
I.J. Information Technology and Computer Science, 2018, 7, 61-70
Published Online July 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.07.07

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

A study and Performance Comparison of

MapReduce and Apache Spark on Twitter Data

on Hadoop Cluster

Md. Nowraj Farhan
Department of Computer Science & Engineering, University of Liberal Arts Bangladesh, Dhaka, 1209, Bangladesh

E-mail: nowraj.farhan@gmail.com

Md. Ahsan Habib and Md. Arshad Ali
Faculty of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University,

Dinajpur, 5200, Bangladesh

E-mail: {ahsan.habib, arshad}@hstu.ac.bd

Received: 17 March 2018; Accepted: 20 June 2018; Published: 08 July 2018

Abstract—We explore Apache Spark, the newest tool to

analyze big data, which lets programmers perform in-

memory computation on large data sets in a fault tolerant

manner. MapReduce is a high-performance distributed

BigData programming framework which is highly

preferred by most big data analysts and is out there for a

long time with a very good documentation. The purpose

of this project was to compare the scalability of open-

source distributed data management systems like Apache

Hadoop for small and medium data sets and to compare

it’s performance against the Apache Spark, which is a

scalable distributed in-memory data processing engine.

To do this comparison some experiments were executed

on data sets of size ranging from 5GB to 43GB, on both

single machine and on a Hadoop cluster. The results

show that the cluster outperforms the computation of a

single machine by a huge range. Apache Spark

outperforms MapReduce by a dramatic margin, and as the

data grows Spark becomes more reliable and fault

tolerant. We also got an interesting result that, with the

increase of the number of blocks on the Hadoop

Distributed File System, also increases the run-time of

both the MapReduce and Spark programs and even in this

case, Spark performs far more better than MapReduce.

This demonstrates Spark as a possible replacement of

MapReduce in the near future.

Index Terms—Big data, Hadoop, Java Virtual Machine

(JVM), MapReduce, Supervised Learning, Apache Spark.

I. INTRODUCTION

Due to the current advent of new technologies, mobile

devices, and communication media like social

networking sites, the amount of data produced every year

is growing at an enormous rate and the growth of this rate

is also increasing beyond our imagination. Although the

amount of data is increasing day by day, most of these

data remain unused which can be stored and analyzed for

BI to develop new business strategies [1], [12].

As we know, in the modern world, one of the main

media of communications is the social networking sites,

like Facebook and Twitter, which are so popular and

widely used that sometimes we get current news of the

world through these sites before any other media. The

wide use of these media has made them one of the largest

sources of data and one of the most reliable sources of

data mining [2]. But, it is actually more or less impossible

to store these huge data sets in RDMBSs like MySQL, as

there is no specific formats of the data and can be in

either text or image formats.

Here comes the power of Big data technologies, which

are important in providing more accurate analysis and

which may lead to more concrete decision-making

resulting in greater operational efficiencies. But before

analyzing, we need to capture and store these data. To

harness the power of big data, we would require an

infrastructure that can manage and process huge volumes

of structured and unstructured data in real-time and can

protect data privacy and security.

Big data technologies like Apache Hadoop, Apache

Flume, and Apache Spark have given us the power to

capture, store and analyze this huge amount of data in

very efficient and less costly ways. By using these

technologies, it is now very easy to process data coming

from sources like Twitter and getting the information we

want.

II. BACKGROUND

This section briefly describes the ecosystems of the

Big Data infrastructure Apache Hadoop including

Hadoop file system, and MapReduce programming

model. An Apache data streaming technology that sinks

data stream to Hadoop file system, called Apache Flume,

is discussed. At last, but not least, Apache Spark, which

62 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

is a powerful in-memory distributed processing engine, is

described. These are among other existing Apache

Hadoop solutions. [11]

A. Relational Database Management System

A relational database is the most popular database

model that is used for the storage of relatively small to

medium size data and for the access of data using real-

time queries. In a relational database, data is organized in

tables whose fields are represented as columns and

records are represented as rows. A Relational Database

Management System (RDBMS) is a system which

controls the storage, retrieval, insertion, deletion,

modification and security of data in the relational

database.

