
I.J. Information Technology and Computer Science, 2011, 1, 40-46
Published Online February 2011 in MECS (http://www.mecs-press.org/)

Copyright © 2011 MECS I.J. Information Technology and Computer Science, 2011, 1, 40-46

Real-time Flame Rendering with GPU and CUDA

Wei Wei
Henan University of Technology, Zhengzhou, China

hust_wade@yahoo.com.cn

Yanqiong Huang
University of Exeter, Exeter, UK

yh269@exeter.ac.uk

Abstract-This paper proposes a method of flame
simulation based on Lagrange process and chemical
composition, which was non-grid and the problems
associated with there grids were overcome. The
turbulence movement of flame was described by
Lagrange process and chemical composition was
added into flame simulation which increased the
authenticity of flame. For real-time applications, this
paper simplified the EMST model. GPU-based
particle system combined with OpenGL VBO and
PBO unique technology was used to accelerate finally,
the speed of vertex and pixel data interaction between
CPU and GPU increased two orders of magnitude,
frame rate of rendering increased by 30%, which
achieved fast dynamic flame real-time simulation. For
further real-time applications, this paper presented a
strategy to implement flame simulation with CUDA
on GPU, which achieved a speed up to 2.5 times the
previous implementation.

Index Terms - fluid model; chemical composition;
CUDA

I. INTRODUCTION

The simulation of flame has been a challenging
research topic in computer graphics in recent years. The
difficulty for the accurate simulation of flame including
irregularity of the flame shape, color variability, the
complexity of the production of gas and other uncertain
factors.

Reeves [1] proposed particle systems approach for
fire simulation and other irregular objects in 1983.
Dynamic fluid equation based on grid was proposed by
Ferziger [2] as a method of flame simulation in computer

graphics, which was complex and included large amount
of calculation. The real-time simulation of flame was
difficult to realize and the calculation based on gird was
difficult to guarantee stability. Perlin adopted the
definition of solid texture and added noise to achieve
flame animation [3]. Ebert described a new technique
which efficiently combined volume rendering and scan
line [4]. Scott and his colleagues [5] presented a
technique to animate amorphous materials such
as fire、smoke and dust in real-time on graphics hardware
with dedicated texture memory. Perry proposed the
flame spread model in 1994 [6]. On this basis, Stam in
1995, proposed a thermodynamic simulation method of
flame [7]. Wang Jizhou [8] presented a survey on the
development of flame simulation in computer animation,
with a detail introduction to the classification of the
works as well as different kinds of methods employed in
the field.

In November 2006, NVIDIA introduced CUDA™
[17], a general purpose parallel computing architecture –
with a new parallel programming model and instruction
set architecture that leverages the parallel compute
engine in NVIDIA GPUs to solve many complex
computational problems in a more efficient way than on a
CPU. CUDA comes with a software environment that
allows developers to use C as a high-level programming
language.

The reason behind the discrepancy in floating-point
capability between the CPU and the GPU is that the GPU
is specialized for compute-intensive, highly parallel
computation – exactly what graphics rendering is about –
and therefore designed such that more transistors are
devoted to data processing rather than data caching and
flow control. More specifically, the GPU is especially

 Real-time Flame Rendering with GPU and CUDA 41

Copyright © 2011 MECS I.J. Information Technology and Computer Science, 2011, 1, 40-46

well-suited to address problems that can be expressed as
data-parallel computations the same program is executed
on many data elements in parallel with high arithmetic
intensity, the ratio of arithmetic operations to memory
operations. Because the same program is executed for
each data element, there is a lower requirement for
sophisticated flow control, and because it is executed on
many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations
instead of big data caches.

Data-parallel processing maps data elements to
parallel processing threads. Many applications that
process large data sets can use a data-parallel
programming model to speed up the computations. In 3D
rendering, large sets of pixels and vertices are mapped to
parallel threads. Similarly, image and media processing
applications such as post-processing of rendered images,
video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image
blocks and pixels to parallel processing threads. In fact,
many algorithms outside the field of image rendering and
processing are accelerated by data-parallel processing,
from general signal processing or physics simulation to
computational finance or computational biology.

