \right)_{+} \\ & = \left| \gamma D^{-1} L(\xi - \eta) \right| + \left| \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) (z - y) \right| \\ & \leq \gamma D^{-1} \left| L \right| \left| \left( \xi - \eta \right) \right| + \left| \left( I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right) \right| \left| z - y \right| \\ & \text{i.e.,} \\ & \left( I - \gamma D^{-1} |L| \right) |\xi - \eta| \leq \left| I - D^{-1} \left[ \omega (2 - \omega) M + \gamma L \right] \right| |z - y|, \\ & \text{let} \end{split}$$

$$Q = I - \gamma D^{-1} |L|, R = |I - D^{-1}| \omega(2 - \omega)M + \gamma L|$$

Then, we can get

$$|\xi - \eta| \le Q^{-1}R|z - y|$$
 (3.10)

According to the definition of Method I and (3.10), we can get

$$|z^{k+1}-z^*| = |f(z^k-z^*)| \le Q^{-1}R|z^k-z^*|$$

According to Lemma 1.2, It is easy to see that the iterative sequence  $\{z^k\}$ , k = 0,1,2,K generated by Method

I converges to the unique solution  $z^*$  if  $\rho(M^{-1}N) < 1$ .

Let T = Q - R, then we know that  $Q = I - \gamma D^{-1} |\mathcal{L}|$  is an M-matrix,

and 
$$R = |I - D^{-1} \lceil \omega (2 - \omega) M + \gamma L \rceil \ge 0$$
,

and since  $0 < \gamma \le \omega < 2$ ,

SO 
$$T = Q - R \ge \omega(2 - \omega) D^{-1} (D - |B|) @ \mathring{T}$$
,

since M is an  $H_{\perp}$ -matrix,

so  $D - |B| = \langle M \rangle$  is an M-matrix,

then for any  $0 < \gamma \le \omega < 2$ ,

$$\exists x \ge 0$$
 such that  $\mathring{T}X = \omega(2-\omega)D^{-1}(D-|B|)x > 0$ ,

Therefore,  $\mathring{T}$  is an M-matrix.

Since T is a Z-matrix and  $T \ge \mathring{T}$ , according to Lemma 1.4, It is easy to see that T is an M-matrix, i.e.,  $T^{-1} \ge 0$ .

In addition, T is nonsingular and T = Q - R is M-splitting, according to Lemma 1.1,  $T^{-1} \ge 0 \Leftrightarrow \rho(Q^{-1}R) < 1$ .

Hence  $\rho(Q^{-1}R) < 1$ .

Similarly, we can obtain the above results if we consider the sequence  $\{z^k\}$  generated by Method II. **W** 

#### IV. MONOTONE CONVERGENCE ANALYSIS

In this section, we mainly discuss the monotone convergence properties of the SAOR methods, when the system matrix  $M \in \mathbb{R}^{n \times n}$  is an L-matrix. First, we define the following set

$$\Delta = \left\{ x \in R^n \mid x \ge 0, Mx + q \ge 0 \right\}$$

Obviously if LCP(M,q) is solvable, then the set  $\Delta$  is nonempty.

**Theorem 4.1.** Let the operator  $f: R^n \to R^n$  be defined in (3.1). Suppose that  $M \in R^{n \times n}$  is an L-matrix, and also  $0 < \gamma \le \omega \le 1$ . Then for any  $z \in \Delta$ , it holds that

- (1)  $f(z) \leq z$ ;
- (2)  $y \le z \Rightarrow f(y) \le f(z)$ ;
- (3)  $\xi = f(z) \in \Delta$ .

Proof: We firstly verify (1) We only need to show that

$$\xi_i \le z_i, i = 1, 2, \mathbf{K} \ n \tag{4.1}$$

where

$$\xi_{i} = \left(z_{i} - d_{ii}^{-1} \left[ -\gamma \sum_{j=1}^{i-1} L_{ij} \left(\xi_{j} - z_{j}\right) + \omega (2 - \omega) \left(Mz + q\right)_{i} \right] \right)_{+}$$
(4.2)

We use induction on i to prove (4.1). When i=1, noticing that M is an L-matrix,  $0<\gamma\leq\omega\leq 1$  and  $z\in\Delta$ ,

$$z_1 \ge 0$$
, and  $d_{ii}^{-1} \left[ \omega \left( 2 - \omega \right) \left( Mz + q \right)_i \right] \ge 0$ ,

thus 
$$\xi_1 = (z_1 - d_{ii}^{-1} [\omega(2 - \omega)(Mz + q)_i])_+ \le z_1$$

Now assume that (4.1) holds for  $\forall i \leq k (0 < k < n)$ , then we get  $z_{k+1} \geq 0$ ,

and 
$$d_{k+1,k+1}^{-1} \left[ -\gamma \sum_{j=1}^{k} L_{ij} (\xi_j - z_j) + \omega (2 - \omega) (Mz + q)_{k+1} \right] \ge 0$$

Thus

$$\xi_{k+1} = \left(z_{k+1} - d_{k+1k+1}^{-1} \left[ -\gamma \sum_{j=1}^{k} L_{ij} \left( \xi_{j} - z_{j} \right) + \omega (2 - \omega) \left( Mz + q \right)_{k+1} \right] \right)_{k} \le z_{k+1}$$

By the principle of induction, (4.1) holds for all i = 1,2,...,n.

