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Abstract—A new form of wireless sensor networks is 

emerging as an important component of the Internet of 

Things (IoT) where camera devices are interconnected 

and endowed with an IP address to form visual sensor 

networks. The applications of these networks span from 

smart parking systems in smart cities, video surveillance 

for security systems to healthcare monitoring and many 

others which are emerging from niche areas. The 

management of such sensor networks will require 

meeting a higher quality of service (QoS) constraints 

than demanded from traditional sensor networks. While 

many works have focused only on energy efficiency as a 

way of providing QoS in sensor networks, we consider a 

novel modelling approach where local optimizations 

implemented on the sensor nodes are translated into 

pheromone distribution used in ant colony optimization 

for path computation. We propose a routing protocol 

called the multipath ant colony optimization (MACO) 

that finds QoS-aware routing paths for the sensor 

readings from source nodes to the sink by relying on four 

local parameters: the link cost, the remaining energy of 

neighboring nodes, sensor nodes location information 

and the amount of data a neighbor node is currently 

processing. Finally, we propose an architecture for 

integrating sensor data with the cloud computing. 

Simulation results reveal the relative efficiency of the 

newly proposed approach compared to selected related 

routing protocols in terms of several QoS metrics. These 

include the network energy efficiency, delay and 

throughput. 

 

Index Terms—Sensor nodes, clustering, multipath, 

wireless sensor networks (WSNs), ant colony 

optimization (ACO). 

 

I.  INTRODUCTION 

A traditional wireless sensor network (WSN) consists 

of a set of interconnected autonomous devices called 

“sensor motes” that can jointly measure changes in the 

environmental conditions in an area of interest and report 

to a processing place where decisions are taken about the 

area and/or further processing. Recent improvements in 

camera sensors and wireless communication technologies 

have led to the design of a new type of sensor networks 

called visual sensor networks (VSNs). Building around a 

distributed network of camera sensors, VSNs have 

expanded the range of WSN applications to areas that we 

could not fathom without the advances made by their 

underlying technologies. These include applications in  

smart parking for smart cities, detection and prediction of 

natural calamities, video surveillance for security 

systems such as pipeline monitoring, oil and gas 

exploration, real-time crop monitoring [1-3]. However, in 

contrast to traditional WSNs, VSNs are high bandwidth 

demanding networks which require transmission of   high 

volume of data from camera sensors to sink nodes and/or 

much higher in-network processing and intelligence to 

reduce the amount of data to be transmitted over VSNs 

links. Energy conservation and throughput maximization 

are two important performance parameters upon which 

the quality of service provided and large scale 

deployment of VSNs depends as they are expected to 

remain functional for many years before replacing the 

battery of a sensor node while providing a continuous 

stream of image data continuously. Several approaches 

have been proposed in the literature to minimize sensor 

nodes’ energy consumption [4-7] but only few on VSNs 

throughput maximization. 

A.  The Relevance of Routing Protocol for Wireless 

Sensor Networks 

In large scale WSNs, sensor nodes are distributed far 

from the data center (base station) and therefore use the 

neighboring nodes to relay the data packets towards the 

base station. Routing in WSNs is very important and it is 

different from conventional networks based on the 

following characteristics [8, 9]: In WSNs, the sensor 

nodes have limited capabilities in terms of energy source, 

memory and data processing. Efficient use of resources is 

important. 

Most traffic in WSNs is many-to-one traffic data 

transmission. Data packets are transmitted from sensor 

nodes to the base station.  

Sensor nodes are usually deployed in large numbers 

coupled with the resource constrained; it is difficult to 

uniquely assign individual sensor node an IP address. 
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Routing techniques in WSNs can be broadly grouped 

into two types: single path routing and multipath routing.    

Single path routing is simple and scalable, but not 

efficient for resource constrained WSNs [10]. It is simple 

because paths between source nodes and the destination 

node can be formed in a specific period of time. It is 

scalable because as the number of sensor nodes increases, 

the complexity and the method to establish routes 

between the source nodes and the base station remain the 

same.   

On the other hand, multiple path routing transmits 

copies of the same data along different paths. It addresses 

the load balancing, security and reliability problems of 

the single path routing protocol [8, 11]. In case the 

primary path is unavailable due to congestion or low 

energy of the sensor nodes, an alternate path will be used 

to transmit the data packets to the base station. This 

increases the throughput of a network by sending pieces 

of data packets in parallel over different paths and 

restoring the entire information at the destination   with 

the expectation of achieving better playback delay (the 

maximum delay taken by all the pieces of information to 

arrive at the destination) and minimized on-time packet 

delivery. Many multipath routing techniques have been 

proposed to improve network reliability by setting up 

disjoint paths in the sensor network (node-disjoint paths) 

[12, 13]. These techniques have attractive resilience 

properties but can be energy inefficient since the 

alternate node-disjoint path can be longer and therefore 

expends significantly more energy than that expended on 

the primary path.  Braided multipath routing techniques 

have been proposed to relax the requirement for node 

disjointedness with the expectation of addressing the 

energy issues of node disjoint paths [14]. However, 

braided disjoint multipath routing protocol still builds 

around reliability requirements only, discounting the 

energy efficiency and throughput maximization. Owing 

to their structure, efficiently designed ant colony 

optimization (ACO) techniques provide the potential to 

achieve more efficient routing techniques for WSNs.  

Routing protocols based on the ant colony 

optimization are efficient methods for minimizing energy 

consumption in WSNs. The ants communicate with each 

other by sensing the pheromone density on their paths. 

The idea was inspired by the study of ants’ mode of 

communication when organized into a colony. Dorigo 

and Birattari [15, 16] proposed an artificial algorithm 

based on the behavior of real ants in their colonies. The 

idea comes from observing the ants’ foraging behavior - 

how ants find the shortest paths between the food sources 

and their nest. When searching for food, ants first explore 

the area surrounding their nest in a random manner. 

While moving, ants deposit a chemical substance called 

pheromone on the paths as they are moving, forming 

pheromone trails between the food sources and the nest. 

Thus, when other ants are searching for food, they can 

smell the pheromone deposited on their paths and they 

tend to choose a path marked by strong pheromone 

concentration [17]. Each ant also tries to follow the 

pheromone trail left by the previous ants. Thus, 

increasing the amount of pheromone on the paths would 

continuously cause an increasing positive feedback 

which leads all the ants to a single path as shown in Fig.1. 

More ants will prefer to follow routes with a higher 

pheromone density since shorter routes can be traversed 

faster. In addition, pheromone deposited on the longer 

paths evaporates over time; the negative feedback 

received enables fewer ants to follow these paths. Thus, 

pheromone deposited on the non-optimal (longer) paths 

disappears over time. The ACO model was initially used 

to solve the travelling salesman problem (TSP). Since 

then, the model has been widely studied and improved.  

