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Abstract-To achieve good reconstruction speech quality in a 

very low bit rate speech codecs, an efficient dimension 

reduction quantization scheme for the linear spectrum pair 

(LSP) parameters is proposed based on compressed sensing 

(CS). In the encoder, the LSP parameters extracted from 

consecutive speech frames are shaped into a high 

dimensional vector, and then the dimension of the vector is 

reduced by CS to produce a low dimensional measurement 

vector, the measurements are quantized using the split 

vector quantizer. In the decoder, according to the quantized 

measurements, the original LSP vector is reconstructed by 

the orthogonal matching pursuit method. Experimental 

results show that the scheme is more efficient than that of 

conventional matrix quantization scheme, the average 

spectral distortion reduction of up to 0.23dB is achieved in 

the DFT transform domain. Moreover, in the approximate 

KLT transform domain, this scheme can obtain transparent 

quality at 5 bits/frame with drastic bits reduction compared 

to other methods. 

 
Index Terms- Low bit rate speech coding, Line Spectrum 

Pair (LSP), Compressed Sensing (CS), Discrete Fourier 

Transform (DFT), Karhunen-Loeve Transform (KLT) 

I.  INTRODUCTION 

Many low bit rate speech coding algorithms are based 
on Linear Predictive Coding (LPC) and the LSP 
parameters are chosen for representing LPC coefficients. 
For the LP based vocoders such as MELP or MELPe, the 
bits used for quantizing LSP parameters have already 
taken up to 60% [1], so the bit rate reduction is strongly 
tied to efficient quantization of LSP parameters.  

The transparent Scalar Quantization (SQ) of LSP 
parameters requires typically 38 to 40 bits/frame [2]. 
Lower bit rates can be achieved using the Vector 
Quantization (VQ). VQ considers the entire set of LSP 
parameters as an entity and allows for direct 
minimization of quantization distortion. Accordingly, VQ 
results in smaller quantization distortion than the SQ at 
any given bit rate, it provides 1 dB average spectral 
distortion using about 26 to 30 bits/frame [3,4]. However, 
for transparent quantization performance, VQ needs a 
large number of codevectors in its codebook, it means 
that the storage and computational requirements for VQ 
are prohibitively high. It’s known that there is high 
correlation between two neighbouring LSP frames, and 
between adjacent LSP parameters within a frame, so the 

bit rates can be further reduced when both interframe and 
intraframe redundancy is removed. The exploitation of 
intraframe redundancy usually use the Split Vector 
Quantization (SVQ) [5] and Multi-Stage Vector 
Quantization (MSVQ) [6], which offer transparent 
quantization performance with realistic codebook storage 
and search characteristics at 22 to 24 bits/frame. Further 
compression can be obtained in principle by exploiting 
interframe correlation between sets of LSP parameters. In 
this way, the Predictive Vector Quantization (PVQ) [7,8] 
and Matrix Quantization (MQ) [9,10] systems have been 
proposed, which offer high quantization accuracy at 18 to 
21 bits/frame.   

Now, there are more advanced efforts to lower the 
speech coding bit rates below 600bps. However, with the 
bit rates reduce, the number of consecutive frames which 
are grouped together becomes larger. Such a multi-frame 
structure has the two following problems. Firstly, a large 
codebook requires prohibitively large amount of training 
data and the training process can take much of 
computation time. Secondly, the encoding complexity 
and storage requirement increase dramatically, and the 
quantization performance degrades as the bits per frame 
are further reduced.   

