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Abstract-In this paper, we propose two new iterative SAOR
methods to solve the linear complementarity problem. Some
sufficient conditions for the convergence of two new
iterative methods are presented, when the system matrix M
is an M-matrix. Moreover, when M is an L-matrix, we
discuss the monotone convergence of the new methods. And
in the numerical experiments we report some computational
results with the two proposed SAOR formats.

Index Terms - SAOR method, linear complementarity
problem, convergence, H-matrix, M-matrix, monotone

. INTRODUCTION

For given matrix and vector, the linear
complementarity problem (LCP) consists of finding a
vector which satisfies the conditions

230,Mz+q3 0, z' (Mz+q)=0 (1.1)

Because the has a variety of applications such as the
Nash equilibrium point of a bi-matrix game, contact
problems, the free boundary problem, etc. (see [1,2]). The
researches on the numerical methods for solving (1.1)
have attracted much attention.

A large number of papers have studied LCP [3-14].
Numerical methods for LCP fall into two major
categories: direct methods and iterative methods. In [10],
several basic iterative methods to solve LCP are
discussed. Recently, some new iterative methods have
been proposed to solve LCP. For example, Koulisianis
and Papatheodorou [14] present an improved projected
successive overrelaxation (IPSOR) for the solution of an
important class of linear complementarity problems.
When M is a 2-cyclic matrix, Yuan and Song [15]
proposed a class of modified AOR(MAOR) methods to
solve it. In [16], a class of generalized AOR(GAOR)
methods for solving (1.1) is introduce by applying the
multi-splitting techniques. Bai [17,18] proposed a class of
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parallel iterative methods for a linear
complementarity problem.

In this paper, by applying the SAOR splitting, we
propose SAOR method | and Il for solving the linear
complementarity problem. Convergence results for these
two methods are presented when is an H-matrix (and also
an M-matrix). Finally, numerical examples are given to
show the efficiency of the presented methods.

We briefly introduce some essential notations. Let

C=( )T R"" be an n° n matrix, diag(C) denotes the

large

n’ n diagonal matrix coinciding in its diagonal with C.
For A:(a,-,,-),B: (b1 R™™ , we write A3B if
()3 (b;) holds for all jj=12,..n . Calling A
nonnegative if A3 0, we say that B£C if and only if
- B3 -C . These definitions carry immediately over to
vectors by identifying them with n- n matrices. By
|A|:(|aij|)’ we define the absolute value of AT R™". We

denote by (A) :((aij)) the comparison matrix of
AT R™" where (aij):laijl for k=j and (ai,-):' |aij| for
kt j, k,j=1,2,...n. Spectral radius of a matrix A is
denoted by r(A).
Definition 1. L€tA=(aivj)T R"" . Itiscalled
(1) L-matrix if a, >0,k =1,2,K,n,
and a, £0,k? jk j=12Kn;
(2) M-matrix if it is a nonsingular L-matrix satisfying
At3;
(3) S- matrix if $x >0, Ax>0
(4) H-matrix if aAf is an M-matrix.
(5) H, -matrix if Ais an H-matrix and a, >0,k =1,2,K,n.
Definition 2. For A = (ai,j)T R™" , vector x, is defined

such that (x ) :max{O,xj}, j=12,K,n. Then for any
1]

x,y1 R", the following facts hold in [19]
1) (x+y), £x,+y,;
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@x, -y, £(x-y),:

@=x. +(-x).

(4 xEyb x, £y,-

Lemma 1.1 [20] Let A=M - N be an M-splitting, then
f(M-lN) <10 A isanonsingular M-matrix.

Lemma 1.2 [21] Let M H, -matrix, then LCP (M,q) has a

unique solution zT R".

Lemma 1.3 [22] A isan M-matrix if and only if Ais a Z-
matrix and an S-matrix.

Lemma 1.4 [23] Let A is an M-matrix, D, =diag(A),
C,=D,- A. If D30l R"™" is a diagonally matrix and
C,1 R"™", 0£C,£C,, then A=(D,- D,) -(C,- C,) and
ATEA!

Il. SAOR METHOD FOR LCP(M,Q)
Let where M=D-B=D-L-U, D=diag(M)=(d,),
L =(|ij), and y =(Uu)’ i; j=1,2,3,..n are diagonal, strictly
lower and upper triangular matrices obtained from M,
respectively. It has been shown in [24,25] thatz" solves
LCP (M,q) (1.1) if and only if it satisfies
Z'=(Z - D(Mz+q)).
where D = diag(M).
Now we propose two new iterative methods for
solving LCP (M,q) (1.1) as follows.