To verify (2), we denote  $\eta = f(y)$ , where  $\eta$  is the fixed point of the system of equation

$$\eta = \left(y - D^{-1}\left\{-\gamma L \eta + \left[\omega(2 - \omega)M + \gamma L\right]y + \omega(2 - \omega)q\right\}\right)_{+}$$

Now we only need to show that

$$\eta_i \le \xi_i, \text{ when } y \le z, i = 1, 2, K, n$$
(4.3)

by noticing (4.2) we can obtain

$$\xi_{i} = (z_{i} - d_{ii}^{-1} [-\gamma \sum_{j=1}^{i-1} L_{ij} \xi_{j} + \gamma \sum_{j=1}^{i-1} L_{ij} z_{j} + \omega (2 - \omega) d_{ii} z_{i}$$

$$-\omega (2 - \omega) \sum_{j=1}^{i-1} L_{ij} z_{j} + \omega (2 - \omega) \sum_{j=i+1}^{n} U_{ij} z_{j}$$

$$+\omega (2 - \omega) (Mz + q)_{i}])_{+}$$

$$= ((\omega - 1)^{2} z_{i} - d_{ii}^{-1} [-\gamma \sum_{j=1}^{i-1} L_{ij} \xi_{j} + (\omega^{2} - 2\omega + \gamma) \sum_{j=1}^{i-1} L_{ij} z_{j}$$

$$-\omega (2 - \omega) \sum_{j=i+1}^{n} U_{ij} z_{j} + \omega (2 - \omega) q_{i}]_{+}$$

$$(4.4)$$

and

$$\eta_{i} = ((\omega - 1)^{2} y_{i} - d_{ii}^{-1} [-\gamma \sum_{j=1}^{i-1} L_{ij} \eta_{j} + (\omega^{2} - 2\omega + \gamma) \sum_{j=1}^{i-1} L_{ij} y_{j} 
- \omega (2 - \omega) \sum_{j=i+1}^{n} U_{ij} y_{j} + \omega (2 - \omega) q_{i}])_{+}$$

Considering the hypotheses  $y \le z$ , then when i=1, we obtain

$$\xi_{1} = ((\omega - 1)^{2} z_{1} + d_{11}^{-1} [\omega (2 - \omega) \sum_{j=2}^{n} U_{1j} z_{j} - \omega (2 - \omega) q_{1}])_{+}$$

$$\geq ((\omega - 1)^{2} y_{1} + d_{11}^{-1} [\omega (2 - \omega) \sum_{j=2}^{n} U_{1j} y_{j} - \omega (2 - \omega) q_{1}])_{+} = \eta_{1}$$

Now assume that (4.1) holds for  $\forall i \le k (0 < k < n)$ ,

when 
$$i = k+1$$
, by (4.3), (4.4) and  $y \le z$  and hence,

$$\eta_{k+1} \leq \xi_{k+1}$$
.

Hence the conclusion (4.3) holds by the principle of induction.

Now, we turn to (3).

Let  $\zeta = f(\xi), \xi = f(z)$ , by (1) we immediately get  $f(\xi) \le \xi$ , so  $\zeta \le \xi$ .

By the definition of operator f we see that

$$\zeta = f(\xi) \ge 0, \xi = f(z) \ge 0,$$

Now by induction, we prove

$$(M\xi+q) j \ge 0, j=1,2,...,n$$

Obviously  $(M\xi+q) \ge 0$ ,

Otherwise, 
$$\zeta_1 = (\xi_1 - d_{11}^{-1}\omega(2-\omega)(MZ+q)_1) \ge (\xi_1)_+ = \xi_1$$

This contracts  $\zeta \leq \xi$ .

Now, we assume that  $(M\xi+q)_i \ge 0$ , j=1,2,...,k-1.

Since 
$$\zeta_j \le \xi_j$$
,  $j = 1, 2, ..., k-1$ , we can obtain  $(M\xi + q) \ge 0$ .

Otherwise, by defining

$$v = (\xi - \omega(2 - \omega)D^{-1}(M\xi + q)),$$

we obtain  $v_k \ge \xi_k$ , On the other hand, the following estimates can by straightforwardly deduced from the definitions of  $\varsigma$  and v,

$$\zeta_{k} = (\xi_{k} - d_{kk}^{+} [-\gamma \sum_{j=1}^{k-1} L_{kj} (\zeta_{j} - \xi_{j}) + \omega (2 - \omega) (Mz + q)_{k}])_{+}$$

$$= \{ [1 - \omega (2 - \omega)] \xi_{k} + d_{kk}^{-1} \gamma \sum_{j=1}^{k-1} L_{kj} \zeta_{j} - \gamma d_{kk}^{-1} \sum_{j=1}^{k-1} L_{kj} \xi_{j} + \omega (2 - \omega) d_{kk}^{-1} \sum_{j=1}^{k-1} L_{kj} \xi_{j} + \omega (2 - \omega) d_{kk}^{-1} \gamma \sum_{j=j+1}^{k-1} U_{kj} \xi_{j} \}_{+}$$

$$\leq \{(1-\omega)^{2} \xi_{k} + \gamma d_{kk}^{-1} \sum_{j=1}^{k-1} L_{kj} \xi_{j} - \gamma d_{kk}^{-1} \sum_{j=1}^{k-1} L_{kj} \xi_{j} + \omega (2-\omega) d_{kk}^{-1} \sum_{j=1}^{n} U_{kj} \xi_{j} \} + \omega (2-\omega) d_{kk}^{-1} \sum_{j=1}^{n} U_{kj} \xi_{j} \}_{+}$$

$$= \left( (1-\omega)^{2} \xi_{k} + \omega (2-\omega) d_{kk}^{-1} \sum_{j=1}^{k-1} L_{kj} \xi_{j} + \omega (2-\omega) d_{kk}^{-1} \sum_{j=i+1}^{n} U_{kj} \xi_{j} \right)_{+}$$

$$= \left( \xi_{k} - \omega (2-\omega) d_{kk}^{-1} (M \xi + q)_{k} \right)_{+} = v_{k}.$$

i.e.,  $\zeta_k \leq v_k$ .