The advent of multi-core CPUs and many-core
GPUs means that mainstream processor chips are now
parallel systems. Furthermore, their parallelism continues
to scale with Moore’s law. The challenge is to develop
application software that transparently scales its
parallelism to leverage the increasing number of
processor cores, much as 3D graphics applications
transparently scale their parallelism to many-core GPUs
with widely varying numbers of cores. The CUDA
parallel programming model is designed to overcome this
challenge while maintaining a low learning curve for
programmers familiar with standard programming
languages such as C. At its core are three key abstractions
a hierarchy of thread groups, shared memories, and
barrier synchronization – that are simply exposed to the
programmer as a minimal set of language extensions.
These abstractions provide fine-grained data parallelism
and thread parallelism, nested within coarse-grained data
parallelism and task parallelism. They guide the
programmer to partition the problem into coarse
sub-problems that can be solved independently in parallel
by blocks of threads, and each sub-problem into finer

pieces that can be solved cooperatively in parallel by all
threads within the block. This decomposition preserves
language expressivity by allowing threads to cooperate
when solving each sub-problem, and at the same time
enables automatic scalability. Indeed, each block of
threads can be scheduled on any of the available
processor cores, in any order, concurrently or sequentially,
so that a compiled CUDA program can execute on any
number of processor cores as illustrated by Fig.1, and
only the runtime system needs to know the physical
processor count.

This scalable programming model allows the CUDA
architecture to span a wide market range by simply
scaling the number of processors and memory partitions:
from the high-performance enthusiast GeForce GPUs and
professional Quadro and Tesla computing products to a
variety of inexpensive, mainstream GeForce GPUs .

Fig 1. CUDA architecture based on GPU

II. FLAME MODELING

42 Real-time Flame Rendering with GPU and CUDA

Copyright © 2011 MECS I.J. Information Technology and Computer Science, 2011, 1, 40-46

Flame can be seen as the procession of fuel reacts
with oxygen, which releases light and heat. The
movement of flame can be described into laminar and
turbulent flow. Nguyen and his colleagues [9] simulated
flame by hydrodynamic equations in 2002, which
simulated the turbulence movement of flame more
accurately.

The turbulence movement of flame can be defined
by Mass Conservation equation and Navier-Stokes
equation:

0=⋅∇ U （1）

FUp
dt

dU
+∇+∇−= 21 υ

ρ
 （2）

In above equations, U was the velocity vector; ρ was
the fluid density; p was pressure; v was the dynamic
viscosity; ∇ was the Laplacian operator; F was the
external forces that act on the fluid.

Equation (1) and (2) can be solved by Euler method,
which used a fixed point of the grid for the definition of
the velocity field. But in case of disordered flow, the
chaotic characteristics of flow made the definition of grid
size, shape, position, and resolution issues complex. The
nonlinear equations of fluid spent a lot of computer
system resources, which took a few seconds to render a
frame.

In view of these problems, this paper proposed a
method based on Lagrangian method without grid. In this
method, the fluid was modeled by a set of particles. The
statistical properties of these particles based on equations
of fluid and were more stable in the numerical solution.

 The following equation defined the changes of
particles.

() ()i idX U dt= (3)

() ()
0 0

3 ()
4

i idU C U t U dt C k dWω ω= < > − < > + < > (4)

Equation (3) defined the position of the particle
according to the velocity, and velocity calculation based
on the simplified Langevin model [10]. Equation (4)
defined the frequency of the turbulence. ω was the
turbulence frequency and symbol <> represented the
average. Constant C0 was a standard value of turbulent
motion, and k was the disturbance kinetic energy, and dW
was the increments of W(t) in Wiener equation. The

turbulent movement of the flame can be modeled by (3)
and (4) combined with particle system, which overcame
the reality limitations of particle system for flame.

III. COMBUSTION COMPONENT

Flame modeling methods on the chemical
composition were almost based on empirical researches.
As lots of simplifying assumptions were made, the flame
model was difference from the actual flame, which has its
specific combustion mode, depending on many factors,
including chemical composition, fuel diffusion, oxides
and spawn. Subbramaniam and Pope [11] proposed the
Euclidian Minimum Spanning Tree (EMST) mixing
model for modeling chemicals of fire flame. The
composition of particles was defined by thermal chemical
model in EMST. The neighborhoods of tree nodes were
used to update the chemical components, which helped
maintain chemical composition with the development of
combustion. EMST model was difficult for real-time
simulation. Therefore, this paper proposed a simplified
model for real-time applications.