Format | (SAOR method)

Step 1: Choose an initial vector z°T R" and a
parameter w,ri R*,set k =0;

Step 2: Calculate
2= - DY - gL+ gw(2- W)M +gLpyz"

+w(2- w)aq} ,

Step 3: If z** =z* , then stop; Else set k =k +1 and

goto step2.

Format Il (SAOR method)

Step 1: Choose an initial vector z°T R" and a
parameter w,r1 R*,Set k =0;

Step 2: Calculate
7 = gk D'l{ _ glJZk+1+éW(2- W)M +gU sz

+w(2- w)q} .
Step 3: If 2" =z* , then stop; Else set k =k +1 and
go to step2.
Remark

(1) If M is a symmetric matrix, then method | and II
coincide;
(2) If w=g, then SAOR method reduces to SSOR
method;
(3) If w=1, then SAOR method reduces to AOR method;
(4) If w=g=1, then SAOR method reduces to SOR

method.
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[11. CONVERGENCE ANALYSIS FOR H, -MATRIX

At first we define the operator f:R"® R" in
accordance with the rule: ¢ (z)=x where x is the fixed

point of the system of equations
X=(Z- D'l{-gLX+gw(2- W)M + gLz +w(2- W)q})

and g:R"® R"such thatg(z):h, where & is the (f3i;<1e)d

point of the following system of equations

h=(z- D*{- un+gn2- WM +gupz+u(2- w)}).
(3.2)

we can prove the following convergence theorem for the

SAOR method.
Theorem 3.1. Let M=D- B=D- L-U be an H,-matrix

and D=diag(M), L,U be diagonal, strictly lower and

upper triangular matrices obtained from M, respectively.
If 0<g£ w£1, then for any initial vector z°, Method |

and Il converge to the unique solution of LCP (M,q).
Proof. First we consider the sequence {Zk} generated by

Method I. By Lemma 1.2, LCP(M,q) has a unique
solution z'T R", that is

f(z*):z*-
Suppose thath:f(y),
ie.,
h:(y- D'l{-th+gw(2- W)M +gLgy +mw(2- W)q})+

(3.3
Then by subtracting (3.3) from (3.1), we get

X-h:(z- D'l{-ng+gw(2- W)M + gLz +w(2- W)q})+
- (y- D'l{-th+éw(2- WM +gLgy +w(2- l/@q})+
£((z- y)- D'l{-gI_X+éW(2- WM +gLg(z- y)})+
:(gD'lL(X-h)+({I -D'gn(2- WM +gLE}(z- y)))+

So we can get
(x-£). £{gD7L(x- 7)),
+(1- D' gm2- WM +gL(z-y) .
Analogously, we can obtain
(- x), £(gDL(A- x)). +((| - D g 2- WM +gLg(y- z))+
(3.5)

Now, the combination of (3.4) and (3.5) directly give the
following estimates

- Al=(x-h), + (- x),

£(gD'L(x- h)) +(gD'L(h- x)).
+((I - D gw(2- w)M +ng)(z- y))+
+((1- D g2 WM +gLp)(y- 7).

(3.4)
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=|gD7L (- /7)|+|(| - D gm(2- W)M +gLp)(z- y)l

£gD'1|L||(X- /7)|+|(| -D 7 gw(2- w)M +ng)||z- y|
ie.,

(1- g0 {u)br- Heft- O gu(2- M +arie-
let

Q=I- gD'1|L|,R:|| -Dg2- WM +9‘-E|'
Then, we can get

|x- E£QR|z- y- (3.6)

According to the definition of Method | and (3.6), we can
get

- z*l :lf(zk - z*)|£Q'1R|zk - z*l-

According to Lemma 1.2, It is easy to see that the

iterative sequence {Zk},k =0,1,2,K generated by Method

| converges to the unique solution z* if f(M-lN)<1.
Let T=Q- R, then we know that Q= - gD’1|L| is

an M-matrix, and R :|| - Dlgw(2- WM +g|_d3 0,

and since 0<gf wEl,

S0T=Q- R w(2- w)D*(D-|B|)@T.

since Misan H, -matrix,

SO D- |B|:(M) is an

anyo<gf£ w1, $x3 0 such that
TX =w(2- w)D*(D- |B[)x>0.