In addition, since

$$\zeta - \upsilon = \left(\xi - D^{-1} \left\{ \left[ -\gamma L \zeta + \omega (2 - \omega) M + \gamma L \right] \xi + \omega (2 - \omega) q \right\} \right)_{+}$$
$$- \left(\xi - \omega (2 - \omega) D^{-1} (M \xi + q) \right)_{+}$$
$$\leq \left(\gamma D^{-1} L (\zeta - \xi) \right)_{-}$$

and analogously,  $v-\xi \leq (\gamma D^{-1}L(\xi-\zeta))$ ,

$$\begin{split} \left| \zeta - \upsilon \right| &= \left( \zeta - \upsilon \right)_{+} + \left( \upsilon - \zeta \right)_{+} \leq \left( \gamma D^{-1} L \left( \zeta - \xi \right) \right)_{+} + \left( \gamma D^{-1} L \left( \xi - \zeta \right) \right)_{+} \\ &= \left| \gamma D^{-1} L \left( \xi - \zeta \right) \right| \leq \gamma D^{-1} \left| L \right| \left| \zeta - \xi \right| = \gamma D^{-1} L \left| \zeta - \xi \right| \\ &\leq \gamma \omega \left( 2 - \omega \right) D^{-1} L \left( I - \gamma D^{-1} L \right)^{-1} D^{-1} \left| M \xi + q \right| \to 0 \quad (\gamma \to 0) \end{split}$$

that is,  $\lim_{n \to \infty} \zeta = v$ .

Here, the estimate

$$\begin{aligned} &\left| \zeta - \xi \right| \leq \omega (2 - \omega) \left( I - \gamma D^{-1} L \right)^{-1} D^{-1} \left| M \xi + q \right| \end{aligned} \tag{4.5}$$
 is used. In fact, with the facts of Definition 2 we have 
$$f\left( \xi \right) = \zeta = \left( \xi - D^{-1} \left\{ - \gamma L \zeta + \left[ \omega (2 - \omega) M + \gamma L \right] \xi + \omega (2 - \omega) q \right\} \right)_{+}$$
 
$$\leq \xi_{+} + \left( -D^{-1} \left\{ - \gamma L \zeta + \left[ \omega (2 - \omega) M + \gamma L \right] \xi + \omega (2 - \omega) q \right\} \right)_{+}$$

 $f(\xi) = \zeta = \left(\xi - D^{-1}\left\{-\gamma L \zeta + \left[\omega(2 - \omega)M + \gamma L\right]\xi + \omega(2 - \omega)q\right\}\right)$  $\geq \xi_{+} - \left(D^{-1}\left\{-\gamma L \zeta + \left[\omega(2-\omega)M + \gamma L\right]\xi + \omega(2-\omega)\xi\right\}\right)_{+}$ 

So, we obtain

$$\left(\zeta-\xi\right)_{+} \leq \left(\gamma D^{-1} L\left(\zeta-\xi\right) - \omega \left(2-\omega\right) D^{-1} \left(M\,\xi+q\right)\right)_{+}$$

$$\left(\xi - \zeta\right)_{+} \leq \left(-\gamma D^{-1} L\left(\zeta - \xi\right) + \omega \left(2 - \omega\right) D^{-1} \left(M \xi + q\right)\right)_{+}.$$

Therefore,

$$|\zeta - \xi| = (\zeta - \xi)_{+} + (\xi - \zeta)_{+}$$

$$\leq \left| \gamma D^{-1} L(\zeta - \xi) - \omega(2 - \omega) D^{-1}(M\xi + q) \right|$$

$$\leq \gamma D^{-1}L|\zeta-\xi|-\omega(2-\omega)D^{-1}|M\xi+q|$$

i.e.,

$$\left| \zeta - \xi \right| \le \omega (2 - \omega) (I - \gamma D^{-1} L) \left| M \xi + q \right|,$$

thus, (4.5) holds.

Moreover, observing  $v_k \ge \xi_k$ , So we get  $\zeta_k \le v_k$  and  $\lim \zeta = v$ . We know that  $\xi_k \le \zeta_k$  must hold for some

sufficiently small  $\gamma \in [0,1]$ .

However, this contracts  $\zeta \leq \xi$ .

Therefore,  $(M\xi+q)_k \ge 0$ .

By induction, we obtain  $\xi \in \Delta$ . **W** 

**Theorem 4.2.** Let the operator  $g: R^n \to R^n$  be defined in (3.2). Suppose that  $M \in \mathbb{R}^{n \times n}$  is an L-matrix, and also  $0 < \gamma \le \omega \le 1$ . Then for any  $z \in \Delta$ , it holds that

(1)  $g(z) \le z$ ;

(2)  $y \le z \Rightarrow g(y) \le g(z)$ ;

(3)  $\eta = g(z) \in \Delta$ .

**Theorem 4.3.** Suppose that  $M \in \mathbb{R}^{n \times n}$  is an L-matrix, and also  $0 < \gamma \le \omega \le 1$ ,

then for any initial vector  $z^0 \in \Delta$ , the iterative sequence  $\{z^k\}$  generated by Methods I and II has the following properties

(1)  $0 \le z^{k+1} \le z^k \le z^0, k = 0,1,2,\mathbf{K}$ 

(2)  $\lim_{z \to z^*, z^*} z^*$  is the unique solution of the LCP(M,q).

Proof. We only give the proof for the SAOR Method I. Since  $z^0 \in \Delta$ , by (a) of Theorem 4.1 we have

$$f(z^0) = z^1 \le z^0$$
 and  $z^1 \in \Delta$ .

Now, using (a) of Theorem 4.1 again,

by recursively we have shown the validity of (a).

The inequalities given in (1) show that the sequence  $\{z^k\}$ 

is monotone bounded, so that it converges to some vector z\* satisfying

$$z^* = (z^* - D^{-1} \{ -\gamma L z^* + [\omega(2-\omega)M + \gamma L] z^* + \omega(2-\omega)q \})_+$$

$$= (z^* - D^{-1} [\omega(2-\omega)M z^* + \omega(2-\omega)q])$$

Hence,  $z^*$  is the unique solution of the LCP (M,q).