Fig 2. EMST model

In Fig. 2, x-axis represented the mixture

fraction (,)X tξ ; y-axis was the variables of combustion

composition (,)Y X t . X represented particle's position

vector (x1, x2, x3), and λ represented the combustion
coefficient. The time parameter could be removed to

simplify the EMST model, and (,)X tξ can be

expressed as ()Xξ . When t = 0, (,)Y X t can be

defined as follows：

2(,0) (()) exp((() ()) 0.5) /Y X Y X X Xξ ξ ξ λ= = − − −⎢ ⎥⎣ ⎦ (5)

 Real-time Flame Rendering with GPU and CUDA 43

Copyright © 2011 MECS I.J. Information Technology and Computer Science, 2011, 1, 40-46

In the initial, the combustion composition of
particles was spread in accordance with Gaussian
distribution, as the solid line in Fig. 1. Then combustion
components became stability and changed into the point
of the curve lines. The change speed [12] depended on
the different essentialities of combustions and can be
described by equation (6).

(,) ()* (, 1)Y X t rd Y X tχ= + − (6)

In (6), χ was the decline rate of the reaction

process variables, and [0,0.01*]rd χ∈ was a small

random perturbation. In the combustion process, when
the fire intensity increased, the burning intensified. When
the fire reduced and the intensity was insufficient to
sustain the flame, the flame went out. An attenuation
number was used to predict the development of the flame
in EMST. Adabala used the average of the combustion
component to simplify the EMST method [13].

IV. STRAIGHT RENDERING

Zhao Chunxia [14] proposed a flame model based
on particle system, which discussed particle’s attributes
in detail and emphasized the color variation and dynamic
wavering of the flame．Li Jianming [15] based on
physical model simulation for the calculation of the flame,
high complexity and difficult problem in real-time
simulation, proposed a fluid-based model and real-time
GPU-accelerated simulation of the flame, but frequently
data interaction between CPU and GPU affected the
efficiency, and real-time rendering problem was not been
fundamentally improved.

In order to ensure real-time rendering, an effective
balance between the interaction and reality needed to
establish. OpenGL VBO (Vertex Buffer Object) and PBO
(Pixel Buffer Object) technology put the vertex and pixel
data directly into video card in cache, which effectively
reduced the time of the vertex and pixel data transfer
between CPU and GPU and increased the rendering
speed. PBO was asynchronous through DMA (Direct
Memory Access) technology. The following two graphs
compared with the traditional texture transfer and PBO
process.

Fig 3. Traditional texture transfer

 Fig 4. PBO process

Fig.3 showed the process that loaded the image data
from image sources (such as image files and video) to the
texture object with traditional method. Pixel data stored
in the system memory first, and then used glTexImage2D
to copy data from system memory to a texture object.
CPU was occupied during the whole process. As shown
in Fig. 3, the pixel data loaded into PBO directly, and
only this process needed CPU to perform. GPU was in
charge of the data transfer from PBO to texture object,
without CPU involvement. Therefore, compared with
Fig.3, glTexImage2D in Fig.4 returned immediately
without immediately executed. Hence CPU can perform
other operations without having to wait for the end of the
pixel data transfer. More PBOs can be used in order to
obtain greater performance. A test program was made to
test the performance generated by PBO. Twenty sets of
data for each state were selected and the average value
was calculated, as shown in table 1.

Table 1. PBO performance test

State Parallel time

（ms）

Copytime（ms） Frame rate (fps)

PBO

OFF

1.760 4.847 64.1

PBO

ON

3.789 0.046 83.4

2PBO

ON

4.206 0.054 82.8

Tests showed that the use of PBO technology can

increase the pixel transfer speed for two orders of
magnitude, thus greatly reduced data exchange time
between CPU and GPU, and improved the frame rate of
about 30%. More PBOs can increase the parallel

44 Real-time Flame Rendering with GPU and CUDA

Copyright © 2011 MECS I.J. Information Technology and Computer Science, 2011, 1, 40-46

computing time, but frame rate decreased slightly. Due to
thermal buoyancy, particles had an upward initial velocity,
but the particles changed with the turbulence which was
not always upward. The particle properties rendered each
frame, including Lagrangian properties and disordered
movement of the combustion component attributes. The
process of flame simulation algorithm was showed in Fig.
5.

Initialize new flame
particles

Determine the life of particles
exceed the upper limit

or not

PBO-based
rendering

on flame particles

Update information
on flame particles

Remove flame
particles

Yes

No

Fig 5. Flame simulation algorithm processes

Fig 6． Real-time flame simulation

The properties of each particle changed in terms of
the turbulence movement and combustion component in
every frame rendering. The simulation was based on
OpenGL and VS2005 platform, in Intel core2.0 1.87 GHz,
GeForce 7600 GS PC machine. Frame rate was around
60 FPS, which ensured smooth and real-time effects (Fig.
6).