Therefore, T isan M-matrix.

Since T isa Z-matrix andT 3 T , according to Lemma 1.4,

It is easy to see that T is an M-matrix, i.e., T"'3 0.
In addition, T is nonsingular and T=Q- R is M-

M-matrix, then for

splitting, according to Lemma 1.1, T-13 g r(Q-lR) <1.

Hence , (Q-lR) <1.

Similarly, we can obtain the above results if we
consider the sequence {zk} generated by Method 11. W

Corollary 3.2. Let M=D- B=D- L-U be an M-matrix
and D=diag(M), L,U be diagonal, strictly lower and

upper triangular matrices obtained from M. If
O<gfw<2 then for any initial vector z°, Method I

and Il converge to the unique solution of LCP (M,q).
Proof. First we consider the sequence {Zk} generated by

Method I. By Lemma 1.2, LCP (M,q) has a unique
solution z'T R", that is

f(z*):z*-

Suppose that p = f (y) ie.,

h=(y- D*{-gr+gu2- M +ggy+u(2- W) B
Then by subtracting (3.3) from (3.1), we get
X- h:(z- D'l{-gLX+gW(2- WM +gLgz+n(2- Mq})+

(y- DY oh+gf2- WM +gLgy+wi2- ig})

Copyright © 2011 MECS

£((z- y)- D*{-gr+gm2- WM +aiz- v}
“[o e )+{(1- 0 g a-)
So, we can get

(x- 1), £(gD"L(x- 7)),
+ (I - D gm2- WM +ng)(z- y) .

Analogously, we can obtain

(h-X), £(D'L(- X)), +((1- D*gaf2- WM+aLg(y- 7)),

(3.9)
Now, the combination of (3.8) and (3.9) directly gives the
following estimates

- Al=(x-h), +(h- x).
£(gD L (x-h)), +(gD7*L(n- X)),
+((1- D g(2- WM +gLg)(z- y)).
+{(1- D g(2- WM +aLg)(y- 2)),
:|gD'1L(X- /7)|+|(| - D gn(2- )M +ng)(z- y)l
-£gD'1|L||(X- /7)|+|(| - D gw(2- w)M +ng)||z- y|
(1o AE]- D gof2- M et
let

Q=1-gD'|L|,R=|1- D' gn(2- w)M +gL{{-
Then, we can get

|x- A£QR|z- y|- (3.10)

According to the definition of Method | and (3.10), we
can get

(3.8)

7. z*|:|f(zk - z*)|£Q'1R|zk -2
According to Lemma 1.2, It is easy to see that the
iterative sequence {Zk} .k =0,1,2,K generated by Method

| converges to the unique solution 7 if r(M-lN)<1.

Let T=Q- R, thenwe knowthat o . |y
is an M-matrix,

and R=|1- D' gw(2- W)M +gL{? 0,

and since 0<g£ w<2,

0 T=Q- R w(2- w)D*(D-|8|)e T,

since M isan H, -matrix,

SO D- |B|:(M) is an M-matrix,

then for any0 < g£ w< 2,

$x2 0 such that Tx = u(2- w)D*(D- |B|)x>0,
Therefore, T is an M-matrix.

Since T is a Z-matrix and T 2 T, according to Lemma 1.4,

It is easy to see that T is an M-matrix, i.e., T'*3 0.
In addition, T is nonsingular and T =Q- R is M-

splitting, according to Lemma 1.1, T-13 g U /(Q-lR) <1.
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Hence f(Q-lR) <1.

Similarly, we can obtain the above results if we
consider the sequence {Zk} generated by Method 1. W

IV. MONOTONE CONVERGENCE ANALYSIS

In this section, we mainly discuss the monotone
convergence properties of the SAOR methods, when the
system matrix MT R™"is an L-matrix. First, we define
the following set

D:{XT R"|x3 0,Mx+q3 0}
Obviously if LCP(M,q) is solvable, then the set D is

nonempty.
Theorem 4.1. Let the operator f : R" ® R" be defined

in (3.1). Suppose that MT R"" is an L-matrix, and also
0<g£ wgl. Then forany z1 D, it holds that

