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Abstract-This paper proposes a method of flame 
simulation based on Lagrange process and chemical 
composition, which was non-grid and the problems 
associated with there grids were overcome. The 
turbulence movement of flame was described by 
Lagrange process and chemical composition was 
added into flame simulation which increased the 
authenticity of flame. For real-time applications, this 
paper simplified the EMST model. GPU-based 
particle system combined with OpenGL VBO and 
PBO unique technology was used to accelerate finally, 
the speed of vertex and pixel data interaction between 
CPU and GPU increased two orders of magnitude, 
frame rate of rendering increased by 30%, which 
achieved fast dynamic flame real-time simulation. For 
further real-time applications, this paper presented a 
strategy to implement flame simulation with CUDA 
on GPU, which achieved a speed up to 2.5 times the 
previous implementation. 

 
Index Terms - fluid model; chemical composition; 
CUDA 

 
I.  INTRODUCTION 

The simulation of flame has been a challenging 
research topic in computer graphics in recent years. The 
difficulty for the accurate simulation of flame including 
irregularity of the flame shape, color variability, the 
complexity of the production of gas and other uncertain 
factors.  

Reeves [1] proposed particle systems approach for 
fire simulation and other irregular objects in 1983. 
Dynamic fluid equation based on grid was proposed by 
Ferziger [2] as a method of flame simulation in computer 

graphics, which was complex and included large amount 
of calculation. The real-time simulation of flame was 
difficult to realize and the calculation based on gird was 
difficult to guarantee stability. Perlin adopted the 
definition of solid texture and added noise to achieve 
flame animation [3]. Ebert described a new technique 
which efficiently combined volume rendering and scan 
line [4]. Scott and his colleagues [5] presented a  
technique  to  animate  amorphous  materials  such  
as fire、smoke and dust in real-time on graphics hardware 
with dedicated  texture  memory. Perry proposed the 
flame spread model in 1994 [6]. On this basis, Stam in 
1995, proposed a thermodynamic simulation method of 
flame [7]. Wang Jizhou [8] presented a survey on the 
development of flame simulation in computer animation, 
with a detail introduction to the classification of the 
works as well as different kinds of methods employed in 
the field. 

In November 2006, NVIDIA introduced CUDA™ 
[17], a general purpose parallel computing architecture – 
with a new parallel programming model and instruction 
set architecture  that leverages the parallel compute 
engine in NVIDIA GPUs to solve many complex 
computational problems in a more efficient way than on a 
CPU. CUDA comes with a software environment that 
allows developers to use C as a high-level programming 
language. 

The reason behind the discrepancy in floating-point 
capability between the CPU and the GPU is that the GPU 
is specialized for compute-intensive, highly parallel 
computation – exactly what graphics rendering is about – 
and therefore designed such that more transistors are 
devoted to data processing rather than data caching and 
flow control. More specifically, the GPU is especially 
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well-suited to address problems that can be expressed as 
data-parallel computations the same program is executed 
on many data elements in parallel with high arithmetic 
intensity, the ratio of arithmetic operations to memory 
operations. Because the same program is executed for 
each data element, there is a lower requirement for 
sophisticated flow control, and because it is executed on 
many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations 
instead of big data caches.  

Data-parallel processing maps data elements to 
parallel processing threads. Many applications that 
process large data sets can use a data-parallel 
programming model to speed up the computations. In 3D 
rendering, large sets of pixels and vertices are mapped to 
parallel threads. Similarly, image and media processing 
applications such as post-processing of rendered images, 
video encoding and decoding, image scaling,  
stereo vision, and pattern recognition can map image 
blocks and pixels to parallel processing threads. In fact, 
many algorithms outside the field of image rendering and 
processing are accelerated by data-parallel processing, 
from general signal processing or physics simulation to 
computational finance or computational biology.  

The advent of multi-core CPUs and many-core 
GPUs means that mainstream processor chips are now 
parallel systems. Furthermore, their parallelism continues 
to scale with Moore’s law. The challenge is to develop 
application software that transparently scales its 
parallelism to leverage the increasing number of 
processor cores, much as 3D graphics applications 
transparently scale their parallelism to many-core GPUs 
with widely varying numbers of cores. The CUDA 
parallel programming model is designed to overcome this 
challenge while maintaining a low learning curve for 
programmers familiar with standard programming 
languages such as C. At its core are three key abstractions 
a hierarchy of thread groups, shared memories, and 
barrier synchronization – that are simply exposed to the 
programmer as a minimal set of language extensions. 
These abstractions provide fine-grained data parallelism 
and thread parallelism, nested within coarse-grained data 
parallelism and task parallelism. They guide the 
programmer to partition the problem into coarse 
sub-problems that can be solved independently in parallel 
by blocks of threads, and each sub-problem into finer 

pieces that can be solved cooperatively in parallel by all 
threads within the block. This decomposition preserves 
language expressivity by allowing threads to cooperate 
when solving each sub-problem, and at the same time 
enables automatic scalability. Indeed, each block of 
threads can be scheduled on any of the available 
processor cores, in any order, concurrently or sequentially, 
so that a compiled CUDA program can execute on any 
number of processor cores as illustrated by Fig.1, and 
only the runtime system needs to know the physical 
processor count.  