V. PARALLEL RENDERING

In order to ensure real-time rendering, we
implemented the parallel version of our technique using
the NVIDIA CUDA [NVIDIA. 2009] language, which
allows us to use the graphics processor without using
shading languages. In the context of CUDA, the CPU
plays the role of the Host, which controls the graphics
processor and calls Device. It sends data, calls the Device
to execute some functions, and then copies back its

results.
CUDA is parallel computing architecture. It enables

dramatic increases in computing performance by
harnessing the power of the GPU. Each graphics
processor of an NVIDIA graphics card is divided into
several multiprocessors. NVIDIA CUDA [NVIDIA. 2009]
divides the processing in blocks, where each block is
divided in several threads. Each block of threads is
mapped to one multiprocessor of the graphics processor.
When the CPU calls the Device to execute a function, it
needs to inform how the work will be divided in blocks
and threads. Maximum performance is achieved when we
maximize the use of blocks and threads for a given
graphics processor.

Each of the multiprocessors is a group of simple
processors that share a set of registers and some memory,
which is the shared memory space. The shared memory
size is very small; usually 16KB or 32KB on graphics
cards running on 1.3 compute capable device, but it is as
fast as the registers. The communication between two
multiprocessors must be done through the Device
memory, which is quite slow if compared to the shared
memory. There is also the Constant Cache and Texture
Cache memory, which has better access times than the
Device memory, but it is read-only for the Device. Before
the execution of the code in the Device, CPU must send
the data to its Device memory to be processed later. The
memory copy from the Host (CPU) memory to the
Device memory is a quite slow process, and should be
minimized. Besides, the NVIDIA CUDA Programming
Guide [16] says that one single call to the memory copy
function with a lot of data is much more efficient than
several calls to the same function with a few bytes. The
performance of application can be improved by making
good use of these restrictions of CUDA. To avoid several
memory transactions between the Host (CPU) and the
Device, all attributes in contiguous memory areas was
stored together, and treat it like an array. At the position k
stored an attribute of the particle Pk (Fig. 7). Proceeding
in this way, several unnecessary copies were avoided,
which improved the overall performance. Device memory
can be allocated on a linear, but also can be assigned for
the CUDA array form. CUDA memory can be 1
dimensional, 2 dimensional and 3D (2.0 version).
Memory types included unsigned8, 16 or 32-bit int,
16-bit (only driver API can do) float, 32-bit float. This

 Real-time Flame Rendering with GPU and CUDA 45

Copyright © 2011 MECS I.J. Information Technology and Computer Science, 2011, 1, 40-46

allocated memory can only process through kernel
function in CUDA.
 In order to verify that our parallel implementation
can be executed faster than the sequential one, a couple
of tests were accomplished. All the tests were executed in
an Intel X5450 3.00GHz, NVIDIA Quadro FX 3700
graphics card.

Fig 7. Data structure used on GPU

Fig 8. Speed up achieved using the parallel

implementation over the sequential implementation.

The graphic in Fig.8 shows the speed up achieved
using the parallel implementation over the sequential
version of the technique. As we can see, test showed the
parallel version was above more than twice faster than
the sequential one (exactly the lowest point in the graphic
is at 2.8 times). Besides that, sequential version with the
agent increases, the time increased faster than parallel
version.

In addition, according to the NVIDIA CUDA
Programming Guide [NVIDIA. 2009], the graphics
processor cannot handle all the data in a parallel way. The
division of the work in blocks of threads lets the graphics
processor scheduler run some blocks of thread while

others wait for execution. Because of this, the
computation of 256 local maps in a parallel way does not
give a speed up of 256 times.

To explain what the cause of the graphics peaks is,
the NVIDIA CUDA Programming Guide says that each
algorithm implemented with CUDA has an optimal point,
in which the amount of blocks and threads uses the most
possible number of resources available in the graphics
processor simultaneously.

This paper presented a strategy to implement flame
simulation on GPU under CUDA Framework, which
constitutes a great advantage when compared to the
traditional method. We implemented a parallel version of
this algorithm using the NVIDIA CUDA [NVIDIA. 2009]
language, which allows us to use the graphics processor
avoiding the use of shading languages. The parallelism
was explored, reducing the amount of memory
transactions between CPU and GPU. Our result shown
that the GPU implementation improves up to 2.5 times
the sequential CPU version.