(1) f(2)£z;
() yezb f(y)£f(z):
(3) x=f(z)i D-

Proof: We firstly verify (1) We only need to show that
x, £12,,i=1,2Kn (4.1)
where
X :gii - dii'lg-gllé1 L; (XJ- - ZJ.)+W(2- W)(Mz+q)igg
é jz Og,
4.2)
We use induction on i to prove (4.1). When i = 1,
noticing that M is an L-matrix, 0<g£ w£land zI D,

2,3 0,and d"'lgW(Z- W)(MZ+Q) 0,

thus x, :(zl- d; " gm(2- W)(Mz+q)iE|) £z,
Now assume that (4.1) holds for* i£k(0<k <n), then
wegetz, 30

& & a
and 4. e 08 (X - 2)+w(2- w)(Mz+q), g2 0

e A u
Thus

e 6 & Ve
Xen :gzkﬂ_ dk+1k+1-1e-gé- Lij ()(J - Zj)+m'(2_ ”a('w"'q)kﬂlglf: £Zk+1
é jn 171

By the principle of induction, (4.1) holds for all i =
1,2,..n.
To verify (2), we denote 4 = f (y), where h isthe

fixed point of the system of equation
h:(y- D'l{-th+gW(2- w)M +gLgy +w(2- W)q})
Now we only need to show that

h E£x,when y£z ,i=12K,n
by noticing (4.2) we can obtain

+

(4.3)

i-1 i-1
X =(z- dii-l[' gé LiX; +gé Lz; + W(Z' W)diizi

j= j=

U.z.

=]

Qo

-w(2- W)Ié_l Lz, +w(2- w)

j= j=i+l

+w(2- w)(Mz+q).]).

Copyright © 2011 MECS

:((W' 1)Zzi - dii-l[_ gé L|]XJ +(M; - 2W+g)é LiJ'ZJ'
j=1 j=l

b W(Z' W) g Uijzj +W(2' W)qi])+

j=i+l
(4.4)
and

i1 i1
h=((w-1)?y; - d;'[- gé Ly, +(”; - 2W+g)é L y;

j=t j=1
- w(2- w) glﬂuuyj +w(2- w)q]),

Considering tjr;le hypotheses Y£z, then when i=1, we

obtain

X = ((w- Dz, +d, ' [w2- W)éuljzj - w(2- w)qy]).

(- 17y, +d, T2 W)a Uy, - W(2- W)a)), =h,

Now assume that (4.1) holds for j £ k (o <k < n),
when i=k+1, by (4.3), (4.4) and y¢; and hence,
hk+1 £)(k+1'
Hence the conclusion (4.3) holds by the principle of
induction.
Now, we turn to (3).
Let » = f(X),X: f(z) , by (1) we immediately get
f(x)Ex, SOz E£x.
By the definition of operator f we see that
z=f(x)30,x=1(z)2%0,
Now by induction, we prove
(Mx+q)j20,j=12..,n
Obviously (MX+q)1 30,

Otherwise, z, :()q - dw(2- w)(MzZ +q)1)+ 3 (x), =x-
This contracts ~ £ x.
Now, we assume that (Mx+q), 30 j=12,..k-1.
J
Since z,£x, j=12,..,k-1 , Wwe can

obtain

(Mx+q), 2 0.

Otherwise, by defining

u:(x- w(2- w) D'l(Mx+q))
we obtain ¢4 3 x , On the other hand, the following

estimates can by straightforwardly deduced from the
definitions of 1 and v,

l
+

zZ, = (X, - dkk+[- ga ij (zj - Xj)+W(2' W)(MZ+q)k])+

k-1 k-1
7, N - o 10

={é- W(Z' W)ka +dy lga L;Z;- gdy la LgX; +
j=1 j=1

k n
w(2- w)d,'a Lz, +w(2- w)d, 'gQ Ugx}

-1
j=1 j=itl
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k-1 k-1
£{(1- W)ZXk +gd, '@ LyiX; - 9dy ‘AL X
=1 =1
_lko-l -1 O
w(2- w)d,'a LkJXJ+W(2 w)d, ‘ga U,x3,
j=l j=i+l

:gl' w)' X +nf2- de*g Lo +(2- Wd,* g Uijjg
e j= jEivL a

:(Xk - w(2- W)dkk'l(M)(+q)k)+ =y, -

ie., z, £uk.