In this paper, a routing algorithm for WSNs based on 

ACO with special parameters is proposed. The main 

objective of this algorithm is to prolong the network 

lifetime utilization. The proposed protocol is referred to 

as modelling and QoS implementation of wireless sensor 

networks based on the ant colony approach. Our 

approach is different from  [18] other approaches used in 

the literature. First, we consider four parameters to 

achieve energy efficiency in a network: the link cost 

between the two sensor nodes, the remaining energy 

level of a receiver node, sensor node local information 

and the amount of data packets a receiver node is 

currently processing.  

 

 

Fig.1. Ants find the shorter path via pheromone deposits 

B.  Contributions and Outline 

This paper revisits the issue of QoS in WSNs to 

propose a new routing protocol that uses ACO. The 

protocol builds upon a local optimization model which is 

translated into pheromone distribution for an ant colony 

optimization algorithm used to find multiple paths for the 

sensor readings from their points of collection to the data 

center (base station) of a WSN. MACO finds efficient 

routing paths for the sensor readings by relying on four 

local performance parameters at each sensor node: the 

link cost, the remaining energy of nodes, sensor nodes 

location information and the amount of data a 

neighboring node is currently processing. These 

parameters are combined into a mixed metric used to 

define 1) transition probabilities used by an ant located at 

a node to select its relay node to the destination 2) rules 

which ants use to update the pheromone values on the 

paths between the sensor nodes 3) a measure to reduce 

pheromone concentration on the optimal path and 

encourage search for new paths that were formerly non-

optimal through evaporation. Simulation results show 

that the proposed MACO outperforms other ACO 
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algorithms in terms of energy efficiency, delay and 

throughput. 

The rest of this paper is organized as follows: Section 

II presents the related work while the routing problem is 

described in section III. The proposed routing solution is 

presented in section IV. Simulations and results are 

presented in section V. Finally, section VI concludes the 

paper with possible direction of future work. 

 

II.  RELATED WORK 

In recent years, many routing techniques for WSNs 

have been proposed for energy optimization. These 

include tree-based energy-balance routing protocol, 

routing protocol using message success rate and energy 

constrained routing solutions [19-21].  

Multi-objective QoS routing for wireless sensor 

networks (MQoSR) [22]. The authors used geographic 

routing mechanism combined with QoS to transmit data 

packet to the base station. They considered three routing 

metrics: the end-to-end reliability, energy consumption 

and delay in selecting the paths from source node to the 

base station. This approach is energy efficient; it 

minimizes sensor nodes’ energy consumption compared 

to selected protocols in the paper. However, the authors 

did not consider the amount of data a receiver node is 

currently processing before a sender node forwards data 

to it, which may increase the delay if the receiver node 

has more data to process.  

Radi et al [23] proposed an interference-minimized 

multipath routing protocol (IM2PR) to discover a 

sufficient number of interfering paths between a source 

node and the base station in order to provide efficient 

data packets. IM2PR consists of three phases: i) 

initialization phase ii) path establishment phase iii) data 

packet transmission phase. These phases are used to 

regulate the traffic rate of individual paths. This approach 

performs better than the micro sensor multipath routing 

protocol and energy efficient data routing protocol by 

certain higher percentage in terms of energy consumption, 

packet reception ratio, packet delivery latency and good-

put. However, this protocol is designed for a small 

network; the overhead may increase as the size of sensor 

nodes increases to a large network.  

Amgoth and Jana [24] proposed a new energy efficient 

routing algorithm for WSNs. They used clustering 

method to divide the network into different clusters. The 

proposed approach was evaluated through simulation. 

The results showed that the approach saves more energy 

and prolongs network lifetime. However, the authors did 

not consider the fault tolerant and dynamic nature of the 

sensor networks. 

Ehsan Amiri et al [25] proposed an energy efficient 

routing in wireless sensor networks based  on fuzzy ant 

colony optimization called FACOR. The protocol 

combines the foraging behavior of ants with fuzzy logic 

in order for the ants to find optimal routes. In addition, a   

fuzzy inference system was used to determine the route 

quality. The simulation results showed that FACOR 

minimizes sensor nodes’ energy consumption, decreases 

the number of routing request packets and maximizes the 

network lifetime compared to selected routing protocols. 

However, storing large rule-base in sensor networks may 

be impractical due to limited memory of sensor nodes 

because the rule-base in fuzzy logic grows exponentially. 

Energy-aware ant-based routing wireless multihop 

networks (EARA) is proposed in [26]. EARA is an 

extension of ARA [27]. The authors use new 

mechanisms to determine the fitness of a path and energy 

information dissemination in order to extend the network 

lifetime. They consider the residual energy of a sensor 

node in addition to the pheromone value to determine the 

probabilistic routing decision process. The ant agent 

energy value is periodically updated in a sensor node 

routing table. Thus, EARA is more energy efficient than 

ARA protocol. It increases the average network lifetime 

and extends network utilization. However, EARA 

protocol has high overhead per routing data packet.  

An energy efficient ACO-based multiple paths routing 

algorithm (EAMR) [28] is proposed for WSNs. This 

protocol is a hybrid algorithm which uses both reactive 

and proactive routing for path discovery and route 

maintenance. It uses a new multipath mechanism which 

takes into account the energy consumption rate, the 

congestion status of the path, and sensor node hop from 

the base station. In this protocol, pheromone is only 

updated when a sensor node receives a backward ant 

unlike the conventional incremental pheromone. EAMR 

achieves better performance in terms of end-to-end delay, 

energy efficiency and data packet delivery ratio. 

However, EAMP uses proactive as one of the routing 

mechanisms; forward ant may constantly be forwarded 

even when there is no data packet to transmit. There is a 

likelihood to increase the energy consumption of sensor 

nodes.      

Authors in [29] presented a particle swarm 

optimization (PSO) based on routing algorithm to extend 

sensor network lifetime. They developed an algorithm to 

minimize the energy consumption of gateway nodes that 

are nearer to the base station. The proposed method is 

compared to two related algorithms based on the number 

of data packets received at the base station, the standard 

deviation of current energy and the number of dead 

sensor nodes.   

 

III.  ROUTING PROBLEM 

This section is divided into three subsections. In the 

first subsection, network model is discussed. The 

following subsection discusses the radio energy model 

and the third subsection will present the MACO routing 

protocol. 