MySQL, especially the Community Edition, is the

world’s most popular, free, open source and easy-to-use

RDBMS implementation. MySQL supports many DBMS

features like replication, partitioning, views, MySQL

workbench for visual modeling, and also supports

features like MySQL connectors for writing applications

using different programming languages. MySQL is used

by many small to large organizations like Facebook,

Twitter, Google and many more to power up their high

volume websites. [4]

A typical MySQL deployment includes a server

instance to be installed on a single, high-end server

machine which accepts queries from local machines or

remote hosts. But the problem with it is that data in the

database is limited to the storage of the hard drives of the

server, and as the data grows, it is needed to increase the

number of hard drives, making it costly and more

importantly less scalable. That is why with the growth of

data this model fails and a DBMS with distributed

storage system needs to be deployed.

B. Big Data Analytics

While the MySQL database was designed and vastly

used for real-time queries on relatively small and medium

data sets, it was not designed for large data sets or Big

data analysis, because of the limited capacity of the

storage mechanism and the underlying write-optimized

“row-store” architecture.

Parallel DBMSs share the same capabilities as

traditional, but run on a cluster where the distribution of

data is transparent to the end user. Parallel DBMS offers

high performance and reliability but much more

expensive than traditional single-node RDBMS, because

there is no freely available implementation, and yet they

have much higher cost in terms of hardware, installation,

and configuration. [4], [13].

C. Apache Hadoop

One solution to the above problem with traditional

RDBMS is Apache Hadoop. Unlike MySQL, Hadoop can

be deployed on a cluster of low-end systems, containing

only commodity hardware, providing a cost-effective

solution for Big data analysis. [4]

Apache Hadoop is a free, Java-based programming

framework which supports the processing of large data

sets in a distributed computing environment. Hadoop is

designed to scale up from single servers to thousands of

machines, each offering it’s local storage to make an

overlay of single storage and offering local computation

to make a distributed processing. Such platforms are

extremely fault tolerant. [2]

Hadoop is not a single entity, rather contains different

components. Two main components of Apache Hadoop is

HDFS and MapReduce.

Fig.1. Top level view of a typical Hadoop Cluster

a. Hadoop Distributed File System

Hadoop File System was developed using distributed

file system design. It runs on commodity hardware.

Unlike other distributed systems, HDFS is highly fault-

tolerant and designed using low-cost hardware.

HDFS holds a very large amount of data and provides

easier access. To store such huge data, the files are stored

on multiple machines in a redundant fashion to rescue the

system from possible data losses in case of failure. HDFS

also makes applications available parallel processing.

HDFS is written in the Java programming language.

An HDFS cluster operates in a master-slave pattern,

consisting of a master node or the NameNode and any

number of slave nodes or DataNodes. The NameNode is

responsible for managing the file system tree, the

metadata for all the files and directories stored in the tree,

and the locations of all blocks stored on the DataNodes.

DataNodes are responsible for storing and retrieving

blocks when the NameNode or clients request them.

Fig.2. HDFS Architecture

 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster 63

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

b. MapReduce

MapReduce [9] is a programming model on top of

HDFS for processing and generating large data sets using

the MapReduce programming paradigm. It was

developed as an abstraction of the map and reduce

primitives of many functional languages and was

designed to compute the large volume of distributed data

in a parallel fashion. The abstraction of parallelization,

fault tolerance and data distribution allows the user to

parallelize large computations easily. The map and

reduce model works well for Big Data analysis because it

is inherently parallel and can easily handle data-set

spanning across multiple machines [14].

Each MapReduce program runs in two main phases:

the map phase followed by the reduce phase. The

programmer simply defines the functions for the map and

reduce phase and Hadoop handles the data aggregations,

sorting and message passing between nodes. There can be

multiple maps and reduce phase on a single program with

possible dependencies between them. [5]

c. Map Phase

The input to the map phase is the raw data. A map

function should prepare the data for input to the reducer

by mapping the key to the value for each “line” of input.

The key-value pairs output by the map function is sorted

and grouped by key before being sent to the reduce phase.

Fig.3. Map Phase

d. Reduce Phase

This stage is the combination of the Shuffle stage and

the Reduce stage. The input to the reduce phase is the

output from the map phase, where the value is an iterable

list of the values with matching keys. The reduce function

should iterate through the list and perform some

operation on the data. Its job is to process the data that

comes from the mapper end. After processing, it produces

a new set of output, which is then stored in HDFS.

Fig.4. Combiner Phase

Fig.5. Reduce Phase

D. Apache Flume

Apache Flume is a distributed, reliable, and available

service for efficiently collecting, aggregating, and

moving large amounts of streaming data into HDFS. It

has a simple and flexible architecture based on streaming

data flows, and is robust and fault tolerant with tunable

reliability mechanisms for fail over and recovery. It uses

a simple extensible data model that allows for online

analytic application.