In addition, since

g gz +w(2- WM +gLipx+u(2- Mq})
- (- w(2- WD (Mx+q)),
£(gD'L(z- X)),

and analogously, - x £ (gD L (x- z)) -

b d=(e- ) +(o-2),£(00"L o) (00"t x-2),
“|o0L{x- 2] 0"z A =00z o

£gm2- w)DL(1-

that is, limz=u-
9®0

ZU(

L) DY Mx+®0 (9® 0)

Here, the estimate
|z - £ w(2- W)(l - gD'lL)_lD'1|MX+q| (4.5)
is used. In fact, with the facts of Definition 2 we have

f(x):z:(x- D'l{-gi_z+g/l/(2- WM + gL+ u(2- V'M})+
£X++(- D'l{-ng +gW(2- W)M +oLpx+ W(2' W)Q})+
and
f(x)=z ( D{- gLz +gm{2- WM +gLipe+w(2- MM)
3X+_( { 9L2+8W(2 W)M +gLHX+W2 W ) :
So, we obtain
(2- %), £ (901 (2 - x)- w(z- ) D" (Mx+a)),
(x-2), £(-gD L (z - x)+ w(2- W)D* (Mx+a)), -
Therefore,
lo- A=(2- ), +(x- 2),

£[gDL(2- x)- w(2- w) D (Mx+)

£9D'L|z- M- M(2- W)D|Mx+q|
ie,
|z - X|£ w(2- w)(I - gD*L)|Mx +q,
thus, (4.5) holds.
Moreover, observing ¢ 3 x , So we get z £y and

limz =v - We know that x £~ must hold for some
g®0
sufficiently small gi [0,1].

However, this contracts ~ £ x.
Therefore, (Mx+ q)k 3

Copyright © 2011 MECS

By induction, we obtain xT D. W
Theorem 4.2. Let the operator g : R" ® R" be defined
in (3.2). Suppose that MT R"" is an L-matrix, and also
0<g£wg£l. Thenforany zI D, it holds that
1) g(z)£z;
(2 yezb g(y)£9(z2);
() h=g(z)i D.
Theorem 4.3. Suppose that MT R"" is an L-matrix, and
also 0<gf£ w£l,
then for any initial vector z°T D, the iterative sequence
{Zk} generated by Methods | and Il has the following
properties
1 o£z£7£2°k=0,12K
(2) lim z¢ = z*, z" is the unique solution of the LCP(M,q).
k®¥

Proof. We only give the proof for the SAOR Method I.
Since z°1 D, by (a) of Theorem 4.1 we have

f(zo) =z4£z°and Z'T D.
Now, using (a) of Theorem 4.1 again,

by recursively we have shown the validity of (a).
The inequalities given in (1) show that the sequence {Zk}

is monotone bounded, so that it converges to some vector
z" satisfying
"= 7"- D'Y{- gLz +gw(2- w)M +gLyz"

+w(2- w)q} .,

=(z"- D' gm(2- WML +w(2- W)ap).
Hence, z* is the unique solution of the LCP (M,q).

Theorem 4.4. Let MT R™" be an L-matrix. Then for any
initial vector z°=y°T D, both the iterative sequences

{Zk} and {yk} generated by the SAOR Method 1 (or
SAOR Methods I1) corresponding to the parameter (W, g)
and (7,/5) respectively, converge to the solution z* of

the LCP(M,q) and it holds
£y k=012K,
provided the parameter (1, g) and (7,/5) satisfy

(4.6)

0<WEWEL; 0<gE£g£l; 0<gEwEl; O£ gE wEl.
Proof. The convergence of sequences {zk} and {yk} is

proved by Theorem 4.3.
Now, we prove (4.6).
First we define the operator
f:R"® R"
such that y = f (z)
where x is the fixed point of the following system

x= 7- D{- glx+gw(2- W)M +glLyz

+w(2- w)q} .,
Since
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+1 Sl o, & - 0
Y =(y" - D gy + 6af2- WM + gLy’

+n(2-w)ay),
In addition, since
-gLyPt+ gﬁx(z- W/) M +5L8y" +E/(2 - W/)q

=-gly"- +.6837/(2- @M +5L8+ﬁ(2-@q

E-gL(y"”- y")+W(2- W)(Myp +q)
Therefore,

y* e (y*- D gL(yP- y?)

+w(2- W)(Myp +q)])+ =f (yp)

We verify (4.6) by induction. In fact, when k= 0, the
inequality (4.7) is trivial. Suppose that (4.6) holds for
some positive integer p.