To overcome these drawbacks, a novel LSP parameters 
quantization scheme based on compressed sensing (CS) is 
proposed in this paper. The recent studies of CS have 
shown that sparse signals or compressible on some basis 
can be recovered accurately using less observations than 
what is considered necessary by the Nyquist/ Shannon 
sampling principle [11,12,13,14]. Based on this theory, 
CS sampling and reconstruction of LSP parameters on the 
DFT and KLT transform domain are realized. In the 
encoder, the LSP parameters extracted from consecutive 
speech frames are grouped into a high dimensional vector, 
and then the dimension of the vector is reduced by CS to 
produce a low dimensional measurement vector, the 
measurements are quantized using the split vector 
quantizer. In the decoder, from the quantized 
measurements, the original LSP vector is reconstructed 
by the Orthogonal Matching Pursuit (OMP) method [15]. 
Experimental results indicate that this novel quantization 
scheme can obtain higher performance than MQ while in 
the DFT domain. Furthermore, in the KLT domain, the 
scheme can obtain transparent quality at 5 bits/frame with 
realistic codebook storage and search complexity. 

The rest of this paper is organized as follows. In 
section II, basic principles of compressed sensing are 
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introduced. In section III, the compressed sensing 
formulation for LSP parameters is proposed. In section 
IV, the quantization scheme is designed. Then simulation 
results are presented and discussed in section V. Finally, 
we give out the conclusion. 

II. COMPRESSED SENSING PRINCIPLES 

Compressed sensing is a newly introduced concept of 
signal processing which aims at reconstructing a sparse or 
compressible signal accurately and efficiently from a set 
of few non-adaptive linear measurements. 

Let 
1N

R
×

∈X  be a real-valued signal of length N, 
assume that X is k-sparse or compressible on a particular 

orthonormal basis { }
1 2
, , ... ,

N

N N
Rφ φ φ

×
= ∈Ψ Ψ  i.e. X can 

be represented as: 
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Ν

θ θ θ
1 2

=Θ  is a scalar coefficient vector 

of X in the orthobasis. X and Θ  are equivalent 
representations of the signal, with X in the time domain 
and Θ  in the Ψ  domain. The assumption of sparsity 

means that only k nonzero coefficients, with k≤N, of Θ  
are sufficient to represent X. In CS, we do not observe the 
k-sparse signal X directly, instead record M<N non-
adaptive linear measurements: 

= =Φ ΦΨΘXY                           (2) 

Where 
M N

R
×

∈Φ is a measurement matrix made up of 

random orthobasis vectors, 
1M

R
×

∈Y  is called the 
measurement vector of original signal. CS theory states 
that we can reconstruct X accurately from Y if Φ  and 
Ψ are incoherent, this property is easily achieved when 
the entries of random matrix Φ  are i.i.d. Gaussian 
variables. If the incoherence holds, the following linear 
program gives an accurate reconstruction with very high 
probability: 

 0
argmin s tˆ . .=        = ΦΨΘΘ Θ Y                (3) 

Where 
0

 is the 
0

l  norm. Unfortunately, the above 

optimization problem is NP-hard and can not be solved 
efficiently. Recently, it has been shown that if the sensing 
matrix Φ  obeys a so-called restricted isometry property 
(RIP) [14] while Θ  is sparse enough, the solution of the 
combinatorial problem (3) can almost always be obtained 
by solving the constrained convex optimization: 

 1
argmin s tˆ  . . =      = ΦΨΘΘ Θ Y             (4) 

The convex
1l  norm minimization problem can be 

solved with the traditional linear programming techniques. 
However, these techniques are still somewhat slow. At 
the expense of slightly more measurements, fast iterative 

greedy algorithms have been developed to recover the 
signal. Examples include the Orthogonal Matching 
Pursuit (OMP) [15] and tree matching pursuit methods. 

Once the optimal solution Θ̂  is got, the signal X can be 
recovered by: 

1

ˆ ˆ= ˆ
N

i i
i

φθ
=
∑X ΨΘ =                                (5) 

Summarizing, if we wish to use CS to compress LSP 
parameters, three main ingredients are needed: a domain 
where the LSP parameters is sparse, the measurement 
matrix and the reconstruction algorithm. In the next 
section, we will give a detailed analysis of the 
compressed sensing formulation for LSP parameters. 