This scalable programming model allows the CUDA 
architecture to span a wide market range by simply 
scaling the number of processors and memory partitions: 
from the high-performance enthusiast GeForce GPUs and 
professional Quadro and Tesla computing products to a 
variety of inexpensive, mainstream GeForce GPUs . 
 

 
 
 
 
 

 

 
Fig 1.  CUDA architecture based on GPU 

 

II.  FLAME MODELING 
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Flame can be seen as the procession of fuel reacts 
with oxygen, which releases light and heat. The 
movement of flame can be described into laminar and 
turbulent flow. Nguyen and his colleagues [9] simulated 
flame by hydrodynamic equations in 2002, which 
simulated the turbulence movement of flame more 
accurately. 

The turbulence movement of flame can be defined 
by Mass Conservation equation and Navier-Stokes 
equation: 

0=⋅∇ U                 （1） 

FUp
dt

dU
+∇+∇−= 21 υ

ρ
         （2） 

In above equations, U was the velocity vector; ρ was 
the fluid density; p was pressure; v was the dynamic 
viscosity; ∇  was the Laplacian operator; F was the 
external forces that act on the fluid. 

Equation (1) and (2) can be solved by Euler method, 
which used a fixed point of the grid for the definition of 
the velocity field. But in case of disordered flow, the 
chaotic characteristics of flow made the definition of grid 
size, shape, position, and resolution issues complex. The 
nonlinear equations of fluid spent a lot of computer 
system resources, which took a few seconds to render a 
frame.  

In view of these problems, this paper proposed a 
method based on Lagrangian method without grid. In this 
method, the fluid was modeled by a set of particles. The 
statistical properties of these particles based on equations 
of fluid and were more stable in the numerical solution. 

 The following equation defined the changes of 
particles.  

( ) ( )i idX U dt=                     (3) 

( ) ( )
0 0

3 ( )
4

i idU C U t U dt C k dWω ω= < > − < > + < >    (4) 

Equation (3) defined the position of the particle 
according to the velocity, and velocity calculation based 
on the simplified Langevin model [10].  Equation (4) 
defined the frequency of the turbulence. ω was the 
turbulence frequency and symbol <> represented the 
average. Constant C0 was a standard value of turbulent 
motion, and k was the disturbance kinetic energy, and dW 
was the increments of W(t) in Wiener equation. The 

turbulent movement of the flame can be modeled by (3) 
and (4) combined with particle system, which overcame 
the reality limitations of particle system for flame. 

III.  COMBUSTION COMPONENT 

Flame modeling methods on the chemical 
composition were almost based on empirical researches. 
As lots of simplifying assumptions were made, the flame 
model was difference from the actual flame, which has its 
specific combustion mode, depending on many factors, 
including chemical composition, fuel diffusion, oxides 
and spawn. Subbramaniam and Pope [11] proposed the 
Euclidian Minimum Spanning Tree (EMST) mixing 
model for modeling chemicals of fire flame. The 
composition of particles was defined by thermal chemical 
model in EMST. The neighborhoods of tree nodes were 
used to update the chemical components, which helped 
maintain chemical composition with the development of 
combustion. EMST model was difficult for real-time 
simulation. Therefore, this paper proposed a simplified 
model for real-time applications. 

 
Fig 2.  EMST model 

In Fig. 2, x-axis represented the mixture 

fraction ( , )X tξ ; y-axis was the variables of combustion 

composition ( , )Y X t . X represented particle's position 

vector (x1, x2, x3), and λ represented the combustion 
coefficient. The time parameter could be removed to 

simplify the EMST model, and ( , )X tξ can be 

expressed as ( )Xξ . When t = 0,  ( , )Y X t can be 

defined as follows： 

2( ,0) ( ( )) exp( ( ( ) ( ) ) 0.5) /Y X Y X X Xξ ξ ξ λ= = − − −⎢ ⎥⎣ ⎦   (5) 
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In the initial, the combustion composition of 
particles was spread in accordance with Gaussian 
distribution, as the solid line in Fig. 1. Then combustion 
components became stability and changed into the point 
of the curve lines. The change speed [12] depended on 
the different essentialities of combustions and can be 
described by equation (6).  