£y k=012Kp.
Then, by Theorem 4.1 and the inequality (4.7),
we get

"M =1 (z")£ f (y")£ yP+t
and hence z* £ y* k=0,12,K.
This completes the proof. W
Remark. Theorem 4.4 shows that suitable increase of the
parameter s can accelerate the convergence rate of
Methods | and Il. Furthermore, the parameter g=w=1
can result in the fastest convergence rate of Methods I
and Il under the restrictions made in Theorem 4.4.
Moreover, Theorem 4.4 implies that the optimal
parameter in general should be w, g [1,¥).

4.7

V. NUMERICAL RESULTS

In this section, we present numerical results to show
the efficiency and robustness of SAOR methods and
AOR method for different cases. The codes are written by
Matlab.

Example 5.1. We consider the LCP(M,q) with

= = = Q w»n
cooorrr

8

(@}

& -1 -1 O O 0o
go 11 0 c
© O S -1 LO O ¢

M=l I O O O O MTJR"'",q:g '
Gl O O (@) c
gM OO s S
O 0 L L o]

where S =tridiag(1,8,- )T R"", 1T R"" is the identity

matrix, and w2 =n. It is known that M is a strictly

diagonally dominant matrix and thus is an H-matrix. So
the LCP(M,q) has a unique solution z'T R" as all diagonal
elements of M are positive.

For the test problem, we take the initial vector
7° :(5,5,|_,5)T . The termination criterion for the
iterative methods is d(zk) :||Zk - z"-1||¥ <10°¢, and let NI
and CT denote the number of iterations and CPU time,

respectively.
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TABLE |
THE NUMBER OF ITERATIONS AND CPU TIME OF SAOR METHODS AND
AOR METHOD WITH DIFFERENT W/ AND g

SAOR Method | [ SAOR Method IT__| AOR Method
CT N CT N CT NI
N =100
g =00T | 0090%5 | 94 | 0325161 | 33 | 0.190866 186
w = _
002 g =002 | 0090866 | 94 | 0325073 | 33 | 0.84414 186
g =01 0010501 | 11 | 0.030769 2 0.018416 9
?/2_ g =02 0011828 | 11 | 0.0308% 2 0.018500 9
g =05 0002886 | 3 0.002934 3 0.002884 3
w= -
o g =10 0002877 | 3 0.001954 2 0.002933 3
g-i1 0002002 | 3 0005775 6 0.002938 3
w= -
1 g-12 0003183 | 3 0.005795 6 0.002871 3
g-14 0004843 | 5 0011555 2 0.002872 3
w= -
s g-15 0004787 | 5 0012199 2 0.003197 3
g-1s 0024374 | 19 | 0.048328 50 0.002950 3
w= -
Lo g-1o 0019261 | 19 | 0.051670 50 0.002874 3
N =400
g =001 | 1506276 | 94 | 534103 | 338 | 3.0282L7 186
w= _
002 g =002 | 1502442 | 94 | 5366817 338 | 2971320 186
FER 0179784 | 11 | 0.508014 2 0.313488 9
w= _
0.2 g =02 0175714 | 11 | 0506876 2 0.303919 9
g =05 0047926 | 3 0.048960 3 0.050338 3
w= -
o g =10 0048211 | 3 0032247 2 0.051095 3
g-i1 0048373 | 3 0.095202 6 0.049685 3
w= —
L g-12 0079654 | 3 0.097641 6 0.050580 3
g-14 0080009 | 5 0192267 2 0.050817 3
w= -
s g-15 0004787 | 5 0.190988 2 0.049053 3
g-1s 0303809 | 19 | 0.804721 50 0.048557 3
w= -
Lo g-1o 0300135 | 19 | 0.804678 50 0.047645 3
N =900
=001 | 1508788 | 94 | 28414443 | 3% | 15953723 | 186
w= _
002 g =002 | 1510670 | 94 | 28301582 | 3% | 15788688 | 186
g =01 0173260 | 11 | 2701051 2 1.635054 19
w= _
0.2 g =02 0.18362 1 | 2696842 2 1.615800 9
g =05 0048242 | 3 0.255264 3 0.261636 3
w= -
o g =10 0047247 | 3 0173271 2 0.255026 3
g-11 0048009 | 3 0511831 6 0.253369 3
w= -
1 g-12 0048526 | 3 0509011 6 0.254806 3
g-14 0080753 | 5 1.016569 2 0.252666 3
w= -
s g-15 007898 | 5 1.026680 2 0.256678 3
g-18 0299969 | 19 | 4211614 50 0.254958 3
w= -
Lo g-19 0303658 | 19 | 4.224083 50 0.253611 3