**Theorem 4.4.** Let  $M \in \mathbb{R}^{n \times n}$  be an L-matrix. Then for any initial vector  $z^0 = y^0 \in \Delta$ , both the iterative sequences  $\{z^k\}$  and  $\{y^k\}$  generated by the SAOR Method I (or SAOR Methods II) corresponding to the parameter  $(\omega, \gamma)$ and  $(\overline{\omega}, \overline{\gamma})$  respectively, converge to the solution  $z^*$  of the LCP(M,q) and it holds

$$z^k \le y^k, k = 0,1,2,\mathbf{K}$$
, (4.6)

provided the parameter  $(\omega, \gamma)$  and  $(\overline{\omega}, \overline{\gamma})$  satisfy

$$0<\overline{\omega}\leq\omega\leq1;\ 0<\overline{\gamma}\leq\gamma\leq1;\ 0<\overline{\gamma}\leq\overline{\omega}\leq1;\ 0\leq\gamma\leq\omega\leq1.$$

**Proof.** The convergence of sequences  $\{z^k\}$  and  $\{y^k\}$  is proved by Theorem 4.3.

Now, we prove (4.6).

First we define the operator

$$f:R^n\to R^n$$

such that  $\xi = f(z)$ ,

where  $\xi$  is the fixed point of the following system

$$\xi = (z - D^{-1} \{ -\gamma L \xi + [\omega(2 - \omega)M + \gamma L] \} z$$

$$+\omega(2-\omega)q$$
)

Since

$$y^{p+1} = (y^{p} - D^{-1} \{ -\overline{\gamma} L y^{p+1} + \left[ \overline{\omega} (2 - \overline{\omega}) M + \overline{\gamma} L \right] y^{p} + \overline{\omega} (2 - \overline{\omega}) q \})_{+}$$

In addition, since

$$-\overline{\gamma}Ly^{p+1} + \left[\overline{\omega}(2-\overline{\omega})M + \overline{\gamma}L\right]y^{p} + \overline{\omega}(2-\overline{\omega})q$$

$$= -\overline{\gamma}Ly^{p+1} - + \left[\overline{\omega}(2-\overline{\omega})M + \overline{\gamma}L\right] + \overline{\omega}(2-\overline{\omega})q$$

$$\leq -\gamma L\left(y^{p+1} - y^{p}\right) + \omega(2-\omega)\left(My^{p} + q\right)$$

Therefore.

$$y^{p+1} \ge (y^{p} - D^{-1}[-\gamma L(y^{p+1} - y^{p}) + \omega(2 - \omega)(My^{p} + q)])_{+} = f(y^{p})$$
(4.7)

We verify (4.6) by induction. In fact, when k=0, the inequality (4.7) is trivial. Suppose that (4.6) holds for some positive integer p.

$$z^{k} \leq y^{k}, k = 0, 1, 2, \mathbf{K} p$$
.

Then, by Theorem 4.1 and the inequality (4.7), we get

$$z^{p+1} = f(z^p) \le f(y^p) \le y^{p+1}$$

and hence  $z^{k} \le y^{k}, k = 0, 1, 2, \mathbf{K}$ .

This completes the proof. W

**Remark.** Theorem 4.4 shows that suitable increase of the parameter  $\omega$  can accelerate the convergence rate of Methods I and II. Furthermore, the parameter  $\gamma = \omega = 1$  can result in the fastest convergence rate of Methods I and II under the restrictions made in Theorem 4.4. Moreover, Theorem 4.4 implies that the optimal parameter in general should be  $\omega, \gamma \in [1, \infty)$ .

# V. Numerical Results

In this section, we present numerical results to show the efficiency and robustness of SAOR methods and AOR method for different cases. The codes are written by Matlab.

**Example 5.1.** We consider the LCP(M,q) with

$$M = \begin{pmatrix} S & -I & -I & O & L & O & O \\ O & S & -I & -I & L & O & O \\ O & O & S & -I & L & O & O \\ M & M & O & O & O & O & M \\ M & M & O & O & O & O & -I \\ M & M & O & O & S & -I \\ O & O & L & L & O & O & S \end{pmatrix} \in R^{p \times n}, q = \begin{pmatrix} -1 \\ 1 \\ -1 \\ M \\ (-1)^{n-1} \\ (-1)^n \end{pmatrix} \in R^n,$$

where  $S = tridiag(1, 8, -1) \in R^{\overline{n} \times \overline{n}}$ ,  $I \in R^{\overline{n} \times \overline{n}}$  is the identity matrix, and  $\overline{n}^2 = n$ . It is known that M is a strictly diagonally dominant matrix and thus is an H-matrix. So the LCP(M,q) has a unique solution  $z^* \in R^n$  as all diagonal elements of M are positive.

For the test problem, we take the initial vector  $z^0 = (5,5,\mathbf{L},5)^T$ . The termination criterion for the iterative methods is  $\delta(z^k) = \|z^k - z^{k-1}\|_{\infty} < 10^{-6}$ , and let NI and CT denote the number of iterations and CPU time, respectively.