Fig.6. Flume Architecture

A Flume event is defined as a unit of data flow having

a byte payload and an optional set of string attributes. A

Flume agent is a Java Virtual Machine (JVM) process

that hosts the components through which events flow

from an external source to the next destination (hop). A

Flume source consumes events delivered to it by an

external source like a web server. The external source

sends events to Flume in a format that is recognized by

64 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

the target Flume source. When a Flume source receives

an event, it stores it into one or more channels. The

channel is a passive store that keeps the event until it’s

consumed by a Flume sink. The sink removes the event

from the channel and puts it into an external repository

like HDFS or forwards it to the Flume source of the next

Flume agent (next hop) in the flow. The source and sink

within the given agent run asynchronously with the

events staged in the channel.

The events are staged in a channel on each agent and

then delivered to the next agent or terminal repository

(like HDFS) in the flow and removed from a channel

only after they are stored in the channel of next agent or

in the terminal repository. This is how the single-hop

message delivery semantics in Flume provide end-to-end

reliability of the flow. Flume uses a transactional

approach to guarantee the reliable delivery of the events.

E. Apache Spark

Apache Spark is a powerful open source processing

engine built around speed, ease of use, and sophisticated

analytics. The spark engine runs in a variety of

environments, from cloud services to Hadoop Clusters.

Spark supports a variety of popular development

languages including Java, Python and Scala.

Apache Spark provides an elegant, attractive

development API and allows data workers to rapidly

iterate over data via machine learning and other data

science techniques that require fast, in-memory data

processing. Spark is 10-100 times faster than MapReduce

delivering faster time to insight on more data, resulting in

better business decisions and user outcomes.

Spark requires a cluster manager and a distributed

storage system. For cluster management, Spark supports

standalone, Hadoop YARN or Apache Mesos. Spark can

interface with a wide variety of distributed storages,

including HDFS, Cassandra, OpenStack Swift, and

Amazon S3.

Spark has two key concepts: Resilient Distributed

Dataset (RDD) and directed acyclic graph (DAG)

execution engine.

a. Resilient Distributed Dataset (RDD)

RDD is a distributed memory abstraction. It allows in-

memory computation on large distributed clusters with

high fault-tolerance. Spark has two types of RDDs:

parallelized collections that are based on existing

programming collections (like list, map, etc.) and files

stored on HDFS. RDD performs two kinds of operations:

transformations and actions. Transformations create new

datasets from the input or existing RDD (e.g. map or

filter), and actions return a value after executing

calculations on the dataset (e.g. reduce, collect, count,

saveAsTextFile, etc.). Transformations are the lazy

operation that define only the new RDD while actions

perform the actual computation and calculate the result or

write to the external storage.

Directed acyclic graph (DAG) execution engine:

Whenever the user runs an action on RDD, a directed

acyclic graph is generated considering all the

transformation dependencies. This eliminates the

traditional MapReduce multi-stage execution model and

also improves the performance.

III. RELATED WORKS

A. Text Mining

“Sifting through vast collections of unstructured or

semi structured data beyond the reach of data mining

tools, text mining tracks information sources, link

isolated concepts in distant documents, maps

relationships between activities, and helps answer

questions.” [6]

Text mining is a mechanism to find meaningful

information from large amount of structured, semi-

structured or unstructured text data. This encompasses the

combination of human linguistic capacity and

computational power of computers. The linguistic

capacity includes the ability to differentiate variations in

spelling, filter out noisy data, and understand

abbreviation, synonyms etc. and finding the contextual

meaning. The computational power of computers include

the ability to process large amount of data at high speed.

Some applications of text mining are: classification,

clustering, information gathering etc. there are several

types of algorithm for text mining, which can be

categorized into two types: supervised learning and

unsupervised learning. [7]

a. Supervised Learning

Supervised learning is a technique where the learning

process is supervised by correct data before any

prediction is made on the target data. It consists of

finding the relationship between the predictor and the

target attribute. If the algorithm can predict a categorical

value, then it is called a classification function. If the

algorithm can predict a numerical value, then it is called

regression.

b. Unsupervised Learning

Unlike the supervised learning this technique doesn't

require training to yield output. It only uses the predictor

attribute values to gain understanding of the structure and

relationship of the data. Finding the number of market

segments, determining the themes of news etc. can be

examples of unsupervised learning. Algorithms under

unsupervised learning are feature extraction, clustering

etc.

c. Document clustering

Document clustering can be defined as clustering of

documents. Clustering is a process of understanding the

similarity and dissimilarity between the given objects.