III. COMPRESSED SENSING FORMULATION FOR LSP 

A. LSP parameters representation 

Consider the LPC analysis is applied to speech frames 
of D ms duration to yield the coefficient vectors 

1 2
( ) [ , ,..., ]n n n

p
n a a a=a , where p is the order of the LPC 

filter and n is current LPC analysis frame, a(n) is then 

transformed to a LSP representation 1 2( ) [ , ,..., ]n n n
pn l l l=l . 

When performed over L consecutive speech frames 
provides an L-by-p matrix: 
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Let N=L×p, the above matrix is then shaped into an N 
dimensional column vector: 

    

[ ]

T1 1
1 1

T
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X
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B. Sparse representation of LSP 

In this section, we will discuss some important issues 
in applying CS to LSP parameters. First, we need to 
know which domain of LSP is sparse, it is the 
precondition of applying CS to LSP parameters. Several 
experiments are conducted to examine the Discrete 
Fourier Transform (DFT) domain, the Discrete Cosine 
Transform (DCT) domain, the Discrete Wavelet 
Transform (DWT) domain and the Karhunen-Loeve 
Transform (KLT) domain, we find that the LSP 
parameters are sparse in the DFT and KLT domain.  

Here, we give the definition of the DFT and KLT 
transform domain. As the DFT transform domain is well 
known in digital signal processing, so there is no need to 
give a detailed analysis.   



20 An Efficient Dimension Reduction Quantization Scheme for Speech LSP Parameters  

Copyright © 2011 MECS                                                                I.J. Information Technology and Computer Science, 2011, 1, 18-25 

The KLT is an efficient data compression technique, 
which has been successfully used to extract the data 
features. The bases of the KLT are the eigenvectors of the 

autocorrelation matrix. Assuming that xR  is the 

autocorrelation matrix of the signal X, when the KLT is 

calculated over the vector X, the xR  can be estimated by: 

T

x = XXR                              (8) 

Let U  be a matrix whose columns constitute a set of 

orthonormal eigenvectors of xR , so that 
T =UU I  and: 

T
x =R UΛU                               (9) 

Where Λ  is the diagonal matrix of non-null 
eigenvalues: 

 1  2  k( , ,..., )λ λ λ=Λ diag              (10) 

For every vector X, through the matrix
TU , we can 

obtain the sparse coefficients vector Θ  as: 

T= XΘ U                                (11) 

Unfortunately, the KLT requires much of computation 
time for the eigenvector decomposition, some 
approximated approaches to overcome this problem have 
been developed [16,17]. Furthermore, in practice, we can 
limit the length of LSP parameters in a reasonable range.  

As a practical example in Fig.1, when the 60 
dimensional LSP parameters extracted from six 
successive speech frames are transformed into the DFT, 
DCT, DWT and KLT domain, we find that the 
coefficients of the DFT and KLT domain are sparse, it is 
clearly shown that the LSP signal is compressible in the 
DFT and KLT domain.  
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(d) KLT domain coefficients  

Figure 1. The transform domain of LSP parameters 

Once we find the sparse domain, another issue with 
LSP parameters is the sparsity. We know that the sparsity 
k means that the number of nonzero coefficients in Θ 
which are sufficient to represent X. As in Fig.1, it is 
clearly shown that there are only 10 obvious nonzero 
coefficients in the DFT domain, while in the KLT domain, 
there is only 1 obvious nonzero coefficient, all the other 
coefficients are zero or closes to zero. Moreover, in the 
KLT domain, we can use a heuristic choice of K=k+1 
when the improvement in the accuracy of the 
reconstruction is achieved. So we can reasonably assume 
that the sparsity k in the DFT domain is 10, in the 
approximated KLT domain is 2.  