As future work, the exploration of this method used
on parallel architectures and explored the use of other
shading languages. It would be interesting to compare the
possible improvements in performance using other
languages.

Fig 9. Parallel Flame Simulation

The properties of each particle changed in terms of
the turbulence movement every frame rendering. Frame
rate was around 60 FPS, which ensured smooth and
real-time effects (Fig. 9).

VI. CONCLUSIONS

This paper presented a non-grid flame simulation
method, which using Lagrangian process to describe the
turbulence movement of the flame and a simplified
EMST model to describe the combustion component.
This method overcame the problems associated with the

46 Real-time Flame Rendering with GPU and CUDA

Copyright © 2011 MECS I.J. Information Technology and Computer Science, 2011, 1, 40-46

grid, such as grid size, grid resolution and grid position
in space selection and generated the general state of
flame simulation and had good foregrounds in field of
computer animation and virtual reality. The speed of
vertex and pixel data exchange between CPU and GPU
was two orders of magnitude faster by using OpenGL
VBO and PBO technology. For real-time applications,
this paper presented a strategy to implement flame
simulation with CUDA on GPU, which achieved a speed
up to 2.5 times the sequential implementation. In further
studies, smoke can be joined in flame simulation. In
further studies, smoke can be joined in flame simulation.

REFERENCES
[1] Reeves W T, “Particle systems-a technique fur modeling a class of

fuzzy objects,” [J]. Computer Graphics(S0097-8930), 1983, 17(3):
359-376．

[2] Joel H. Ferziger, Milovan Peric. Computational Methods for Fluid
Dynamics [M], third edition, Springer Press.

[3] Perlin K. An image synthesizer [J]. ACM Computer Graphics,
1985, 19(3): 287-296.

[4] Ebert D S, Richard E P. Rendering and animation of gaseous
phenomena by combining fast volume and scan line A-buffer
techniques [J]. ACM Computer Graphics, 1990, 24(4): 357-366．

[5] Scott A K, Roger A. Crawfis, Wayland Reid, "Fast Animation of
Amorphous and Gaseous Phenomena", Volume Graphics '99,
Swansea, Wales, pp 333-346, March 1999.

[6] Perry C H, Picard R. Synthesizing flames and their spread [C]
Siggraph’94. Technical Sketches Notes, US, 1994．

[7] Stam J, Fiume Eugene. Depicting fire and other gaseous phenomena
using diffusion processes [C], Computer Graphics Proceedings,
Annual Conference Series, ACM SIGGRAPH, LosAngeles, US:
ACM Press, 1995: 129-36．

[8] Wang Jizhou, Gu Yaolin. Flame Simulation Method of Review [J].
Journal of Image and Graphics, 2007, 12(11): 1961-1970. (in
Chinese)

[9] Nguyen Duc Quang, Fedkiw Ronald, Jensen Henrik Wann.
Physically based modeling and animation of fire [C]. ACM
Transactions on Graphics(S0730-0301), 2002, 21(3)：721-728．

[10]Pope, S. B. Turbulent Flows [M]. Cambridge: Cambridge
University Press, 2000.

[11]Subramaniam, S. and S. B. Pope. A mixing model for turbulent
reactive flows based on Euclidean minimum spanning trees [J].
Combustion and Flame, 1998, 115(4): 487-514.

[12]Lamorlette, A. and N. Foster. Structural modeling of natural flames
[C]. Proceedings of ACM SIGGRAPH 2002, July 2002, 729-735.

[13]Adabala N, Manohar S. Modeling and rendering of gaseous
phenomena using particle maps [J]. Journal of Visualization and
Computer Animation，2000， (11) ：279～293.

[14] ZHAO Chunxia, ZHANG Yan, ZHAN Shouyi. Three-dimensional
particle-based fire simulation systems approach [J]. Computer
Engineering and Applications：2004 (28). (in Chinese)

[15]Li Jianming, Wu Yunlong, Chi Zhongxian, He Rongsheng.
GPU-based fluid model and the flame acceleration real-time
simulation [J]. Journal of System Simulation： 2007(19). (in
Chinese)

[16]http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/do
cs/NVIDIA_CUDA_ProgrammingGuide.pdf

[17]http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/do
cs/CUDA_C_Programming_Guide.pdf