Another way to look at clustering is, dividing objects into

different meaningful subgroups based on their category,

more specifically containing common characteristics.

There are various clustering, which can be used to the

purpose of document clustering. One of the most popular

 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster 65

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

clustering algorithm is the K-Means algorithm, which is

often used to cluster large amount of data, even inside

HDFS very efficiently. [8]

B. Hadoop Cluster Setup

Before working with big data, it is important to setup a

Hadoop cluster, because the right resources allow to

optimize the environment for the working purposes.

However, it is not a simple task as optimizing a

distributed environment and its related software can have

its complexities.

Hadoop cluster has two types of machines:

 Master: Contains the HDFS NameNode, the

MapReduce JobTracker

 Slave: Contains the HDFS Datanodes, the

MapReduce TaskTrackers

There are several companies which provides platforms

for setting up Hadoop in an efficient way and has very

good monitoring system. One of which is Hortonworks,

which lets users to setup Hadoop using Hortonworks

Data Platform (HDP). Hortonworks recommends setting

up master and slaves on separate computers as the master

may be decommissioned from the cluster very often for

maintenance and the slaves need to maintain a flawless

workload without interrupting the master.

As Hortonworks suggests, cluster of three or more

nodes should have a dedicated NameNode/JobTracker

and the rest of the nodes should be used as slave nodes.

For a NameNode failure, it is suggested to keep a

secondary NameNode, which will hold all the

information the NameNode has. That leaves the

remaining hosts for Slave nodes, each running a

DataNode and TaskTracker. [13]

C. Extracting Twitter Data

Recently, companies have discovered that social media

analytics is crucial, especially for customer feedback and

building goodwill. The analytics allow marketers to

identify sentiment and detect trends in order to better

accommodate the customer. There have been significant

examples where companies, such as the airline industry,

have used such analytical tools to reach customers based

on feedback received. [3]

Tweets are the most up to date data information of

current events. But they are also fragmented and noisy,

motivating the need for systems that can extract,

aggregate and categorize important events. There are

many ways to extract tweets from twitter. TWICAL was

the very first open-domain event-extraction and

categorization system for twitter [14]. Programming

languages like Java and Python can also be used to

extract data from twitter, but has many drawbacks. The

current and one of the most used techniques for retrieving

tweets from twitter is to use the twitter API. And to use

twitter API most efficiently it is better to use it with

Hadoop and its ecosystems. For getting raw data from

twitter using Hadoop streaming tool like Apache Flume is

very flexible, reliable and fault tolerant [8]. Apache

Flume needs initial configuration and define what type of

data should be streamed from twitter. After that Flume

will be able to stream data from twitter to the desired

storage uninterruptedly [15].

IV. RESEARCH METHODOLOGY

Conducting this project was a combination of multiple

steps. First of all a few research papers, journals and on-

line articles were read to get the idea of what has already

been done and what to do to make the project more

interesting. The second step was to setup the server on a

single node cluster with a small dataset to test the system.

Then for the final approach, a large cluster was setup and

a large dataset was uploaded from twitter into the cluster

and few other steps were done for analyzing the data and

get the output.

A. Descriptive Methodology

Big data, as a new feature in the fields of technology,

still doesn't have that much work done on this. Although

there are research activities in Big Data acquisition,

storage, and processing, the knowledge of this domain is

not properly spread among common people, and assumed

that only software industry giants talk about this domain.

After an initial field survey it was found that in

Bangladesh very few companies work on big data, and

those who are working with these are also struggling to

find the proper solution to problems caused during the

continuation of their projects.

Internet, the source of all information, has also quite a

few good documentation of how to work with big data

technologies step by step, from where to retrieve data,

how to retrieve those data and so on. But the problem

with those documentations is that they vary from version

to version of different big data technologies like Apache

Hadoop, and solution to a problem that works on a

version of Apache Hadoop doesn't work with other

versions.

A number of research papers, on-line articles and

previous projects on different topics were reviewed to

come up with an appropriate solution of how to dominate

over the problems of different versions of big data

technologies, although it was not a complete success, it

paved the way to complete the project. After that it was

time to find a way to collect the large amount of data and

to work on that data find our answers.

B. Applied Methodology

The main aim of this project is to surf the areas of

different big data technologies to find out an easy and

efficient way to store huge amount of data, analyze those

data to find the most tweeted programming languages

andcompare the efficiency of different big data

technologies. BigData performance measurement is quite

challenges due to three V (volume, velocity, and variety).