TABLE I THE NUMBER OF ITERATIONS AND CPU TIME OF SAOR METHODS AND AOR METHOD WITH DIFFERENT  $\omega$  AND  $\gamma$ 

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         | OR Method I |    | SAOR Method |     | AOR M    | lethod |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|-------------|----|-------------|-----|----------|--------|
| $\begin{array}{c} \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.01 & 0.090985 & 94 & 0.325161 & 338 & 0.190866 & 186 \\ \boldsymbol{0}.02 & \boldsymbol{\gamma} = 0.02 & 0.090866 & 94 & 0.325073 & 338 & 0.184414 & 186 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.010501 & 11 & 0.030769 & 32 & 0.018416 & 19 \\ \boldsymbol{0} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.010501 & 11 & 0.030769 & 32 & 0.018500 & 19 \\ 0.2 & \boldsymbol{\gamma} = 0.2 & 0.011828 & 11 & 0.030896 & 32 & 0.018500 & 19 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.5 & 0.002886 & 3 & 0.002934 & 3 & 0.002884 & 3 \\ 1.0 & \boldsymbol{\gamma} = 1.1 & 0.002977 & 3 & 0.001954 & 2 & 0.002933 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.1 & 0.002992 & 3 & 0.005775 & 6 & 0.002938 & 3 \\ 1.2 & \boldsymbol{\gamma} = 1.2 & 0.003183 & 3 & 0.005795 & 6 & 0.002938 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.4 & 0.004833 & 5 & 0.011555 & 12 & 0.002871 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.5 & 0.004787 & 5 & 0.012199 & 12 & 0.003197 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.8 & 0.024374 & 19 & 0.048328 & 50 & 0.002950 & 3 \\ \hline \boldsymbol{\gamma} = 1.9 & 0.019261 & 19 & 0.051670 & 50 & 0.002874 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.01 & 1.506276 & 94 & 5.341039 & 338 & 3.028217 & 186 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.01 & 0.179784 & 11 & 0.508076 & 32 & 0.303919 & 19 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.048211 & 3 & 0.032247 & 2 & 0.051095 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.048271 & 3 & 0.048960 & 3 & 0.050338 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.048373 & 3 & 0.095202 & 6 & 0.049685 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.048373 & 3 & 0.095202 & 6 & 0.049685 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.048373 & 3 & 0.095202 & 6 & 0.049685 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 0.1 & 0.048373 & 3 & 0.095202 & 6 & 0.049685 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.4 & 0.080099 & 5 & 0.192267 & 12 & 0.050817 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.8 & 0.303899 & 19 & 0.804721 & 50 & 0.048557 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.8 & 0.303899 & 19 & 0.804721 & 50 & 0.048557 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.8 & 0.303899 & 19 & 0.804721 & 50 & 0.048557 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.8 & 0.303899 & 19 & 0.804721 & 50 & 0.048557 & 3 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.8 & 0.303899 & 19 & 0.80468 & 32 & 1.635064 & 19 \\ \hline \boldsymbol{\omega} = \begin{array}{c} \boldsymbol{\gamma} = 1.8 & 0.030858 & 94 & 2.8414443 & 338 & 15.953723 & 186 \\ \hline \boldsymbol{\omega} = \begin{array}{c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 5710    |             | NI |             |     |          |        |
| $\begin{array}{c} \boldsymbol{\omega} = \begin{array}{c} \\ \rho \\ 0.02 \end{array} = \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \gamma \\ = 0.01 \end{array} = \begin{array}{c} \begin{array}{c} \\ \gamma \\ = 0.1 \end{array} = \begin{array}{c} 0.090866 \\ \end{array} = \begin{array}{c} 94 \\ \end{array} = \begin{array}{c} 0.325073 \\ \end{array} = \begin{array}{c} 338 \\ 338 \\ \end{array} = \begin{array}{c} 0.184414 \\ \end{array} = \begin{array}{c} 186 \\ \end{array} = \begin{array}{c} \\ \begin{array}{c} \\ \gamma \\ = 0.2 \\ \end{array} = \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \gamma \\ = 0.2 \\ \end{array} = \begin{array}{c} \begin{array}{c} \gamma \\ = 0.2 \\ \end{array} = \begin{array}{c} \begin{array}{c} \gamma \\ = 0.2 \\ \end{array} = \begin{array}{c} 0.01828 \\ \end{array} = \begin{array}{c} 11 \\ 0.030896 \\ \end{array} = \begin{array}{c} 32 \\ 0.018500 \\ \end{array} = \begin{array}{c} 0.018286 \\ \end{array} = \begin{array}{c} 3 \\ 0.002934 \\ \end{array} = \begin{array}{c} 3 \\ 0.002933 \\ \end{array} = \begin{array}{c} 0.002884 \\ \end{array} = \begin{array}{c} 3 \\ 0.002933 \\ \end{array} = \begin{array}{c} 3 \\ 0.002933 \\ \end{array} = \begin{array}{c} 3 \\ 0.002933 \\ \end{array} = \begin{array}{c} 3 \\ 0.002938 \\ \end{array} = \begin{array}{c} 3 \\ 0.002871 \\ \end{array} = \begin{array}{c} 3 \\ 0.002872 \\ \end{array} = \begin{array}{c} 3 \\ 0.002874 \\ \end{array} = \begin{array}{c} 3 \\ 0.0$ | <b>n</b> =100 |         |             |    |             |     |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>a</i> ) =  | Y =0.01 | 0.090985    | 94 | 0.325161    | 338 | 0.190866 | 186    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =0.02 | 0.090866    | 94 |             | 338 | 0.184414 | 186    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (n)=          |         |             |    |             |     |          |        |
| $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | •       | 0.011828    | 11 | 0.030896    | 32  | 0.018500 | 19     |
| $\begin{array}{c} 1.0  \begin{array}{c} \gamma = 1.0 \\ 0.002877  3 \\ 0.001954  2 \\ 0.002933  3 \\ 0.005775  6 \\ 0.002938  3 \\ 0.005775  6 \\ 0.002938  3 \\ 0.005775  6 \\ 0.002938  3 \\ 0.002871  3 \\ 0.002871  3 \\ 0.002871  3 \\ 0.002872  3 \\ 0.002872  3 \\ 0.002872  3 \\ 0.002872  3 \\ 0.002872  3 \\ 0.003197  3 \\ 0.003197  3 \\ 0.003197  3 \\ 0.003197  3 \\ 0.003197  3 \\ 0.002950  3 \\ 0.002950  3 \\ 0.002950  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  2 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874  3 \\ 0.002874$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>(</i> ) =  |         | 0.002886    | 3  | 0.002934    | 3   | 0.002884 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =1.0  | 0.002877    | 3  | 0.001954    | 2   | 0.002933 | 3      |