A.  Network Model 

A sensor network consists of N sensor nodes 

randomly distributed in a sensor field. The network is 

modeled   as an  undirected  graph 𝐺(𝑁, 𝐿), where 𝑁  is a set 

of sensor nodes. Each node 𝑖  has maximum transmission 

radio range with radius 𝑟 meters. 𝐿 is the set of two-way 

edges that link two sensor nodes together such that the 
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nodes  𝑖, 𝑗 ∊ 𝑁 and 𝑖 ≠ 𝑗. It is assumed that sensor nodes 

𝑖 and 𝑗 can communicate with each other if and only if 

the distance between them is less than or equal to 𝑟.  

B.  Radio Energy Model 

Every sensor node in wireless sensor network contains 

a radio communication subsystem consisting of 

transmitter/receiver electronics, antennae and an 

amplifier. In order to calculate the energy dissipated by 

these components, this paper adopts the radio energy 

model presented in [30]. The energy associated with the 

transfer of 𝑞 bits of data packet between a transmitter and 

a receiver node is presented in this model. 

𝐸𝑒𝑙𝑒𝑐 is the energy needed to run the electronics of the 

transmitter/receiver, and 𝐸𝑎𝑚𝑝  is the energy required to 

amplify the transmitted signal. The value of 𝐸𝑎𝑚𝑝 

depends on the distance between the sensor nodes. 

Given a threshold transmission distance 𝑑0 , the free 

space propagation model using parameter ∈𝐹𝑆  is used 

when  𝑑𝑖,𝑗 < 𝑑0 and the two-ray ground reflection model 

using parameter ∈𝑇𝑅  when 𝑑𝑖,𝑗  ≥ 𝑑0 . Using these two 

models, the energy needed to amplify a signal is 

expressed s follows  

 

𝐸𝑎𝑚𝑝 = {
∈𝐹𝑆∗ 𝑑2, if  𝑑𝑖,𝑗 <  𝑑0

∈𝑇𝑅∗ 𝑑4, if  𝑑𝑖,𝑗 ≥  𝑑0

             (1) 

 

where 𝑑0 = (
∈𝐹𝑆

∈𝑇𝑅
)

½

and the values of the parameters ∈𝐹𝑆 

and ∈𝑇𝑅  are set to 10 pJ/bit/m
2
 and 0.0013 pJ/bit/m

4
 

respectively [30]. During network operation, the average 

energy consumption of the sensor network is expressed 

as follows 

 

1

1/ ( )

N
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i

E N E i



                            (2) 

 

where 𝑁  is the number of sensor nodes in a network. 

𝐸∆(𝑖)  represents the difference between the initial and 

final energy of each sensor node, it is expressed as 

follows: 

 

𝐸∆(𝑖) =  𝐸0 − 𝐸𝐹                           (3) 

 

where 𝐸0 and 𝐸𝐹  are the initial and final energy of each 

sensor node respectively. The threshold energy 𝐸𝑇 is 

determined using the remaining energy of neighbouring 

nodes of  𝑖. Thus, 𝐸𝑇 is given by 

 

𝐸𝑇 =  ∑ 𝐸∆(𝑖)
𝑁𝑖
𝑖=1                             (4) 

 

C.  ACO-based Routing Protocol 

The development of the ACO algorithm was inspired 

by the observation of an ant colony. They live in groups 

and their behavior is governed by the goal of colony 

survival rather than being focused on the individual’s 

survival. Ants’ foraging behavior shows how ants 

discover the shortest path between their nest and the food 

source [31]. The concept of natural behavior of ants is 

used in ACO routing algorithms to solve energy problem 

in wireless sensor networks [28, 32]. Different paths can 

be constructed from source nodes to a destination node 

with more data packets dynamically sent on higher 

quality paths, which leads to load balancing among the 

sensor nodes. ACO-based routing algorithms perform 

better than other non-ACO based algorithms based on 

their iterative and proactive behavior.  

 

IV.  THE PROPOSED ROUTING SOLUTION 

The proposed protocol is divided into two phases: 

discovery path phase and data transmission phase. In the 

protocol, when a source node has a data packet for the 

destination node (base station), first it checks to see if the 

path of the next-hop node is contained in its tabu 

(memory). If the path is contained, it transmits directly to 

the next-hop node. However, if the source node does not 

have the information of the next-hop node to the base 

station, it begins a route discovery process by sending an 

advertisement (ADVT) message to all the sensor nodes 

in its surroundings. Each sensor node retransmits the 

message to the neighboring node until all the nodes have 

received the ADVT message. Based on the routing 

method, each sensor node has a routing table in its tabu 

as presented in table 1. 

Table 1. Sensor Node Information 

S

_I
D 

NH_

ID 
𝑆𝑛 

Current        

Energy 

Pheromo

ne  value 

Hop                            

coun
t 

Dist.          

to BS 

Doc

ket 

𝑎 𝑖 1 𝐸𝑐(𝑖) 𝜆𝑖,𝑗 ℎ(𝑖) 𝑑(𝑖, 𝑧) 0 

𝑏 𝑗 2 𝐸𝑐(𝑗) 𝜆𝑗,𝑘 ℎ(𝑗) 𝑑(𝑗, 𝑧) 0 

𝑐 𝑘 3 𝐸𝑐(𝑘) 𝜆𝑘,𝑙 ℎ(𝑘) 𝑑(𝑘, 𝑧) 0 

…

. 
…. N ….. …. …. …. …. 

 

where S_ID denote source nodes identification, NH_ID 

represent neighbor nodes identification. Each sensor 

node is assigned a unique serial number Sn while the 

source node is initialized to zero. The number is 

incremented by 1 based on the distance of a node from its 

source node.  E
c
 is the current energy of a sensor node, 

λi,j  is the amount of pheromone value on the link between 

nodes i  and j. Initially, the pheromone value in the 

network is the same. Thus, as an ant traverses the 

network, the pheromone value continues to change. h(i) 

indicates the path length from node i to the base station. 

d(i,z)  is the distance of a node to the base station. The 

optimal path is determined based on the quality of 

pheromone on the path between a node and the base 

station. Finally, docket contains information about the 

number of ants that have visited a sensor node. It is 

initialized to zero, if   docket = 1, it shows the current 

node has been visited by an ant.  