Performance challenges - due to volume includes

scalability, and impact on networking, due to velocity

includes access latency, and response time, due to variety

66 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

includes various types of data format [10]. In our study,

we concentrate on the volume related issues only.

a. Environment Setup

First of all, we setup Hadoop and Spark on a single

machine for testing purposes. But, to provide fair and

controlled environment for our analysis we needed to

setup Hadoop and Spark on a distributed cluster.

We installed Hadoop using Hortonworks Ambari

Server on a “seven node” cluster, where the Ambari

Server was installed on a single machine to monitor the

overall cluster operations. Hadoop was installed on the

master node of the Ambari Server, and rest of the

machines were kept as Datanodes.

Hadoop version 2.6.0 was used running on Java 1.8.0

which includes both the HDFS and MapReduce in

distributed configurations. First, we configured the HDFS

NameNode and MapReduce JobTracker on the Ambari

master node along with five Datanodes as HDFS

Datanodes and MapReduce TaskTrackers. One important

thing to mention here was that, two nodes on the cluster,

the one with the Ambari Server and another one which

was used as NameNode, did not add computing power for

MapReduce or Spark in this experiment. The first one

was used just for monitoring purposes and the second one

was the NameNode, whose only purpose was to maintain

the file system tree, the meta data for directories in the

tree, and the DataNodes on which all the blocks for a

given file were located.

We left the default replication factor of three per block,

and the number of map tasks and reduce tasks were also

kept as default, means that MapReduce will set the

number of map tasks and reduce tasks based on the

number of blocks on HDFS.

We installed Apache Spark version 1.3.0 and

configured it to run on the same HDFS described above.

b. Data Retrieving and Storage

Now that the environment setup was complete, it was

time to retrieve data from twitter and start analyzing

those data. For the purpose of this project, Tweepy

library of the python programming language was chosen,

as it gives an easy way to retrieve data from twitter and

store them in our local storage. But, to retrieve data from

twitter we first need to create a “Twitter App” using the

Twitter Application Management System. After that

some secret codes, access token, access secrete were

provided to retrieve the necessary data from twitter. A

python program was written to extract data from twitter

into our local storage. When the program was executed it

automatically retrieved data from twitter based on the

filtering mechanism mentioned inside the code. The

retrieved data was written as JSON format into a text file.

The problem with the above mentioned technique was

that, it was a very slow process and it did not have any

proper way to handle exceptions, like automatic

disconnection while getting data. And we had to restart

the program to retrieve data again. Another problem was

that, we needed to write our data to a new file as the old

one grows to a size of one gigabyte. Due to these

problems, it was very hectic job to get data continuously

as we had to monitor the retrieval flow of data all the

time, in case it disconnects from the Internet or it needed

a new file to write data on. Another huge problem with

this process was that, we had to copy this huge amount of

file into HDFS manually.

To solve this problem another technique was used,

Apache Flume, which would give us a way to write data

directly into HDFS in a fault tolerant way, meaning that it

will automatically recover from different failures, like

disconnection from the Internet.

Apache Flume is a member of Hadoop framework

which is used to retrieve data from the Internet directly to

HDFS and is very reliable and fault tolerant as it can

handle different problems like the ones mentioned above.

There are many ways to stream on-line data into HDFS

using Flume either by writing a program or creating a

Flume configuration file. We used the second method to

stream twitter data into HDFS. We needed to use the

secret codes which we got after creating the Twitter App.

A configuration file was created with information like

how we wanted to retrieve data and how to filter those

data to only get the relevant information from twitter.

After running Flume for about a week we had enough

data to analyze them.

c. Analyze Data with MapReduce

Now that we had a reasonable amount of data on

HDFS it was time to analyze them. Various tools are

available to analyze big data. Our first choice was

MapReduce, which is a Hadoop component to analyze

big data using Java programming language.

The files uploaded in HDFS was in the format of a

JSON file, which contained all the information about a

tweet, for example, user ID of the person who posted the

tweet, timestamps, location and so on. But we only

wanted the text containing the original tweet. That is why,

a simple MapReduce code was written using Java, which

would clean the JSON file to erase all the unnecessary

information and only the text was taken. After that it was

quite simple to count the number of tweets containing

different programming languages and the output was

again written back to HDFS. To be more specific, we

used the word count algorithm with a little bit of

modification, which was a simple and easy to understand

way to do the desired job. It was intended to use different

clustering algorithm like K-Means, which would be more

efficient but complex to understand and might fail in case

of tweets which have different programming languages.