| $\begin{array}{c} 1.2  \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>(</i> ) -  | γ =1.1  | 0.002902    | 3  | 0.005775    | 6   | 0.002938 | 3      |
| $\begin{array}{c} \boldsymbol{\omega} = \\ 1.5 \\ \boldsymbol{\gamma} = 1.5 \\ 0.004787 \\ \boldsymbol{\gamma} = 1.8 \\ 0.024374 \\ 19 \\ 0.048328 \\ 50 \\ 0.002950 \\ 3 \\ \boldsymbol{\gamma} = 1.9 \\ 0.002950 \\ 3 \\ \boldsymbol{\gamma} = 1.9 \\ 0.019261 \\ 19 \\ 0.051670 \\ 50 \\ 0.002874 \\ 3 \\ \boldsymbol{\gamma} = 1.9 \\ 0.002874 \\ 3 \\ \boldsymbol{\gamma} = 1.9 \\ 0.019261 \\ 19 \\ 0.051670 \\ 50 \\ 0.002874 \\ 3 \\ \boldsymbol{\gamma} = 1.9 \\ 0.002874 \\ 3 \\ \boldsymbol{\gamma} = 1.9 \\ 0.019261 \\ 19 \\ 0.051670 \\ 50 \\ 0.002874 \\ 3 \\ 3 \\ 3 \\ 3.028217 \\ 186 \\ 3 \\ 2.971320 \\ 186 \\ 3 \\ 2.971320 \\ 186 \\ 3 \\ 2.971320 \\ 186 \\ 3 \\ 3 \\ 3.028217 \\ 186 \\ 3 \\ 3 \\ 3.028217 \\ 186 \\ 3 \\ 3 \\ 3.028217 \\ 186 \\ 3 \\ 3 \\ 3.028217 \\ 186 \\ 3 \\ 3 \\ 3.028217 \\ 186 \\ 3 \\ 3 \\ 3.028217 \\ 186 \\ 3 \\ 3 \\ 3.0328217 \\ 186 \\ 3 \\ 3 \\ 3 \\ 3.0328217 \\ 186 \\ 3 \\ 3 \\ 3 \\ 3.0328217 \\ 186 \\ 3 \\ 3 \\ 3 \\ 3.033919 \\ 19 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | γ =1.2  | 0.003183    | 3  | 0.005795    | 6   | 0.002871 | 3      |
| $\begin{array}{c} 1.5 \\ \omega = \\ 1.9 \\ \gamma = 1.8 \\ 0.024374 \\ \gamma = 1.9 \\ 0.019261 \\ \gamma = 1.9 \\ 0.02 \\ \gamma = 0.01 \\ 0.02 \\ \gamma = 0.02 \\ 0.02 \\ \gamma = 0.03 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048211 \\ 0.048373 \\ 0.048960 \\ 0.048242 \\ 0.048242 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.048261 \\ 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>a</i> ) =  | γ =1.4  | 0.004843    | 5  | 0.011555    | 12  | 0.002872 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =1.5  | 0.004787    | 5  | 0.012199    | 12  | 0.003197 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =1.8  | 0.024374    | 19 | 0.048328    | 50  | 0.002950 | 3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | γ =1.9  | 0.019261    | 19 | 0.051670    | 50  | 0.002874 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>n</b> =400 |         |             |    |             |     |          |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60-           | Y =0.01 | 1.506276    | 94 | 5.341039    | 338 | 3.028217 | 186    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =0.02 | 1.502442    | 94 | 5.366817    | 338 | 2.971320 | 186    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (i)=          | γ =0.1  | 0.179784    | 11 | 0.508014    | 32  | 0.313488 | 19     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =0.2  | 0.175714    | 11 | 0.506876    | 32  | 0.303919 | 19     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>(</i> ) =  | γ =0.5  | 0.047926    | 3  | 0.048960    | 3   | 0.050338 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =1.0  | 0.048211    | 3  | 0.032247    | 2   | 0.051095 | 3      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>a</i> ) =  | γ =1.1  | 0.048373    | 3  | 0.095202    | 6   | 0.049685 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =1.2  | 0.079654    | 3  | 0.097641    | 6   | 0.050580 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>(</i> ) -  | γ =1.4  | 0.080009    | 5  | 0.192267    | 12  | 0.050817 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =1.5  | 0.004787    | 5  | 0.190988    | 12  | 0.049053 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>(</i> ) -  | γ =1.8  | 0.303809    | 19 | 0.804721    | 50  | 0.048557 | 3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | γ =1.9  | 0.300135    | 19 | 0.804678    | 50  | 0.047645 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>n</b> =900 |         |             |    |             |     |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>(</i> )=   | •       |             |    |             |     |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | ,       |             |    |             |     |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>(</i> )=   | Y =0.1  |             | 11 |             | 32  |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =0.2  | 0.18362     | 11 | 2.696842    | 32  | 1.615800 | 19     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (i) =         | Y =0.5  |             |    |             |     |          |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | γ =1.0  | 0.047447    | 3  | 0.173271    | 2   | 0.255026 | 3      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>(</i> )=   | •       | 0.048009    |    |             | 6   |          |        |
| $\omega = 1.5$ $\gamma = 1.5$ 0.078928   5   1.026680   12   0.256678   3 $\gamma = 1.8$ 0.299969   19   4.211614   50   0.254958   3 $\gamma = 1.8$ 0.33658   19   4.22183   50   0.254958   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |             |    |             |     |          |        |
| 1.5 $\gamma = 1.5$ 0.078928 5 1.026680 12 0.256678 3 $\omega = \gamma = 1.8$ 0.29969 19 4.211614 50 0.254958 3 $\gamma = 1.9$ 0.33658 19 4.224083 50 0.253611 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>(</i> ) =  |         | 0.080753    | 5  | 1.016569    | 12  |          | 3      |
| $\omega = \frac{7}{27 - 19} = \frac{1}{0.303658} = \frac{19}{19} = \frac{4.224083}{4.224083} = \frac{50}{50} = \frac{0.253611}{0.253611} = \frac{3}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | γ =1.5  | 0.078928    | 5  | 1.026680    | 12  |          | 3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>m</i> =    | •       |             | 19 |             |     |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | γ =1.9  | 0.303658    | 19 | 4.224083    | 50  | 0.253611 | 3      |