The protocol uses two types of ants: search ants (SA) 

and backward ants (BA).  SA travel from source nodes to 

a destination node, gathering information about the 
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neighboring nodes and new paths as they are traversing 

along the paths. Similarly, the BA travel back from a 

destination node to the source nodes over the recorded 

paths that the SA travelled to update the information in 

each node as they traverse. Backward ants are created in 

order to prevent premature convergence of search ants on 

the constructed paths. It is assumed that the number of 

SA is equal to the number of source nodes; they are used 

to find paths from the source nodes to the destination 

node. A source node that wants to forward data to the 

destination node launches a SA and sends to the next 

node. When a neighboring node receives a SA, it checks 

its tabu if SA information is previously stored. If yes, the 

SA is discarded; otherwise, the sensor node saves the 

routing information of the SA, updates its tabu using the 

information in table 1 and forwards the SA to the next 

hop node. Other sensor nodes in the network that receive 

the SA likewise update their tabu and forward the SA to 

the next neighboring nodes until all the search ants get to 

the destination node. In the proposed approach, each 

visited sensor node is not saved in the memory of the 

search ant, instead the search ant saves the information of 

the last two visited sensor nodes only. This approach can 

minimize the amount of the data packets to be 

transmitted and saves energy.  Moreover, a sensor node 

cannot just select another node as its next hop node, the 

process of selecting a reliable next-hop node is presented 

in section 4.1.  Moreover, once a SA reached the 

destination, a new packet BA is created. The destination 

node will forward the BA to the source nodes along the 

paths travelled by the SA. Message format for both 

search and backward ants is shown in table 2. 
Table 2. Message Format for the MACO Ants 

Message format: P_ID NH_ID S_K 𝐸𝑚𝑖𝑛 𝐸𝑠𝑢𝑚 Hop count (𝐻𝑝) L(t) 

 

where P_ID represents the previous sensor node 

identification, NH_ID is the next neighboring node 

identification. S_K is the sequence number of the search 

ant, 𝐸𝑚𝑖𝑛  is the minimum current energy of the sensor 

nodes in the route. 𝐸𝑠𝑢𝑚 is the sum of the current energy 

of the sensor nodes in the route. Hop count (𝐻𝑝) is the 

path length between a source node and the current node 

for a SA or the path length between the destination and 

the current node for a BA. L(t) is called time-to-live, it 

gives the number of hops that a SA can travel before it is 

discarded. If the value of L(t) decreases to zero before a 

SA reaches the base station, its message is discarded. In 

order to balance energy consumption among the sensor 

nodes and extend the network lifetime utilization, we 

modify the ACO transition probability equations and 

present them as follows. 

A.  Path Selection Procedure 

Unlike conventional ACO based approaches, MACO 

adopts a controlled neighbor broadcast scheme in path 

discovery to prevent flooding the network with search 

ants. Paths are selected based on probability. A sensor 

node 𝑖 will select sensor node 𝑗 as a relay node based on 

probability value  𝑃𝑟(𝑖, 𝑗, 𝑡).  The value determines the 

probability of selecting from candidate lists a node 𝑗 as a 

relay node. The probability is expressed as follows  

 

𝑃𝑟(𝑖, 𝑗, 𝑡) =

{

[𝜔𝑖,𝑗(𝑡)]
𝛼1

∗[𝜉𝑖,𝑗
(𝑡)]

𝛼2
∗[Π𝑖,𝑗(𝑡)]

𝛼3
∗[ф𝑗

(𝑡)]
𝛼4

  

∑ [𝜔𝑖,𝑙(𝑡)]
𝛼1

∗[𝜉𝑖,𝑙
(𝑡)]

𝛼2
∗[Π𝑖,𝑙(𝑡)]

𝛼3
∗[ф𝑙

(𝑡)]
𝛼4

𝑙∉𝑁𝑖
𝑆

, 𝑖𝑓 𝑗 ∈ 𝑁𝑖
𝑆

0                                                                     𝑖𝑓 𝑗 ∉ 𝑁𝑖
𝑆

    (5)

      

where 𝑁𝑖
𝑆

 is the set of neighboring nodes that the SA has 

traversed. In order to calculate the probability value, we 

formulate a model for each parameter and present them 

below. 𝛼1 ,  𝛼2 ,  𝛼3 ,  and  𝛼4  are the control parameters. 

Higher value of 𝛼1 increases the probability of choosing 

a link with high link cost between sensor nodes 𝑖 and 𝑗.  

Higher value of 𝛼2 increases the probability of selecting 

a node with more residual energy from candidate list. 

Higher value of 𝛼3  increases the probability of an ant 

taking a shorter route.  𝛼4  is a parameter that controls 

selection of the next relay node and the amount of data 

currently processing at node 𝑗 at time 𝑡.  A higher value 

of 𝛼4  increases the chances of node   𝑖  selecting a path 

with minimum energy cost and chooses a node that 

processes less amount of data. 

B.  Maximizing the Reward Function      

The objective function of data routing is to deliver data 

packets to the destination with minimum energy cost. To 

achieve this objective, it is necessary to assign a higher 

value to the weight 𝜔𝑖,𝑗  of the link 𝑙𝑖,𝑗  between two 

sensor nodes with higher residual energy, so that it will 

have higher probability to be selected during execution. 

On the other hand, if the link consumes more energy for 

transmitting a data packet, a lower value is assigned to 

the weight of the link so that it will have a lower 

probability to be selected for data transmission.   The 

routing consists of finding an optimal set of paths from a  

source node to a base  station  D such  that  sensor  nodes’  

energy  consumption,  and the delay  are  minimized 

while the throughput is maximized. The routing problem 

can be considered as a multi-constrained local 

optimization problem consisting of finding each sensor 

node, a subset of its neighbors 𝑁𝑖    that solves the following 

routing problem 

 

Max ∑ 𝜔𝑖,𝑗𝑥𝑗𝑗∈𝑁𝑖 
                     (6) 

 
Subject to  

 

𝑃𝑟(𝑖, 𝑗, 𝑡) > 𝑃𝑟(𝑖, 𝑙, 𝑡) if  𝜉𝑖,𝑗(𝑡) > 𝜉𝑖,𝑙(𝑡)                (7) 

 

 𝑃𝑟(𝑖, 𝑗, 𝑡) > 𝑃𝑟(𝑖, 𝑙, 𝑡) if  Π𝑖,𝑗  < Π𝑖,𝑙                    (8) 

 

  𝑃𝑟(𝑖, 𝑗, 𝑡)  > 𝑃𝑟(𝑖, 𝑙, 𝑡)   if ф𝑗(𝑡) < ф𝑙(𝑡)                 (9)
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  𝑥𝑗 ∈ {0,1}                              (10) 

 

where 𝜔𝑖,𝑗  is the weight of the link between two sensor 

nodes, variable 𝑥𝑗 is one if and only if node 𝑗 is contained 

in the routing path of neighboring nodes 𝑁𝑖 ; otherwise it 

is zero. 𝑃𝑟(𝑖, 𝑗, 𝑡)  is the probability that node 𝑖 selects 
node 𝑗 as the next hop to the destination at time 𝑡 .  