C. Sensing LSP with the Gaussian random matrix 

The measurement matrix must allow the reconstruction 
of the length-N signal X from M<N measurements. Since 
M< N, this problem appears ill-conditioned. However, X 
is k-sparse and the k locations of the nonzero coefficients 
in Θ are known, then the problem can be solved 
efficiently. When using CS, one must choose how many 
samples to retain. As a rule of thumb, four times as many 
samples as the number of non-zero coefficients should be 
used [18], i.e., M=4k. Now, it is clear that the size of the 
measurement matrix Φ depends uniquely on the sparsity 
level k. Meanwhile, for the effective CS reconstruction, 
Φ and Ψ must be incoherent, this property can be 
achieved when the measurement matrix Φ constructed 
from independent and identically distributed zero-mean 
Gaussian variables. Consequently, the Gaussian random 
matrix is used as the measurement matrix throughout the 
paper. 

D. LSP recovery with OMP 

Although the quality of the reconstruction mainly 
depends on the compressibility of LSP parameters, the 
reconstruction algorithm is also very important. As 
mentioned in section II, the Orthogonal Matching Pursuit 
(OMP) algorithm is an attractive method for the sparse 
signal recovery. OMP is a fast greedy algorithm that 
iteratively builds up a signal representation by selecting 
the atom that maximally improves the representation at 
each iteration. The OMP is easily implemented and 
converges quickly, which is chosen for the LSP recovery. 

E. Realization of CS processing 

In Fig.2, a practical example of CS recovery of LSP 
parameters is illustrated. Consider 60 dimensional LSP 
parameters (Fig.2(a)) extracted from 6 constructive 
speech frames, when transformed into the approximate 
KLT domain, the sparsity k is 2, then with the relation 
M=4k, 8 measurements (Fig.2(c)) are obtained. 
According to the 8 measurements, the original LSP 
parameters can be reconstructed by the OMP method. We 
clearly see that the reconstruction works very well, the 
recovered LSP signal (Fig.2 (d)) match the original signal 
with very high accuracy. 
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(d) the reconstructed LSP  

Figure 2. Example of CS recovery of LSP parameters in the KLT 
domain (L=6, k=2) 

Since the LSP parameters can be compressed and 
recovered efficiently by the compressed sensing, if, 
however, we encode the low dimensional measurements 
instead of the original LSP signal, the coding bit rates can 
be definitely reduced. In other words, the quantization 
performance will much improved under the same coding 
bits as used in other methods. 

IV QUANTIZATION SCHEME 

Based on the above analysis, a Compressed Sensing 
Vector Quantization (CSVQ) scheme for LSP parameters 
is proposed in this section. Fig.3 shows a block diagram 
of the CSVQ quantization system. Here, the pth (p=10) 
order linear prediction analysis is performed on D ms 
speech frame, the LSP parameters extracted from L 
successive frames are gathered up to form a matrix, the 
matrix is then converted into a N dimensional column 
vector. 

L P×X

1 1M NM N×× ×= ΦY X

Y

1x

Lx

(a) Encoder 
 

0
min ˆ ˆ qs.t. Φ =X X Y

ˆ
L P×XqY

1̂x

ˆLx

 (b) Decoder 

Figure 3. CSVQ encoding and decoding process 

 

The quantization procedure is summarized as follows: 

1) Compressed sensing: the original LSP parameters 

are sensed by the measurement matrix Φ according to (2), 

once X has been measured, the high dimensional LSP 

parameters X can be converted into a low dimensional 

measurement vector Y.  

2) Quantizing the measurement vector Y with SVQ: in 

CSVQ, to reduce the coding bit rates, the low 

dimensional measurement vector Y is quantized instead 

of the original LSP signal. Here, the Split Vector 

Quantizer is utilized to quantize the measurements. As 

mentioned above, in the DFT and KLT domain, the 

sparsity k is 10 and 2, respectively. After compressed 

sensing, according to the empirical rule of thumb, four 

times as many samples as the sparsity is achieved, i.e. 

there are 40 and 8 measurements need to be quantized, 

respectively.  