In above Table, we report the number of iterations (NI) and the CPU time (CT) for SAOR Method I ,II and the AOR method with several values of  $n,\omega$  and  $\gamma$ . We can easily see that SAOR method I is more efficient than the AOR method when  $0<\gamma\leq\omega\leq 1$ ; while when  $1<\gamma\leq\omega<2$ , AOR method is more efficient than the SAOR methods. Furthermore, it can be observed that the iterative methods are more efficient (require less number of iterations and less CPU time) for  $\omega=\gamma=1$  than for any other values of  $1<\gamma\leq\omega<2$ . The obtained results confirm Theorem 4.4.

**Example 5.2.** We consider the LCP(M,q) with

$$M = \begin{pmatrix} S & -I & -I & O & L & O & O \\ -I & S & -I & -I & L & O & O \\ I & -I & S & -I & L & O & O \\ M & M & O & O & O & O & M \\ M & M & O & O & O & O & -I \\ M & M & O & O & S & -I \\ O & O & L & L & I & -I & S \end{pmatrix} \in R^{pon}, q = \frac{1}{2} \times \begin{pmatrix} -1 \\ 1 \\ -1 \\ M \\ (-1)^{n-1} \\ (-1)^n \end{pmatrix} \in R^n,$$

where  $S = tridiag(-1,8,-1) \in R^{\overline{n} \times \overline{n}}$ ,  $I \in R^{\overline{n} \times \overline{n}}$  is the identity matrix, and  $\overline{n}^2 = n$ . It is known that M is a strictly diagonally dominant matrix and thus is an H-matrix. So the LCP(M,q) has a unique solution  $z^* \in R^n$  as all diagonal elements of M are positive.

For the test problem, we take the initial vector  $z^0 = (1,1,\mathbf{L},1)^T$ . The termination criterion for the iterative methods is  $\delta(z^k) = \|z^k - z^{k-1}\|_{\infty} < 10^{-6}$ , and let NI and CT denote the number of iterations and CPU time, respectively.

TABLE II

THE NUMBER OF ITERATIONS AND CPU TIME OF SAOR METHODS AND AOR METHOD WITH DIFFERENT  $\omega$  AND  $\gamma$ 

|                | SAG     | SAOR Method I |    | SAOR Method II |     | AOR Method |    |
|----------------|---------|---------------|----|----------------|-----|------------|----|
|                |         | CT            | NI | CT             | NI  | CT         | NI |
| <b>n</b> =1600 |         |               |    |                |     |            |    |
| ω =            | Y =0.01 | 20.308385     | 73 | 94.069541      | 342 | 10.955102  | 39 |
| 0.02           | Y =0.02 | 20.270827     | 73 | 94.120451      | 342 | 10.900430  | 39 |
|                | Y =0.1  | 2.496932      | 9  | 8.636219       | 31  | 4.351129   | 14 |
| ω=<br>0. 2     | γ =0.2  | 2.509314      | 9  | 8.569687       | 31  | 4.032793   | 14 |
|                | γ =0.5  | 0.835130      | 3  | 0.829711       | 3   | 0.870821   | 3  |
| ω =<br>1.0     | γ =1.0  | 0.830487      | 3  | 0.552401       | 2   | 0.864844   | 3  |
|                | γ =1.1  | 1.109869      | 4  | 1.398553       | 5   | 0.871275   | 3  |
| ω =<br>1.2     | γ =1.2  | 1.111170      | 4  | 1.366872       | 5   | 0.866501   | 3  |
|                | γ =1.4  | 1.384278      | 5  | 2.762510       | 10  | 0.865004   | 3  |
| ω =<br>1.5     | γ =1.5  | 1.389940      | 5  | 2.769446       | 10  | 0.862292   | 3  |
|                | γ =1.8  | 4.988587      | 17 | 18.405688      | 66  | 0.860734   | 3  |
| ω =<br>1.9     | γ =1.9  | 5.008520      | 18 | 18.402788      | 66  | 0.875587   | 3  |
| <b>n</b> =2500 |         |               |    | 1              |     |            |    |
|                | Y =0.01 | 50.198872     | 73 | 239.820921     | 342 | 27.710389  | 39 |
| ω=<br>0.02     | γ =0.02 | 51.065257     | 73 | 242.195822     | 342 | 27.895996  | 39 |
|                | γ =0.1  | 6.169381      | 9  | 22.799026      | 31  | 10.086184  | 14 |
| ω=<br>0.2      | γ =0.2  | 6.215158      | 9  | 21.711305      | 31  | 9.961821   | 14 |
|                | γ =0.5  | 2.099304      | 3  | 2.116012       | 3   | 2.131103   | 3  |
| ω =<br>1.0     | γ =1.0  | 2.096300      | 3  | 1.4089942      | 2   | 2.086115   | 3  |
|                | γ =1.1  | 2.850256      | 4  | 3.568269       | 5   | 2.147736   | 3  |
| ω =<br>1.2     | γ =1.2  | 2.852591      | 4  | 3.565971       | 5   | 2.191557   | 3  |
| ω =<br>1.5     | γ =1.4  | 3.487906      | 5  | 7.451265       | 10  | 2.091660   | 3  |
|                | γ =1.5  | 3.484476      | 5  | 7.104976       | 10  | 2.108486   | 3  |
| ω = -          | γ =1.8  | 11.863004     | 17 | 46944535       | 66  | 2.085043   | 3  |
|                | γ =1.9  | 13.032742     | 18 | 47311643       | 66  | 2.183462   | 3  |

In Table II, we report the number of iterations (NI) and the CPU time (CT) for SAOR Method I ,II and the AOR method with several values of  $n, \omega$  and  $\gamma$ . We can easily see that SAOR method I is more efficient than the AOR method when  $0 < \gamma \le \omega \le 1$ ; while when  $1 < \gamma \le \omega < 2$ , AOR method is more efficient than the SAOR methods. Furthermore, it can be observed that the iterative methods are more efficient (require less number of iterations and less time) for  $\omega = \gamma = 1$  than for any other values of

 $1 < \gamma \le \omega < 2$ . The obtained results confirm Theorem 4.4 again.