𝜉𝑖,𝑗(𝑡),  Π𝑖,𝑗  and ф𝑗(𝑡)  are probability functions that 

determine the choice of selecting the next-hop node and 

they are determined as follows 

i)  Link weight( 𝜔𝑖,𝑗)  

 

𝜔𝑖,𝑗 =
𝐸0−min (𝐸𝑐(𝑖),𝐸𝑐(𝑗))

č𝑖,𝑗∗ č𝑗,𝑖
∗ 𝑇𝑃(𝑡)              (11) 

 

𝐸0 is the initial energy, 𝐸𝑐(𝑖) is the current energy level 

of node 𝑖, č𝑖,𝑗  is the link quality between nodes 𝑖 and 𝑗.          

𝑇𝑃  is the transmission power, (𝑡)  is the time taken to 

transmit data from node 𝑖 to  𝑗.  

ii)  Current energy level of a sensor node:  

The current energy of neighboring nodes 𝑁𝑖 influences 

the likelihood of node 𝑖  selecting node  𝑗 ∈ 𝑁𝑖  as the 

next-forwarder node. The energy metric is expressed as 

follows 

 

𝜉𝑖,𝑗(𝑡)  =  
𝐸𝑐(𝑗)(𝑡) 

∑ 𝐸𝑐(𝑙)(𝑡)𝑙∈𝑁𝑖,  
                (12) 

 

This equation enables a node with higher current 

energy level has higher probability to be selected as the 

next-hop node.  

iii)  Sensor node location information  

In designing a good routing protocol, location 

information is needed in order to determine the distance 

between two sensor nodes so that energy consumption 

can be calculated. Thus, location information can be 

exploited in transmitting data in an energy efficient way. 

The distance between the neighboring nodes significantly 

influences the probability at which node 𝑖 selects 𝑗 as the 

next-hop node. The location function, Π𝑖,𝑗  is defined as 

follows 

 

Π𝑖,𝑗  =  
d𝑗,𝐷 

∑ d𝑙,𝐷𝑙∈𝑁𝑖,  
, 𝑗 ∈ 𝑁𝑖                     (13) 

 

where 𝑑𝑗,𝐷 is the distance between sensor node 𝑗 and the 

base station 𝐷. This equation enables node 𝑗 ∈ 𝑁𝑖  closer 

to the destination node has higher chances to be selected 

as the next forwarder node. However, if there is no any 

closer node to choose, then the SA returns to the former 

hop node and it is added to the tabu list of the SA. 
 

iv)  Data packets delay  

Data packets transmission may be delayed if a receiver 

node 𝑗 is processing large amount of data packets. Other 

data packets have to wait in a queue till the processing is 

completed at time 𝑡 + 1. This increases the total delivery 

time of data packets. ӑ𝑗(𝑡) denotes the delay value for 

node  𝑗  and is expressed as follows 

 

ф
𝑗
(𝑡)  =

ӑ𝑗(𝑡) 

∑ ӑ𝑙(𝑡)𝑙∈𝑁𝑖,  
                       (14) 

 

Equations (12) – (14) ensure that those sensor nodes 

with low residual energy, long communication distance, 

high load will have a lower chance of being selected as 

relay nodes. As presented above, the multi-constrained 

routing problem is a local optimization problem 

consisting of finding a minimal set of neighbors that 

maximizes throughput, minimizes energy usage and 

delays. Thus, an ant at node 𝑖 selects node 𝑗  according to 

the probability transition rule in equation (5) and deposits 

pheromone as it is moving along the paths to the 

destination node. The quantity of pheromone each search 

ant deposited on the path between nodes 𝑖  and 𝑗  is 

determined by this equation  

 

 𝜆𝑖,𝑗 =  {

 𝜆max            𝑖𝑓  𝛿𝑖,𝑗 >  𝜆max                       

 𝛿𝑖,𝑗            𝑖𝑓  𝜆𝑚𝑖𝑛 ≤  𝛿𝑖,𝑗 ≤  𝜆max       

 𝜆𝑚𝑖𝑛         𝑖𝑓 𝛿
𝑖,𝑗

<  𝜆min                             
  (15) 

 

 𝛿𝑖,𝑗 =
( 𝐻max      − 𝐻p      )

 𝐻p      

∗ 𝐸𝑎𝑣𝑔             (16) 

 

where  𝜆𝑚𝑖𝑛 and  𝜆max      are the lower and upper bounds 

imposed on the amount of pheromone deposited on the 

paths respectively.  𝐻max      denotes the maximum 

allowed number of hops for ants in the network, 

 𝐻p      has been defined above and 𝐸𝑎𝑣𝑔 is average energy 

of sensor nodes that a search ant has visited.  The 

pheromone limit values are introduced to prevent ants to 

converge quickly on a small number of edges which can 

cause the algorithm to be trapped in local optimal [33]. 

This makes the pheromone concentration to be controlled 

in a moderate range and effectively prevents local 

optimal convergence.  The lower and upper bound values 

are defined as follows 

 

 𝜆𝑚𝑖𝑛 =
(𝑀−𝑚)

3
                           (17) 

 

and  

 

 𝜆𝑚𝑎𝑥 = 1000 ∗ (𝑀 − 𝑚) +
(𝑀−𝑚)

3
           (18) 

 

where 𝑚  and 𝑀  are the minimum and maximum edge 

costs respectively.   

C.  Pheromone Update 

Once all ants have constructed the paths, the pheromone level 

is updated. The amount of pheromone value deposited on 

the path between node 𝑖  and 𝑗  at time 𝑡  is updated by 

equations (19) and (20) 
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𝜆𝑖,𝑗(𝑡 + 1) = 

𝑚𝑎𝑥 { 𝜆min,𝑚𝑖𝑛{(1 − 𝜌)𝜆𝑖,𝑗(𝑡) + 𝛥𝜆𝑖,𝑗(𝑡 + 1),  𝜆𝑚𝑎𝑥}} 

 (19) 

 

 𝛥𝜆𝑖,𝑗(𝑡 + 1) =  φ ∗ (
𝐸𝑚𝑖𝑛(𝑖)(𝑡)

∑ 𝐸𝑠𝑢𝑚(𝑙𝑙
𝑖=1 )(𝑡)∗ 𝐻p

)          (20) 

 

where 𝜌  (0 < 𝜌 < 1) is the pheromone evaporation rate; 

it is used to vary the intensity of the existing trail over 

time. φ  is the impact factor. 𝛥𝜆𝑖,𝑗  is the quantity of 

pheromone left by an ant on the edge ( 𝑖, 𝑗 ) in the 

discovery process. Thus, the value of 𝛥𝜆𝑖,𝑗 is set to zero 

if a search ant does not traverse through the edge.  Other 

terms used in the expressions have been defined above. 