To moderate the complexity and performance, in SVQ, 

the 40 measurements in DFT domain is split up into 4 

subvectors, each subvector has 10 measurements and 

equally quantized with 10 bits.  

In the KLT domain, the 8 measurements are split up 

into 2 subvectors, the first subvector has the first 4 

measurements and the second subvetor has the remain 4 

measurements. For minimizing the complexity of the 

SVQ, total bits available for measurements quantization 

are divided equally to each of the two subvectors.  

The total squared error (or Euclidean) distance 

measure is used for the SVQ operation both in the DFT 

domain and KLT domain. The codebooks are designed 

using the well-known LBG algorithm to minimize the 

error distance based on a sufficiently rich training 

sequence.  

3) Send: the index of quantized measurements qY  is 

communicated to the receiver.  
4) LSP recovery with OMP: in the decoder, we 

consider the problem of recovering sparse signal X from a 

set of quantized measurements qY . The quantized 

measurements are found according to the corresponding 
index of the codebook. Once Y has been quantized, the 
reconstruction of LSP parameters involves trying to 
recover the original LSP signal by the OMP method. The 
recovered LSP signal is the ultimate quantization value of 
the original LSP signal. 

V EXPERIMENT RESULTS 

Several experiments are conducted to examine the 

performance of the proposed CSVQ method, we start 

with the discussions on the simulation setup. 

All experiments are based on the TIMIT speech 

database, down sampled to 8 kHz. A 10th order LPC 

analysis using the autocorrelation method is performed on 
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every 20 ms speech frame. A fixed 15 Hz bandwidth 

expansion is applied to each pole of the LPC coefficient 

vector, and finally the LPC vectors are transformed to the 

LSP representation. The corresponding CSVQ codebooks 

are designed using the training data consist of 2×107 

speech frames, in addition, about 2×105 speech frames 

that out of the training speech are used to evaluate the 

performance.  

Traditionally, the objective measure that is used to 

assess the performance of quantization scheme is the 

Spectral Distortion (SD) measure: 

10 100
1

21 1 ˆSD [10log ( ) 10log ( )]
N

n n

n

S S d
N

π

ω ω ω
π=

= −∑ ∫     (12) 

Where N is the frame number used for SD calculation, 

the ( )
n

S ω and ˆ ( )
n

S ω  are the original and quantized LPC 

power spectrum, respectively. 

A. CSVQ performance in the DFT transform domain  

To evaluate the performance of CSVQ in DFT domain, 

three methods are compared: the split matrix quantization 

(SMQ), the multi-stage matrix quantization (MSMQ) and 

the CSVQ. In SMQ, 8 consecutive speech frames provide 

a LSP matrix (SMQ-8), the matrix is split up into 4 

submatrices, and each submatrix is quantized with 8 bits. 

In MSMQ, the LSPs from 8 successive frames are 

gathered up to form a matrix (MSMQ-8), which is 

quantized with four stage codebook of 256, 256, 256, 256 

levels, respectively. In CSVQ, the LSPs from 8 and 10 

consecutive frames are grouped into a high dimensional 

vector, denoted as CSVQ-8 and CSVQ-10, respectively. 

The 40 dimensional measurements is split up into 4 

subvectors, each subvector is quantized with 10 bits. The 

quantization results are given in table I. 

TABLE I. COMPARISON OF THE SD PERFORMANCE 

Outliers (in %) Quantization 
scheme 

Bits/frame 
AV. SD 
(in dB) 2-4 dB > 4 dB 

SMQ-8 4 3.4661 66.26 25.61 

MSMQ-8 4 3.3408 67.15 24.46 

CSVQ-8 5 3.1757 56.34 22.87 

CSVQ-10 4 3.2752 58.29 24.36 

 

As can be seen, in the DFT domain, the CSVQ-8 

provides an average SD value of 3.1757 dB, which is 

smaller than SMQ-8 and MSMQ-8, the average reduction 

of AV.SD is up to 0.23 dB, and the percentage of outlier 

is smallest among all the quantization schemes. CSVQ-10 

gives an average SD value of 3.2752 dB, which is slightly 

higher than CSVQ-8, the reason is that the reconstruction 

error becomes higher with the dimension of LSP 

parameters increases while at the same sparsity.  