( , ) ( )* ( , 1)Y X t rd Y X tχ= + −         (6)                                        

In (6), χ  was the decline rate of the reaction 

process variables, and [0,0.01* ]rd χ∈ was a small 

random perturbation. In the combustion process, when 
the fire intensity increased, the burning intensified. When 
the fire reduced and the intensity was insufficient to 
sustain the flame, the flame went out. An attenuation 
number was used to predict the development of the flame 
in EMST. Adabala used the average of the combustion 
component to simplify the EMST method [13]. 

IV. STRAIGHT RENDERING 

Zhao Chunxia [14] proposed a flame model based 
on particle system, which discussed particle’s attributes 
in detail and emphasized the color variation and dynamic 
wavering of the flame．Li Jianming [15] based on 
physical model simulation for the calculation of the flame, 
high complexity and difficult problem in real-time 
simulation, proposed a fluid-based model and real-time 
GPU-accelerated simulation of the flame, but frequently 
data interaction between CPU and GPU affected the 
efficiency, and real-time rendering problem was not been 
fundamentally improved. 

In order to ensure real-time rendering, an effective 
balance between the interaction and reality needed to 
establish. OpenGL VBO (Vertex Buffer Object) and PBO 
(Pixel Buffer Object) technology put the vertex and pixel 
data directly into video card in cache, which effectively 
reduced the time of the vertex and pixel data transfer 
between CPU and GPU and increased the rendering 
speed. PBO was asynchronous through DMA (Direct 
Memory Access) technology. The following two graphs 
compared with the traditional texture transfer and PBO 
process. 

  
Fig 3. Traditional texture transfer 

 
 Fig 4. PBO process 

Fig.3 showed the process that loaded the image data 
from image sources (such as image files and video) to the 
texture object with traditional method. Pixel data stored 
in the system memory first, and then used glTexImage2D 
to copy data from system memory to a texture object. 
CPU was occupied during the whole process. As shown 
in Fig. 3, the pixel data loaded into PBO directly, and 
only this process needed CPU to perform. GPU was in 
charge of the data transfer from PBO to texture object, 
without CPU involvement. Therefore, compared with 
Fig.3, glTexImage2D in Fig.4 returned immediately 
without immediately executed. Hence CPU can perform 
other operations without having to wait for the end of the 
pixel data transfer. More PBOs can be used in order to 
obtain greater performance. A test program was made to 
test the performance generated by PBO. Twenty sets of 
data for each state were selected and the average value 
was calculated, as shown in table 1. 

Table 1.  PBO performance test 

State Parallel time

（ms） 

Copytime（ms） Frame rate (fps)

PBO  

OFF 

1.760 4.847 64.1 

PBO   

ON 

3.789 0.046 83.4 

2PBO  

ON 

4.206 0.054 82.8 

 
Tests showed that the use of PBO technology can 

increase the pixel transfer speed for two orders of 
magnitude, thus greatly reduced data exchange time 
between CPU and GPU, and improved the frame rate of 
about 30%. More PBOs can increase the parallel 
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computing time, but frame rate decreased slightly. Due to 
thermal buoyancy, particles had an upward initial velocity, 
but the particles changed with the turbulence which was 
not always upward. The particle properties rendered each 
frame, including Lagrangian properties and disordered 
movement of the combustion component attributes. The 
process of flame simulation algorithm was showed in Fig. 
5. 

Initialize new flame 
particles

Determine the life of particles
exceed the upper limit

or not 

PBO-based 
rendering

on flame particles

Update information 
on flame particles

Remove  flame 
particles

Yes

No

  
Fig 5.  Flame simulation algorithm processes 

 
Fig 6． Real-time flame simulation 

The properties of each particle changed in terms of 
the turbulence movement and combustion component in 
every frame rendering. The simulation was based on 
OpenGL and VS2005 platform, in Intel core2.0 1.87 GHz, 
GeForce 7600 GS PC machine. Frame rate was around 
60 FPS, which ensured smooth and real-time effects (Fig. 
6).  

V.   PARALLEL RENDERING 

In order to ensure real-time rendering, we 
implemented the parallel version of our technique using 
the NVIDIA CUDA [NVIDIA. 2009] language, which 
allows us to use the graphics processor without using 
shading languages. In the context of CUDA, the CPU 
plays the role of the Host, which controls the graphics 
processor and calls Device. It sends data, calls the Device 
to execute some functions, and then copies back its 

results. 
CUDA is parallel computing architecture. It enables 

dramatic increases in computing performance by 
harnessing the power of the GPU. Each graphics 
processor of an NVIDIA graphics card is divided into 
several multiprocessors. NVIDIA CUDA [NVIDIA. 2009] 
divides the processing in blocks, where each block is 
divided in several threads. Each block of threads is 
mapped to one multiprocessor of the graphics processor. 
When the CPU calls the Device to execute a function, it 
needs to inform how the work will be divided in blocks 
and threads. Maximum performance is achieved when we 
maximize the use of blocks and threads for a given 
graphics processor. 