Algorithm 1 represents the basic operation of a search ant 

for MACO. Thus, after all search ants have reached the 

destination node, then the destination node creates 

response packets BA.  

 

Algorithm 1:  Proposed search ants algorithm for MACO 

Begin 

1:  Initialise the number of SA in the network 

2: if L(t) <> 0  before SA reaches the destination then  

3:    A SA is launched at the source node  
4:   else  

4:   discard the message 

5:  if node  𝑖 is a destination node then  

6:      create a BA;  

7:  else 

8:   choose node  𝑗 as the next neighbour node using              
equation (5) and send                                                                                    

9:   SA to the node 

10:     update the current energy of nodes  𝑖 and  𝑗 

 

11: if next node selected is visited then 

12:         return to the preceding sensor node  

13: select another sensor node as the next relay node 

 14:    using equations (19)- (20) to update the pheromone           

value of link  (𝑖, 𝑗); 

   15:    end if 

16:  end if 

17:  end if  

18: End  

D.  Path Retracing and Pheromone Update 

Consequently, when a search ant reaches the 

destination node, the destination node creates a backward 

ant. It travels in the opposite direction traversed by a 

search ant to the source node. When a sensor node 𝑖 
receives a backward ant from a neighbouring node 𝑗 or 

destination node, it updates the information in its routing 

table. The pheromone concentration on the path is 

incremented by a higher amount if the path between the 

nodes does not lead to energy saving. Thus, the receiving 

node has a lower probability to be selected as a forwarder 

node. Such node will dissipate more energy due to high 

traffic it will receive from the neighboring nodes. In 

order to evaluate the energy cost of a sensor node to the 

destination node, each backward ant maintains a routing 

table similar to a search ant. When a backward ant is at 

node 𝑖  from a neighbouring node 𝑗, it updates its tabu 

using equation (21) and decrements the variable 𝑆𝑛  such 

that when the first set of backward ants get to the source 

nodes, these variables are reset to zero for subsequent 

ants. The quantity of pheromone trail deposited on the 

path as it is moving towards the source node is 

determined as follows 

 

𝜆𝑖,𝑗(𝑡 + 1) = 

𝑚𝑎𝑥 { 𝜆min,𝑚𝑖𝑛{(1 − 𝜌)𝜆𝑖,𝑗(𝑡) + 𝛥𝜆𝑖,𝑗(𝑡 + 1),  𝜆𝑚𝑎𝑥}} 

                                                   (21) 

 

𝛥𝑇𝑖,𝑗 =  {

(𝐻𝑚𝑎𝑥−𝐻𝑝)∗𝐸𝑎𝑣𝑔

𝐸𝑎𝑣𝑔∗𝐻𝑝
, if ant traverses on edge (i, j) 

0 ,                      otherwise                                     
  

        (22) 

 

where 𝐻𝑚𝑎𝑥  denotes the maximum number of hops for 

ants that can traverse in a network, 𝐸𝑎𝑣𝑔  is average 

energy of sensor nodes that an ant has visited. The update 

rule is determined as follows 

 

             𝛥𝑇𝑖,𝑗(𝑡 + 1) = (1 − 𝜌)𝑇𝑖,𝑗(𝑡) +
𝛥𝑇𝑖,𝑗(𝑡)

Ϋ∗𝐵𝑛
          (23) 

                                            
 

where Ϋ is a coefficient and 𝐵𝑛 is the number of sensor 

nodes visited by the backward ant. Thus, after the node 

has updated all the parameters, it sends the backward ant 

to the next hop node on the path. Once each backward 

ant reaches the source node, it is discarded. This process 

creates paths between the source nodes and the 

destination node where source nodes can transmit their 

data to the destination node. Algorithm 2 contains 

backward ants algorithm for the proposed protocol.  

The pheromone trail update defined from equations          

(19) – (23) consists of i) pheromone deposit  ii) 

pheromone evaporation. The pheromone deposit is 

adding a chemical substance to the paths constructed by 

the ants. The pheromone evaporation is an exploration 

mechanism used to avoid pheromone concentration 

along the optimal paths from being excessively high and 

encourages ants to explore non-optimal paths [34]. Thus, 

after all the constructed paths have been updated, optimal 

path found by the ants in the current iteration is stored. 

When a sufficient large number of iterations is reached or 

the maximum computation time is obtained after all the 

iterations, the optimal solution is used for data 

transmission. The best solution is selected through 

minimum path cost defined by  

 

gbest = min ∑ √(xi+1 − xi)
2 + (yi+1 − yi)

2N−1
i=1     (24) 

 

In order to evaluate the proposed protocol, 20 sensor 

nodes are randomly distributed as shown in Fig. 2. The 

network consists of a source node (S), 18 sensor nodes 

and a destination node (D), and 𝐸𝑐  denotes the current 

energy of each sensor node. The source node launches a 

search ant to find paths to the destination node while a 

backward ant updates paths found by the search ant in 

order to determine the optimal path from source node to 
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the destination node.  

 

Algorithm 2:  Backward ants algorithm for MACO 

Begin 

1:  if node  𝑖 has reached the destination node then 

2:  create a new backward ant (BA)  

3:  Backward ant  traverses along the path constructed by the SA   

4:  if BA has not reached the source node then  

5:   update the link( 𝑖, 𝑗) with the pheromone value obtained from 
equations (21) – (23)  

6:   compute the 𝐸𝑚𝑖𝑛, 𝐸𝑠𝑢𝑚 and path length 

7:   if a BA reaches the source node then 

8:   compute the optimal path between the source node and the 

base station 
9:    end if 

10:  end if 

11: end if 

12:  repeat step 1 

13: End  

 

 

Fig.2. Sensor nodes distribution and current energy of the nodes 

Table 3 shows the result that was obtained. 

As suggested earlier, the proposed protocol consists of 

the following metrics i) link cost between node 𝑖  and 

node 𝑗 ii) the remaining energy level at node 𝑗 (next-hop 

node) iii) the sensor nodes’ location information  iv) the 

amount of data currently processing at node 𝑗. These four 

metrics are mapped into a new ACO probability 

transition as expressed in equation (5). 