Next it was the time to compare the performance of

how well does MapReduce use the parallelization of the

cluster. So, we manually switched off the slave nodes one

by one and calculated the running time of the MapReduce

program on each steps and draw a graph on that.

d. Analyze Data with Apache Spark

One problem with MapReduce, as discussed above, is

that it is comparatively very slow, and as the data grows

it becomes slower. To solve this, another big data tools

was chosen, Apache Spark, which is supposed to work

 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster 67

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

“10 to 100 times faster than MapReduce” for in memory

processing and 10 times faster for data on disks or HDFS.

First of all we cleaned the JSON files as we did with

MapReduce, and took only the text part of the tweet.

Then we wrote a Spark based Java program to count the

tweets containing different programming languages.

After that we compared the performance of Spark by

reducing the number of slave nodes one by one and

taking notes of the running time of the Spark program

that we wrote to count the tweets. Finally, we drew a

comparison graph based on the results.

e. Performance Comparison

As discussed above, we had analyzed our dataset using

different tools, like MapReduce and Apache Spark. So,

we wanted to compare the performance between two

tools, how well these two stand against each other and

which one should be preferable for the analysis purpose

of big data.

We worked on single node and multi node cluster. Big

data tools like Apache Hadoop, are supposed to work

better on a cluster rather than a single machine. The

larger the cluster the better the performance. So, we also

tried to look at the comparison of how the cluster

outperforms the computation power of a single machine.

V. RESULT AND ANALYSIS

The first goal with this project was to count the number

of tweets related to different programming languages. So,

the first step was to use different big data tools and

generate the desired results. It was chosen to work on

different platforms, to single node and cluster, to different

data sets of different size and to different tools. After that

it was time to run the computation on MapReduce and

Spark on different size of data sets and results are noted

down.

As stated above, we wanted to count the number of

tweets containing different programming languages, it

was done using both MapReduce and Apache Spark.

Then the top four programming languages were picked

that were tweeted by most of the people and drew a graph

based on the result.

Then the running time and other necessary information

of both MapReduce and Apache Spark programs were

calculated, that we executed on our data sets, gathered

from streaming on Twitter using Apache Flume, and

drew a comparison graph on that.

After that the size of our data sets were changed and

the programs were ran again on both MapReduce

program and Spark program. Then the running time of

those programs were calculated and the results were

noted down. The result of the Table 1 is shown

graphically in the Fig. 8. One more thing to notice was

that, by default MapReduce and Spark creates map tasks

based on the number of blocks on HDFS.

Fig.7. Top 4 most tweeted programming languages

So, the more blocks on HDFS the more map tasks the

programs create. So, we ran both MapReduce and Spark

on a 12 gigabytes of HDFS files containing different

blocks, one with 7725 blocks and the other with 396

blocks that means both MapReduce and Spark created

7725 and 396 map tasks for those files.

Table 1. Run-time (minutes) of MapReduce and Apache Spark on

Different size of data.

Data size(GB) Run-time (MapReduce) Run-time (Spark)

5.8 16.1 1.56

12.4 46.53 4.14

43.4 119.53 14.20

And we got a surprising results from the change of the

number of blocks on HDFS.

Fig.8. Run-time of MapReduce and spark on different data sizes

MapReduce took a very long time on the file with too

many blocks, and outperforms itself by a huge range

when the number of blocks was reduced on the same size

of file. Similar result was observed from Spark too, but in

case of Spark the result was not that much different when

we reduced the number of blocks, as we got from

68 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

MapReduce. We can see the result from the table below.

Table 2. Run-time (minutes) of MapReduce and Apache Spark with the
change of number of blocks on data size of 12.4GB.

Blocks
Run-time

(MapReduce)
Run-time (Spark)

7725 46.53 4.14

396 19.48 3.19

Bellow figure displays the results for different map

tasks per DataNode. In this case, we observed that

MapReduce with less map task per DataNode slightly

better performs than more map tasks per DataNode.

Fig.9. Comparison between MapReduce and Spark with the change of
map tasks

Finally, the nodes from the cluster were reduced one

by one and the running time of those programs were

calculated, and the results were noted down.

Table 3. Run-time (minutes) of MapReduce on Different Datanodes on

data size of 12.4GB.

Datanodes Run-time (Minutes)

5 46.53

4 60.06

3 79.19

2 *

1 *

* Unable to perform operation.

The result of the above Table 3 is show in the

following Fig. 10.