Fig.4 illustrates the original LSP parameters and the 

quantized results obtained by CSVQ, we can see that 

quantized value matched with the original signal quite 

well. 
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Figure 4. Comparison of original and quantized LSPs in DFT domain 
(L=8, k=10) (a) A superframe LSPs; (b) Trajectories of LSPs 

 

Although the CSVQ performance of the DFT domain 

is better than the matrix quantization scheme, it is 

necessary to point out that the average SD value is still 

over 3.0 dB when the quantization rate below 250bps. 

However, if we find a sparser domain than the DFT, the 

CSVQ performance can be further improved. In the next 

section, we will see the transparent quantization 

performance can be achieved while in the KLT domain. 

B. CSVQ performance in the KLT transform domain 

In the KLT domain, the proposed CSVQ approach is 

simulated for different values of L (1-6) and quantization 

bits (16-30). No matter how many successive frames are 

gathered up, there are only 8 measurements need to be 

quantized. In CSVQ, the 8 measurements are always 

quantized using the SVQ method, which are split up into 

2 subvectors, and each subvector is quantized with 8 to 

15 bits. 

The spectral distortion and outlier results for the 

CSVQ are shown in Figs. 5 and 6. For the transparent 

quantization performance, a single frame of CSVQ needs 

24 bits, which is comparable with the SVQ [5]. However, 

an increase of L from 2 to 3, the CSVQ totally needs 24 

bits, i.e. with L=2 and L=3, the CSVQ operates 

transparently at 12 bits/frame and 8 bits/frame 

respectively. Whereas a further increase to L=4 totally 
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needs 26 bits (6 bits/frame), L=5 totally needs 28 bits (5.6 

bits/frame) and L=6 totally needs 30 bits (5 bits/frame). 

As can be expected, the total quantization bits used for 

transparent performance are increased with the L increase, 

the reason for this correlation is that the reconstruction 

error of CS becomes higher with the dimension of LSP 

parameters increase while at the same sparsity. 
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Figure 5. The Average Spectral Distortion of CSVQ in KLT domain 
 

0

3

6

9

12

15

18

21

24

18 20 22 24 26 28 30
Bits

O
u

tl
ie

rs
 [

2
-4

dB
] 

%

K=2,L=1
K=2,L=2
K=2,L=3
K=2,L=4
K=2,L=5
K=2,L=6

 
Figure 6. Outlier performance of CSVQ in KLT domain 

 

Table II shows the detail SD performance. According 

to the test results, when we consider the average and 

outlying SD performance, we can see that the 

performance of the combination from 24 bits/frame to 5 

bits/frame is comparable to each other. As the number of 

successive frames L increase, the bits used for per frame 

decrease. There are good intuitive reasons to believe that 

increasing the value of L will lead to improved 

investigation of the potential of the compressed sensing. 

However, if a further increase to L=7, the CSVQ can 

obtain a SD very near 1 dB at a rate of 34/7 bits/frame 

with a low percentage of outliers. However, at 34 bits, the 

codebook storage and search complexity are too high to 

acceptable. 

To show the benefit of CSVQ in the KLT domain, 

comparing the results of CSVQ with other methods. For 

transparent quantization performance, the traditional 

SVQ needs 24 bits/frame [5], the MSVQ needs 22 

bits/frame [6], the MSMQ needs 18 bits/frame [9]. 

However, in CSVQ, it is only used 5 bits/frame, the 

drastic bits reduction is achieved compared to other 

methods. 