Table 3. Results Obtained Based on the Proposed Algorithm to Determine the Optimal Path from the Source Node (S)  
o the Destination Node (D) with 20 Sensor Nodes 

Paths from  S to D 
No. of   

Nodes 

No. of 

links 

Next 

hop 
node 

Pher-  

omone 

Proba- 

bility 

Optimal 

path 

S-1-7-11-10-13-18-D 8 7 1 19.4 0.26 No 

S-1-7-11-10-13-14-D 8 7 1 19.1 0.95 No 

S-1-8-10-13-14-D 7 6 1 18.8 0.84 Yes 

S-1-8-10-13-18-D 7 6 1 18.5 0.69 No 

S-1-7-11-12-13-14-D 8 7 1 16.3 0.72 No 

S-1-7-11-12-13-18-D 8 7 1 17.2 0.81 No 

S-1-7-11-12-17-18-D 8 7 1 17.8 0.27 No 

S-4-7-11-12-17-18-D 8 7 4 15.4 0.38 No 

S-4-7-11-10-13-14-D 8 7 4 13.6 0.55 No 

S-4-7-11-10-13-18-D 8 7 4 16.7 0.71 No 

S-2-5-15-16-D 6 5 2 14.5 0.46 No 

S-2-5-6-14-D 6 5 2 16.9 0.52 No 

S-2-3-9-14-D 6 5 2 17.8 0.67 No 

S-2-5-15-14-D 6 5 2 15.6 0.38 No 

 

E.  Data Transmission 

After multiple paths have been constructed, the data 

packets are transmitted through an energy efficient path. 

When a sensor node 𝑖 receives a data packet destined for 

a base station (destination node), it forwards the data to 

the next-hop node 𝑗 based on probability defined above. 

However, if node 𝑖 has no information of node 𝑗 in its 

tabu, it forwards the data packets to a neighboring node 𝑗 

that has sufficient energy and minimum delay of a path. 

However, if sensor node 𝑖 has no next hop-node, the data 

packet is discarded. In order to keep alive and maintain 

the path, the proposed protocol updates the pheromone 

value dynamically. The optimal path constructed 

between the source node and the destination node will be 

used for data transmission to the base station. Thus, in a 

dynamic sensor network, pheromone control is used as a 

mechanism for the dynamic reconfiguration of the 

network to find newer optimal paths when the previously 

discovered path becomes congested or unavailable for 

data transmission. Pheromone control is used as a 

measure to reduce the impact from earlier experience and 

encourages the search for new paths that were previously 

non-optimal. For instance, at time 𝑡𝑖 all ants travel along 

the optimal path and converge to a destination node D. 

They leave a very high concentration of pheromone on 

the optimal path denoted with bigger circles in Fig. 3. At 

time 𝑡𝑖+1 , the pheromone concentration is reduced by a 

factor 𝜌 and denoted with lighter circles. At time  𝑡𝑖+2 , 

the pheromone concentration is further decreased by 

some factors as shown in the figure. It continues to 

decrease until the pheromone on the optimal path has 

evaporated. This encourages a search for new paths that 

were previously non-optimal by subsequent ants at each 
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iteration. This enables several ants to produce different 

solutions during one iteration. In this case, QoS routing 

can be used to save the micro-cloud energy stored in the 

batteries and thus prolong the lifetime of the cloud-IoT 

infrastructure.  

 

 
Fig.3. Pheromone evaporation 

Table 4. Simulation Parameters 

Parameters  Values   

Number of sensor nodes   100 ~500 

Network dimension  200m * 200m 

𝐸𝑒𝑙𝑒𝑐  50nJ/bit 

Packet size  96 bits 

Transmission range R  50 m 

pheromone (𝜌) value  0.8 

Threshold energy  0.75 J  

Transmission energy  0.0013pJ/bit/m4 

Receive energy   10pJ/bit/m2 

Simulation time  1000 sec 

Transmit data rate  250kbps 

Physical and MAC model  IEEE 802.15.4 

 

V.  SIMULATIONS AND RESULTS 

Performance of the proposed approach is evaluated 

considering the following performance metrics: energy 

consumption, average transmission delay, packet 

delivery latency and network lifetime. The sensor nodes 

are randomly distributed in a network area of 200m * 

200m and the initial energy of every sensor node was set 

to 1.5Joule. Table 4 contains parameters used in the 

simulation and a MATLAB-based simulation tool is used 

for the implementation. The performance of the scheme 

is compared with other related routing protocols, namely 

FACOR [25], EARA [26] and EAMR [28, 35].   The 

number of sensor nodes varied from 100 to 500. The 

simulation runs were repeated 75 times to get the average 

results which are used for plotting the figures. 

A.  Network Lifetime  

The sensor network lifetime for the routing schemes is 

shown in Fig. 4. It reveals that in all these schemes, the 

network lifetime increases with the network size, but 

only slightly. 

 

 MACO has a maximum network lifetime among 

the four protocols but does not outperform the 

other by a big difference. 

• EAMR performs better than FACOR because it 

transmits through energy efficient paths to the 

base station. 

• Performance of EARA is the worst among the 

protocols because it always uses the primary path 

constructed for its data transmission. 

 

 
Fig.4. Sensor network lifetime 

B.  Energy Consumption    

Further experiments were conducted to compare the 

energy consumption of the proposed protocol with other 

three protocols and presented the result in Fig. 5.  The 

result shows an increase in energy consumption in all the 

networks. EAMR and MACO consumed less energy 

compared to FACOR and EARA protocols. The reason is 

that data loss in EAMR is minimal, as it uses an alternate 

path if the primary path fails. MACO implements a 

proactive approach that considers the residual energy of 

the receiver node before data transmission, thus reducing 

data loss and minimizing retransmission of the data 

packet. This leads to higher efficiency and lower energy 

use. EARA consumed the highest energy among the four 

protocols, because it focused on a collision avoidance 

model that did not translate into energy efficiency.  By 

combining four routing parameters into a mixed routing 

metric, MACO outperformed the other three protocols. 

 

 
Fig.5. Comparing the energy consumption 

C.  Throughput   

Throughput is defined as the amount of data 

successfully transmitted from a source node to a 

destination node in a specific amount of time.  Fig. 6 

shows the throughput obtained by the four routing 

schemes for different sensor network sizes varying from 

100 to 500. It is observed that as the number of sensor 

nodes increases, throughput for each protocol likewise 

increases. This might result from the protocols being able 

to find more parallel paths between the nodes and the 

base station.  The throughput of MACO is significantly 
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larger than EARA, FACOR and EAMR protocols. The 

reason is that MACO computes a minimal set of good 

parallel paths that optimize its mixed metric. 

 

 

Fig.6. Throughput versus number of sensor nodes 

D.  Packet Delivery Ratio  

Packet delivery ratio is the percentage of data packets 

delivered successfully to the base station. Fig. 7 shows 

the data packet delivery ratio for different network sizes. 

These results are in agreement with the throughput 

results obtained above. MACO outperforms the other 

protocols as it does not dissipate neither energy nor route 

packets on non-optimal paths. It is observed that the 

packet delivery rates for the proposed protocol almost 

remain constant with the increase in network size. This 

reveals that as a relative measure, the packet delivery 

ratio can be considered as a metric that characterizes 

each of the routing protocols. 