#### VI. Conclusion

In this paper, we have proposed two new iterative SAOR methods for solving the linear complementarity problem. Then, some sufficient conditions for convergence of two new iterative methods have been presented, when the system matrix M is an M-matrix. Moreover, we have discussed the monotone convergence of the new methods when M is an L-matrix. Lastly, we have reported the numerical results of our proposed methods for their robustness and efficiency.

#### REFERENCES

- [1] A. Berman and R.J. Plemmons, *Nonnegative Matrix in the Mathematical Sciences*, Academic Press, New York, 1979.
- [2] K. G. Murty, Algorithm for finding all the feasible complementary bases for a linear complementarity problem, IE Dept., University of Michigan, Ann Arbor, 1972
- [3] S. C. Billups, "K. G. Murty, Complementarity problems," J. Comput. Appl. Math., vol. 124, pp. 303–318, 2000.
- [4] R. W. Cottle and G. B. Dantzig, "Complementarity pivot theory of mathematical programming," *Linear Algebra Appl.*, vol. 1, pp, 103–125, 1968.
- [5] R. W. Cottle, G. H. Golub and R. S. Sacher, "On the solution of large structured linear complementarity problems," vol. III, *Technical Report STAN-CS-74 439*, Stanford University, Stanford, CA, 1974.
- [6] R. W. Cottle and R. S. Sacher, "On the solution of large structured linear complementarity problems: The tridiagonal case," Appl. Math. Optim., vol. 3, pp. 321–341, 1976
- [7] R. W. Cottle, G. H. Golub and R. S. Sacher, "On the solution of large structured linear complementarity problems: The block partitioned case," *Appl. Math. Optim.*, vol. 4, pp. 347–363, 1978.
- [8] O. L. Mangasarian, "Solution of general linear complementarity problems via nondifferentiable concave minimization," *Acta Math. Vietnam.*, vol. 22, pp. 199–205, 1997.
- [9] O. L. Mangasarian, "The linear complemenarity problem as a separable bilinear program," *J. Global Optim.*, vol. 6, pp. 153–161, 1995.
- [10] K. G. Murty, "On the number of solutions to the complementarity problem and spanning properties of complementary cones," *Linear Algebra Appl.*, vol. 5, pp. 65–108, 1972.
- [11] K. G. Murty, "Note on a Bard-type scheme for solving the complementarity problem," *Opsearch*, vol. 11, pp. 123– 130, 1974.
- [12] K. G. Murty, On the linear complementarity problem, in: Third Symposium on Operations Research, Univ. Mannheim, Mannheim, 1978, Section I, pp. 425–439, Operations Res. Verfahren, 31, Hain, Konigstein/Ts., 1979
- [13] S. Wang and X. Yang, "A power penalty method for linear complementarity problems," *Oper. Res. Lett.*, vol. 36, pp. 211–214, 2008.
- [14] M. D. Koulisianis and T. S. Papatheodorou, "Improving projected successive overrelaxation method for linear

- complementarity problems." *Appl. Numer. Math.*, vol. 45, pp. 29–40, 2003.
- [15] D. J. Yuan and Y. Song, "Modified AOR Methods for linear complementarity problem," *Appl. Math. Comput.*, vol. 140, pp. 53–67, 2003.
- [16] Y. Li and P. Dai, "Generalized AOR methods for linear complementarity problem," *Appl. Math. Comput.*, vol. 88, pp. 7–18, 2007.
- [17] Z. Z. Bai and D. J. Evans, "Matrix multisplitting relaxation methods for the linear complementarity problem," *SIAM J. Matrix Anal. Appl.*, vol. 21, pp. 309–326, 1997.
- [18] Z. Z. Bai, "On the convergence of the multisplitting methods for the linear complementarity problem," *SIAM J. Matrix Anal. Appl.*, vol. 21, pp. 67–78, 1999.
- [19] Z. Z. Bai and D. J. Evans, "Matrix multisplitting relaxation methods for the linear complementarity problem," SIAM J. Matrix Anal. Appl., vol. 21, pp. 309–326, 1997.

- [20] M. Wu, L. Wang and Y. Song, "Preconditioned AOR iterative method for linear systems," *Appl. Numer. Math.*, vol. 57, pp. 672–685, 2007.
- [21] Z. Z. Bai and D. J. Evans, "Matrix multisplitting relaxation methods for linear complementarity problems," *Int. J. Comput. Math.*, vol. 63, pp. 309–326, 1997.
- [22] A. Berman and R. J. Plemmons, Non-Negative Matrices in the Mathematical Sciences, 3rd ed., SIAM, Philadelphia, 1994.
- [23] R. S. Varga, Matrix iterative Analysis, Springer-Verlag, New York, 2000.
- [24] B. H. Ahn, "Solution of nonsymmetric linear complementarity problems by iterative methods," J. Optim. Theory Appl., vol. 33, pp. 185–197, 1981.
- [25] O. L. Mangasarian, "Solution of symmetric linear complementarity problems by iterative methods," J. Optim. Theory Appl., vol. 22, pp. 465–485, 1977.