TABLE Ⅱ. THE SD PERFORMANCE IN KLT DOMAIN 

Outliers (%) Quantization 
scheme 

Bits/frame 
AV.SD 

(dB) 2-4 dB > 4 dB 

SVQ 24 1.0320 3.30 0.03 

MSVQ 22 1.0400 3.54 0.04 

MSMQ 18 1.1000 3.42 0.05 

CSVQ (L=1)  24 0.9860 3.19 0.03 

CSVQ (L=2) 12 0.9913 3.38 0.07 

CSVQ (L=3) 8 0.9584 3.06 0.36 

CSVQ (L=4) 6 1.1005 3.10 0.34 

CSVQ (L=5) 5.6 0.9905 3.31 0.12 

CSVQ (L=6) 5 1.1090 3.64 0.21 

 

In particular, we notice that there are two main factors 

involved in CSVQ that influence the spectral distortion, 

one is the reconstruction error of the CS, and the other is 

the quantization distortion of the measurements. However, 

the reconstruction error in the KLT domain is far less 

than the quantization distortion. Increasing the number of 

measurements can definitely reduce the reconstruction 

error, however, with a cost of increased storage 

requirements and search complexity. Taking L=7 as a 

practical example, when k=2, after CS, there are 8 

measurements, with 28 bits for quantization, the AV.SD 

is 2.0306 dB. While k=3, there are 12 measurements, 

with 28 bits for quantization, the AV.SD is 1.6199 dB. 

The two combinations are uniformly quantized with the 

same bits, the higher k leads to a smaller SD however at 

expense of increasing complexity. 

C. Codebook storage and search complexity 

Table III illustrates the codebook storage and search 

complexity in different CSVQ configurations. Assume 

that the CSVQ has m subvectors, each subvector with n 

measurements is quantized using j bits, thus the total 

number of codebook elements is equal to m×2j×n. The 

search complexity is defined as the number of arithmetic 

operations to obtain the quantized measurements [6], 

which is typically presented on the logarithmic scale.  

As shown in table III, the simulation results clearly 

show that the CSVQ complexity characteristics are 

directly proportional to the storage requirements. The 

better performance is achieved however at the expense of 
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slightly increasing the storage requirements and search 

complexity. Meanwhile, the increase in storage and 

complexity should pose no problems with the modern 

DSP processor. 

TABLE Ⅲ. CODEBOOK STORAGE AND SEARCH COMPLEXITY 

Quantizer 
Codebook storage 

(KWords) 
Search complexity 

(MIPS) 

Traditional quantization methods 

SVQ 40.9600 16.9069 

MSVQ 51.2000 17.1087 

SMQ-8 20.4800 15.9100 

MSMQ-8 81.9200 18.7200 

CSVQ in the DFT transform domain 

CSVQ-8 40.9600 17.0500 

CSVQ-10 40.9600 17.0800 

CSVQ in the KLT transform domain 

CSVQ (L=1) 32.7680 16.5850 

CSVQ (L=2) 32.7680 16.5850 

CSVQ (L=3) 32.7680 16.5850 

CSVQ (L=4) 65.5360 17.5850 

CSVQ (L=5) 131.072 18.5850 

CSVQ (L=6) 262.144 19.5850 

 

VI CONCLUSION 

In this paper, we have presented a novel and efficient 
quantization scheme for quantizing the LSP parameters at 
low bit rates. This is the first time the ideas of 
compressed sensing are applied to represent the LSP 
parameters. The proposed technique involves 
dimensional reduction and quantizer design two parts. 
Simulation results show that the proposed CSVQ can 
give better performance compared with conventional 
Matrix Quantization schemes in the DFT domain. 
Furthermore, in the KLT domain, the scheme can obtain 
transparent quantization performance at 5 bits/frame with 
realistic codebook storage and search complexity. 
Meanwhile, the performance can be further improved by 
finding more accurate ways to reconstruct the LSP 
parameters or quantizing the measurements more 
efficiently. 
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