Table 5 shows average energy consumption for all the 

protocols. As explained above, the total energy 

consumption increases as the network size increases 

while the average energy consumption of sensor nodes 

decreases. Thus, MACO consumes the least of energy 

compared to EAMR, FACOR and EARA protocols. 

 

 
Fig.7. Packet delivery ratio versus number of sensor nodes 

Table 5. Average Energy Consumption 

Energy 

consumption 

(10-6 J) 

Number of sensor nodes 

100 200 300 400 500 

EARA 9.245 5.801 4.491 3.791 2.904 

FACOR 8.937 5.745 4.326 3.465 2.793 

EAMR 8.507 5.683 4.159 3.247 2.726 

MACO 8.214 5.619 3.864 2.516 1.983 

 

E.  Data Packets Transmission Reliability  

Data packets transmission reliability for the four 

protocols is investigated using a network size of 200 

sensor nodes randomly distributed over a 200*200 m
2
 

network area. Fig. 8 shows the average data packets 

transmission reliability taken by the sensor readings for 

the four protocols. MACO presents the highest data 

packets reliability compared to EAMR, FACOR and 

EARA protocols. The reason is that the proposed 

protocol is able to dynamically reconfigure the network 

to find newer paths after a certain period to avoid loss of 

data packets along the optimal path. Finally, it is able to 

select a node that processes less data as a relay node 

which reduces queueing delay.  
 

 
 

Fig.8. Packets transmission reliability 

F.  Standard Deviation of Energy  

This metric gives the average variance between current 

energy levels on all sensor nodes. Standard deviation of 

the current energy at the interval of 100 communication 

rounds is computed and the result is presented in Fig.9. 

The proposed approach has resulted in uniform energy 

dissipation by the sensor nodes. MACO shows a 

significant reduction on the standard deviation compared 

with selected protocols. Hence, it shows that MACO can 

efficiently balance the energy consumption on all the 

sensor nodes. 

 

 

Fig.9. Standard deviation of current energy of sensor nodes 
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G.  Packet Delivery Overhead   

Packet delivery overhead is defined as the ratio of the 

number of data packets forwarded during the route 

establishment and data transmission processes to the 

number of data packets received at the base station.          

Fig. 10 and Fig. 11 show MACO, EAMR, FACOR and 

EARA packet delivery overhead for 100 sensor nodes 

and 500 sensor nodes respectively. Packet delivery 

overhead increases as the packet generation rate 

increases for the two network sizes considered in all the 

protocols as shown in the figures. Increments in overhead 

are due to the fact that increasing the number of sensor 

nodes results in an increase in the number of data packets 

transmission along multiple paths to the base station. 

Thus, MACO reduces the packet delivery overhead by 

31%, 47% and 58% compared to the EAMR, FACOR 

and EARA protocols respectively for a network size of 

100 sensor nodes. Similarly, when the number of sensor 

nodes is 500, packet delivery overhead in MACO 

decreases by 42%, 58% and 65% compared to the 

selected protocols. The reasons for these variations can 

be explained as follows. First, EAMR, FACOR and 

EARA protocols use a flooding mechanism to establish 

multiple paths between the source nodes and the base 

station. On the other hand, MACO reduces packet 

delivery overhead using a minimal subset of neighboring 

nodes in the route establishment process. Second, based 

on the MACO approach, the constructed paths incur a 

minimal number of transmissions per packet delivery 

compared to the three protocols. MACO has the least 

packet delivery overhead, hence it saves more energy.  

 

 
Fig.10. Packet delivery overhead against packet generation rate (pps) 

for 100 sensor nodes 

 
Fig.11. Packet delivery overhead against packet generation rate (pps) 

for 500 sensor nodes 

H.  Death of Sensor Nodes  

The experiments were performed by varying the initial 

energy assigned to each sensor node. Table 6 provides 

the study of sensor nodes’ lifetime for all the four 

protocols considered. We are able to determine the 

number of rounds passed when 5%, 15%, 25%, 35% and 

50% sensor nodes die with base station location at (100, 

275)m. The results show that MACO performs better 

than EAMR, FACOR and EARA protocols before 50% 

of the sensor nodes die. Moreover, it is observed that 

FACOR shows an improvement over the proposed 

protocol after 50% sensor nodes die. This is due to many 

parameters introduced into the scheme.  

Table 6. Number of Rounds till Death of Sensor Nodes 

Energy 

(J/node) 
Protocol 

Percentage of sensor nodes death 

5 15 25 35 50 

0.5 

EARA 904 1028 1136 1194 1317 

FACOR 965 1032 1151 1245 1342 

EAMR 972 1054 1178 1263 1378 

MACO 985 1087 1185 1279 1379 

1.0 

EARA 2104 2276 2373 2465 2584 

FACOR 2165 2305 2380 2492 2596 

EAMR 2187 2319 2391 2510 2611 

MACO 2204 2326 2413 2536 2604 

1.5 

EARA 2710 3012 3215 3295 3365 

FACOR 2762 3114 3246 3306 3384 

EAMR 2831 3158 3261 3323 3391 

MACO 2942 3184 3275 3314 3387 

 

VI.  CONCLUSION AND FUTURE WORK 

This paper revisits the ant colony optimization – a 

meta-heuristic method for solving combinational 

optimization problems with the goal of modelling and 

QoS implementation of wireless in sensor networks. An 

energy-efficient routing protocol based on ACO that 

builds upon a mixed metric and its mapping into efficient 

pheromone distribution to achieve local optimizations 

with the expectation of reaching global routing efficiency 

is proposed. Simulation results show that, building 

around its local optimization, MACO performed better 

than selected routing protocols (EAMR, FACOR and 

EARA) in terms of energy efficiency, throughput 

maximization and delay minimization in sensor networks. 

Service and application aware routing through service 

differentiation are key features that can play a key role 

when provisioning QoS in IoT deployments. In the case 

of visual sensor networks, they can be used to protect the 

services and applications running on some specific visual 
sensor motes. Using the service-aware routing paradigm 

in [36], MACO can be extended into a service aware 

multipath ant colony optimization (SAMACO) algorithm 

that routes the sensor readings according to the motes’ 

service requirements. Differentiation of services can also 

be built around the path aware routing algorithms 

proposed in [37] where parallel paths are computed from 

the source nodes to the sink of the network, but 

constrained by specific QoS requirements for each path. 

These include requirements based on QoS metrics such 

as delay, energy, throughput and reliability or any other 

relevant metrics. Building upon the studies referred to 
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above, QoS extensions can be performed in both IoT and 

lightweight cloud computing platforms through efficient 

traffic engineering. These extensions are potential 

avenues for future research work. 
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