Each of the multiprocessors is a group of simple 
processors that share a set of registers and some memory, 
which is the shared memory space. The shared memory 
size is very small; usually 16KB or 32KB on graphics 
cards running on 1.3 compute capable device, but it is as 
fast as the registers. The communication between two 
multiprocessors must be done through the Device 
memory, which is quite slow if compared to the shared 
memory. There is also the Constant Cache and Texture 
Cache memory, which has better access times than the 
Device memory, but it is read-only for the Device. Before 
the execution of the code in the Device, CPU must send 
the data to its Device memory to be processed later. The 
memory copy from the Host (CPU) memory to the 
Device memory is a quite slow process, and should be 
minimized. Besides, the NVIDIA CUDA Programming 
Guide [16] says that one single call to the memory copy 
function with a lot of data is much more efficient than 
several calls to the same function with a few bytes. The 
performance of application can be improved by making 
good use of these restrictions of CUDA. To avoid several 
memory transactions between the Host (CPU) and the 
Device, all attributes in contiguous memory areas was 
stored together, and treat it like an array. At the position k 
stored an attribute of the particle Pk (Fig. 7). Proceeding 
in this way, several unnecessary copies were avoided, 
which improved the overall performance. Device memory 
can be allocated on a linear, but also can be assigned for 
the CUDA array form. CUDA memory can be 1 
dimensional, 2 dimensional and 3D (2.0 version). 
Memory types included unsigned8, 16 or 32-bit int, 
16-bit (only driver API can do) float, 32-bit float. This 
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allocated memory can only process through kernel 
function in CUDA.  
    In order to verify that our parallel implementation 
can be executed faster than the sequential one, a couple 
of tests were accomplished. All the tests were executed in 
an Intel X5450 3.00GHz, NVIDIA Quadro FX 3700 
graphics card.  

   
Fig 7.  Data structure used on GPU 

 
Fig 8.  Speed up achieved using the parallel               

implementation over the sequential implementation. 

The graphic in Fig.8 shows the speed up achieved 
using the parallel implementation over the sequential 
version of the technique. As we can see, test showed the 
parallel version was above more than twice faster than 
the sequential one (exactly the lowest point in the graphic 
is at 2.8 times). Besides that, sequential version with the 
agent increases, the time increased faster than parallel 
version.  

In addition, according to the NVIDIA CUDA 
Programming Guide [NVIDIA. 2009], the graphics 
processor cannot handle all the data in a parallel way. The 
division of the work in blocks of threads lets the graphics 
processor scheduler run some blocks of thread while 

others wait for execution. Because of this, the 
computation of 256 local maps in a parallel way does not 
give a speed up of 256 times. 

To explain what the cause of the graphics peaks is, 
the NVIDIA CUDA Programming Guide says that each 
algorithm implemented with CUDA has an optimal point, 
in which the amount of blocks and threads uses the most 
possible number of resources available in the graphics 
processor simultaneously.   

This paper presented a strategy to implement flame 
simulation on GPU under CUDA Framework, which 
constitutes a great advantage when compared to the 
traditional method. We implemented a parallel version of 
this algorithm using the NVIDIA CUDA [NVIDIA. 2009] 
language, which allows us to use the graphics processor 
avoiding the use of shading languages. The parallelism 
was explored, reducing the amount of memory 
transactions between CPU and GPU. Our result shown 
that the GPU implementation improves up to 2.5 times 
the sequential CPU version. 

As future work, the exploration of this method used 
on parallel architectures and explored the use of other 
shading languages. It would be interesting to compare the 
possible improvements in performance using other 
languages. 

 
Fig 9.  Parallel Flame Simulation 

The properties of each particle changed in terms of 
the turbulence movement every frame rendering. Frame 
rate was around 60 FPS, which ensured smooth and 
real-time effects (Fig. 9).  

 

VI. CONCLUSIONS 

This paper presented a non-grid flame simulation 
method, which using Lagrangian process to describe the 
turbulence movement of the flame and a simplified 
EMST model to describe the combustion component. 
This method overcame the problems associated with the 
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grid, such as grid size, grid resolution and grid position 
in space selection and generated the general state of 
flame simulation and had good foregrounds in field of 
computer animation and virtual reality. The speed of 
vertex and pixel data exchange between CPU and GPU 
was two orders of magnitude faster by using OpenGL 
VBO and PBO technology. For real-time applications, 
this paper presented a strategy to implement flame 
simulation with CUDA on GPU, which achieved a speed 
up to 2.5 times the sequential implementation. In further 
studies, smoke can be joined in flame simulation. In 
further studies, smoke can be joined in flame simulation. 
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