Fig.10. Run-time of MapReduce on different nodes

From the above figure it is clear that with reduced

nodes on the cluster the run-time of MapReduce program

also increases and at a point it cannot perform the

computation at all. The reason is that, as explained earlier,

data into HDFS are copied into different nodes as blocks

for increasing fault tolerance, and MapReduce program

could not find the required block and as a result it failed

proceed with the execution. Increasing the replication in

HDFS should have solved this problem.

Table 4. Run-time (minutes) of Apache Spark on Different Datanodes

on data size of 12.4GB.

Datanodes Run-time (Minutes)

5 4.14

4 4.50

3 3.53

2 7.26

1 *

* Unable to perform operation.

The result of the above Table 4 is show in the

following Fig. 11.

Fig.11. Run-time of Spark on different nodes

 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster 69

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

Fig. 11 shows that for computing tasks on three nodes,

Spark performs better than the one with four or five

nodes. The possible reason could be that it needs a lot of

time to search for blocks in HDFS as they are scattered

across all the nodes into the cluster, and with three active

nodes it needed to search on a small cluster and after

finding all the needed data it could execute the program

immediately.

From these results, it is evident that both MapReduce

and Spark works better on distributed mode rather than a

single machine. And the performance of these

frameworks also depend on the number of blocks on

HDFS. So, to get better performance it is better to keep

the number of blocks as less as possible.

It can also be concluded that Spark outperforms

MapReduce by a dramatic range. And as the data size

increases it is even better to use Spark rather than

MapReduce, because the run-time of MapReduce also

grows with the increase of data size due to its inherent

nature of using disk I/O for all the steps of computation.

From the above result it is also noticeable that in case of

node failure Spark is more fault tolerant than MapReduce.

VI. CONCLUSION

This project tried to explore various fields of big data

technologies, like Apache Hadoop, Apache Flume and

Apache Spark. Hadoop can store very large amount of

data in its file system called HDFS in a fault tolerant

manner, and can scale up to any size as needed. Another

Hadoop component, MapReduce, is capable of

processing large data sets in a parallel fashion, and

obviously, in a fault tolerant manner. Another big data

technology, Apache Spark, which is “10 to 100 times

faster than MapReduce”, was one of the main point of

concentration in this project. All of these frameworks

were installed on a cluster and their working

methodology was monitored using Hortonworks Ambari

Server. And finally with the help of some simple

algorithms, MapReduce and Spark programs were written

through which the data sets on HDFS, which were of

different sizes, were analyzed and the performance

between MapReduce and Spark were compared, only to

find out the performance characteristics of Apache Spark

compared to traditional MapReduce approach.

REFERENCES

[1] Marissa Rae Hollingsworth, “Hadoop and Hive as

Scalable Alternatives to RDBMS- A Case Study”, January

2012. Available:

http://scholarworks.boisestate.edu/cs_gradproj/2/.

[Accessed: 21 – Dec – 2017]

[2] Jodi Blomberg, “Twitter and Facebook Analysis: It’s Not

Just for Marketing Anymore”, 2012. Available:

http://support.sas.com/resources/papers/proceedings12/30

9-2012.pdf. [Accessed: 11 – Dec – 2017]

[3] Vora, M.N, “Hadoop-HBase for large-scale data”,

December 2011. Available:

http://ieeexplore.ieee.org/document/6182030/?reload=true.

[Accessed: 1 – Jan - 2018]

[4] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

Franklin, Scott Shenker, Ion Stoica, “Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing'” July 2011. Available:

https://www.usenix.org/node/162809. [Accessed: 23 –

Nov - 2017]

[5] Penchalaiah.C, Sri.G.Murali, Dr.A.SureshBabu,

“Effective Sentiment Analysis on Twitter Data using:

Apache Flume and Hive”. Available:

http://www.ijiset.com/v1s8/IJISET_V1_I8_14.pdf.

[Accessed: 3 – Dec - 2017]

[6] Weiguo Fan, Linda Wallace, Stephanie Rich, Zhongju

Zhang, 'Tapping into the Power of Text Mining' 2005.

Available: https://cacm.acm.org/magazines/2006/9/5835-

tapping-the-power-of-text-mining/abstract. [Accessed: 14

– Jan - 2018]

[7] Dipesh Shrestha, “Text Mining With Lucene And Hadoop:

Document Clustering With Feature Extraction”, 2009.

Available:

https://pdfs.semanticscholar.org/36ce/71c9ff15cc46b32ab

35d30d4b3b1c58cbfc6.pdf. [Accessed:]

[8] Alan Ritter, Mausam, Oren Etzioni. “Open Domain Event

Extraction from Twitter”, 2012. Available:

http://www.cse.iitd.ac.in/~mausam/papers/kdd12.pdf.