In above Table, we report the number of iterations
(NI) and the CPU time (CT) for SAOR Method 1,1l and
the AOR method with several values of n,w and g. We
can easily see that SAOR method | is more efficient than
the AOR method when 0<gf£wgl ; while when
1<gfw<2, AOR method is more efficient than the
SAOR methods. Furthermore, it can be observed that the
iterative methods are more efficient (require less number
of iterations and less CPU time) for = g=1 than for any
other values of 1<g£ w<2. The obtained results confirm
Theorem 4.4.

Example 5.2. We consider the LCP(M,q) with
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where S =tridiag(- 1,8,-1)7 R"", 1T R"" is the identity
matrix, and w2 =n. It is known that M is a strictly
diagonally dominant matrix and thus is an H-matrix. So
the LCP(M,q) has a unique solution z'T R" as all diagonal
elements of M are positive.

For the test problem, we take the initial vector

70 = (1,1,|_,1)T. The termination criterion for the iterative
methods is d(zk) :“Zk - Zk-lll¥ <10°%, and let NI and CT

denote the number of
respectively.

iterations and CPU time,

TABLE Il
THE NUMBER OF ITERATIONS AND CPU TIME OF SAOR METHODS AND
AOR METHOD WITH DIFFERENT W/ AND g

SAOR Method | [ SAOR Method IT___| AOR Method
cT N cT N cT NI
N =1600

§ =001 | 20306385 | 73 | 9406%41 | 342 | 10.95502 kX

w = _
00 g =002 | 20270827 | 73 | 94120451 | 342 | 10900430 | 39
g =01 2496932 9 8.636219 3l 7351129 )

w= _
0.2 g =02 2500314 9 8.569687 31 7032793 )
g =05 0.835130 3 0829711 3 0.870821 3

w= _
o e 0830487 3 0552401 2 0.864844 3
g-i1 1109869 | 4 1.308553 5 0871275 3

w= _
1 g-12 1111170 | 4 1.366872 5 0.866501 3
g-14 1384278 5 2.762510 10 0.865004 3

w= _
s g-15 1.389940 5 2.769446 10 0.862292 3
g-18 7988587 | 17 | 18405688 56 0.860734 3

w= _
Lo g-1o 5008520 | 18 | 18.402788 56 0.875587 3

N =2500

§ =001 | 50108872 | 73 | 239.820921 | 342 | 27710389 | 39

w= _
002 § =002 | 51065257 | 73 | 242196822 | 342 | 27895996 | 39
g =01 6.169381 9 22.199026 3l 10.086184 )

w= _
0.2 g =02 6.215158 9 21.711305 3l 9.961821 )
g =05 2099304 3 2116012 3 2131103 3

w= _
o g =10 2.096300 3 1.4089942 2 2086115 3
g-i1 2850256 | 4 3568269 5 2147736 3

w= _
1 g-12 2852501 | 4 3565971 5 2101557 3
g-14 3487906 5 7.451265 10 2.091660 3

w= _
s g-15 3484476 5 7104976 10 2108486 3
g =18 | 11863004 | 17 | 46.944535 | 66 2.085043 3
”1/9_ g =19 | 13032742 | 18 | 47.311643 | 66 2183462 3

In Table I1, we report the number of iterations (NI)
and the CPU time (CT) for SAOR Method I ,Il and the
AOR method with several values of n,i,w and g. We can
easily see that SAOR method I is more efficient than the
AOR method when 0<g£ w£1; while when 1< g£ w<2,
AOR method is more efficient than the SAOR methods.
Furthermore, it can be observed that the iterative methods
are more efficient (require less number of iterations and
less time) for w=g=1 than for any other values of
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1<gEw<2. The obtained results confirm Theorem 4.4
again.

V1. Conclusion

In this paper, we have proposed two new iterative
SAOR methods for solving the linear complementarity
problem. Then, some sufficient conditions for
convergence of two new iterative methods have been
presented, when the system matrix M is an M-matrix.
Moreover, we have discussed the monotone convergence
of the new methods when M is an L-matrix. Lastly, we
have reported the numerical results of our proposed
methods for their robustness and efficiency.
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