[Accessed: 7 – Feb – 2018]

[9] Dean J and Ghemawat S, “MapReduce simplified data

processing on large clusters”, Communications of the

ACM 51:107-113, 2008.

[10] Pankaj Deep Kaur, Amneet Kaur, Sandeep

Kaur,"Performance Analysis in Bigdata", IJITCS, vol.7,

no.11, pp.55-61, 2015. DOI: 10.5815/ijitcs.2015.11.07

[11] Luis Emilio Alvarez-Dionisi,"Toward Grasping the

Dynamic Concept of Big Data", International Journal of

Information Technology and Computer Science(IJITCS),

Vol.8, No.7, pp.8-15, 2016. DOI:

10.5815/ijitcs.2016.07.02

[12] D. Newberry, “The role of small and medium-sized

enterprises in the futures of emerging economies”,

Technical report, World Research Institute, 2006.

Available:

http://earthtrends.wri.org/features/view_feature.php?fid=6

9&theme=5. [Accessed: 5 - March - 2014].

[13] Big Data Working Group, “Big Data Analytics for

Security Intelligence”, Cloud Security Alliance, pp. 1-22,

2013.

[14] Dean, J and Ghemawat, J, “MapReduce: Simplified Data

Processing on Large Clusters”, In the Proceedings of the

6th Symposium on Operating Systems Design and

Implementation, pp. 137-149, 2004.

[15] E. Benson, A. Haghighi, and R. Barzilay, “Event

discovery in social media feeds” Proc. Of the 49th Annual

Meeting of the Association for Computational Linguistics

(ACL), pp. 389-398, 2011.

Authors’ Profiles

Md. Nowraj Farhan received his Bachelor

of Science in Computer Science and

Engineering from University of Liberal

Arts Bangladesh in 2015. He is pursuing

M.Sc in the area of software Engineering/

Information & Communication Systems.

His main research interests include

Software Engineering, Data Mining and

Big Data Analytic.

https://pdfs.semanticscholar.org/36ce/71c9ff15cc46b32ab35d30d4b3b1c58cbfc6.pdf
https://pdfs.semanticscholar.org/36ce/71c9ff15cc46b32ab35d30d4b3b1c58cbfc6.pdf
http://earthtrends.wri.org/features/view_feature.php?fid=69&theme=5
http://earthtrends.wri.org/features/view_feature.php?fid=69&theme=5

70 A Study and Performance Comparison of MapReduce and Apache Spark on Twitter Data on Hadoop Cluster

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 7, 61-70

Md. Ahsan Habib is currently an Assistant

Professor of department of Computer

Science and Engineering in Hajee

Mohammad Danesh Science and

Technology University, Bangladesh. He

received his Master of Engineering in

Information and Communication

Technologies from Asian Institute of

Technology (AIT), Thailand in the year of 2007, and the

Bachelor of Science in Computer Science and Engineering

(CSE) from Shahjalal University of Science and Technology

(SUST), Sylhet-3114, Bangladesh in the year of 2003. In his

academic career, he served as a faculty member of Computer

Science & Engineering in several universities in Bangladesh

including Asian University of Bangladesh, and University of

Liberal Arts Bangladesh. Besides this, he was active in the

software development industry in home (CTO in G5-

Technologies Ltd., Bangladesh) and abroad (as a Senior

Software Engineer in iSoftel – Thailand Co. Ltd., and as a

Software Development Manager in Mobile-Technologies Ltd.

in Thailand). His research interest lies in the area of Machine

Learning, Data Mining, Big Data Analytics, and Computer

Security. He is a member of IEEE.

Md. Arshad Ali was born in 1986. He

received the Master of Engineering from

Okayama University, Japan in 2018. He

worked as an assistant professor in Hajee

Mohammad Danesh Science and

Technology University (HSTU), Bangladesh.

Currently, he is pursuing his Ph.D. in the

field of information security and

cryptography at Okayama University, Japan. His research

interest includes information security, AES, pseudo-random

sequence, and homomorphic encryption. He is a member of

IEEE.

How to cite this paper: Nowraj Farhan, Ahsan Habib, Arshad

Ali, "A Study and Performance Comparison of MapReduce and

Apache Spark on Twitter Data on Hadoop Cluster",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.10, No.7, pp.61-70, 2018. DOI:

10.5815/ijitcs.2018.07.07

