
I.J. Information Technology and Computer Science, 2018, 6, 1-10
Published Online June 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.06.01

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

SDRED: Smart Data Retrieval Engine for

Databases

Mir Shahnawaz Ahmad
SSM College of Engineering & Technology, J&K, India.

E-mail: mirshahnawaz888@gmail.com

Syed Rameem Zahra
Ph.D. Scholar Department of Computer Science and Engineering National Institute of Technology Srinagar Hazratbal,

Srinagar, J&K, 190006, India.

E-mail: rameemzahra@gmail.com

Received: 05 January 2018; Accepted: 07 May 2018; Published: 08 June 2018

Abstract—Today computers are continuously betrothed

in almost all domains and organizations. Thus, databases

act as the heart for storing and retrieving information that

contain huge digital data. However, in order to interact

with such databases, it is necessary to have knowledge

about the Structured Query Language (SQL), which is

difficult for non-expert users to understand and

manipulate. So, there is an emergent need to develop a

smart and a user friendly computational technique to

interact with databases. The current work proposed a

smart technique that can handle such context. The

proposed “Smart Data Retrieval Engine for Databases

(SDRED)” provided an environment that allows a non-

expert user to write and to execute the database queries

easily. Furthermore, it retrieved the data stored in

databases without a prior knowledge of the SQL. SDRED,

which enables the non-expert user to write database

queries in natural language (such as English) and to

convert them to their SQL query equivalents. The current

work presented a detailed design and evaluation for the

proposed system by executing different database queries

in English. The results established that SDRED

successfully converted the non-expert user’s natural

language queries into their equivalent SQL queries,

thereby providing an easy and user-friendly environment

to interact with databases.

Index Terms—Digital data, non-expert user, Structured

Query Language (SQL), Natural Language Queries.

I. INTRODUCTION

Recently, the increased technology progress leads to a

huge amount of data and databases in several domains

including small organizations as well as large educational

institutes. Such databases require a database

management system (DBMS) for their manipulation and

management [1]. The DBMS is responsible for

performing all types of operations on the database. It

represents the data from the databases to the user in an

independent way that differs than the actual stored data in

the physical medium. Thus, the DBMS has lot of

functionality, where many of its commands can perform a

particular operation. In order to distinguish between them,

these commands are grouped into three main languages,

namely data definition language (DDL), data

manipulation language (DML) and data control language

(DCL) [2]. Furthermore, the relational databases is

considered to be the most common type of databases,

where data is stored in the form of tables and each table

contains many tuples. Each table represents a

mathematical relation between the attributes of table. The

commands used to retrieve, update or delete any data

from relational database, are declarative sentences that

are known as SQL (structured query language). The SQL

is an ANSI (American National Standards Institute)

standard language for accessing and for manipulating the

data stored in relational database, which is supported by

the DBMS.

The statements in a SQL query are declarative and are

Boolean expressions, i.e. either true or false. Different

commands are used for manipulating the relational

databases using the SQL, where each command has a

particular syntax or writing. Memorizing this syntax for

each type of query is a bit tedious task. Also, for a non-

expert user (one without a prior knowledge of SQL) it is

almost impossible. But, in today’s world, not only the

expert database user, but also non-expert users requires

databases for different purposes. Thus, an alternative

approach for accessing the databases information easily

motivates several researches to create more intelligent

databases [3] that can understand queries of the user

without requiring the user to have an expertise in SQL.

For example, the natural language processing method [4]

can be considered as the database or the DBMS is so

intelligent that it can understand the queries in natural

language in an easy way. Also, with this creation

everybody will be comfortable and can easily access the

database, as if he/she is talking to a person and not a

machine.

However, for non-expert database users, the designers

provide an easy interface to extract only limited

2 SDRED: Smart Data Retrieval Engine for Databases

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

information from the database, depending on the fields

provided by the designer. Therefore, if the user wants to

extract other fields of database, it is not able to do so

because of the limited fields provided by the software

designer. In order to overcome this problem, an

intelligent engine is proposed in the current work to assist

the non-expert users for interacting with the database

using a natural language (English). Afterward, the user

can extract any data easily without any knowledge about

the SQL. Hence, the proposed enhanced system’s user

can extract limitless information that is present in the

database. This proposed scheme is based on the idea of

constructing an intelligent layer that works on the top of

normal SQL query processing engine [5]. The formed

intelligent layer will be responsible for transforming the

user’s natural language query into SQL query, which can

then be easily understood by the SQL query-processing

engine. The intelligent layer thus formed is responsible

for transforming the user’s natural language query into

SQL query, which can then be easily understood by the

SQL query-processing engine. Moreover, when a

common user types a query in natural language, there is a

possibility of incurring some mistakes such as incorrect

table name, attribute name or any word necessary for the

formation of SQL query. The proposed intelligent layer is

so smart that it is able to detect those mistakes and will be

able to correct them. Finally, the proposed system can

construct a correct SQL query out of the user’s natural

language query. Thus, the intelligent layer will not only

be smart, but will be robust, giving an easy environment

to database user to interact with database and retrieve any

information from the database.

The organization of the remaining sections is as

follows. Section II includes the related work followed by

the methodology and the mathematical model in Sect. III

and IV respectively. The proposed system is

demonstrated and discussed in Sect. V. The results and

conclusion are given in Sect. VI. Finally, the conclusion

is reported in Sect. VII.

II. RELATED WORK

Researchers are interested with designing an easy and

user-friendly environment for accessing the data stored in

databases due to the widespread of database applications

in the different domains [6]. Bertino et al. [7] designed an

intelligent database system as a first step to make more

intelligent databases. These databases were able to

process the user queries in much similar way like that by

a human brain, and hence were intelligent. However, for

these intelligent databases to be successful, a human

friendly way of interaction is required. To achieve that

requirement, Lewis et al. [8] proposed the engagement of

natural language processing to provide a natural language

interface to the database user.

Typically, it is evident that using natural language for

interacting with databases requires realizing different

patterns in human speech [9], and consequently

formulating different rules to transform natural language

query into computer understood language. Valverde et al.

[10] designed an ontology-based system for querying

DBpedia. The authors used a rule-based approach [11],

where a particular rule triggers a unique set of operations

to be performed. However, some mistakes may occur

while writing the database query in natural language. In

order to detect such mistakes for further replacement with

correct words, researchers have proposed a technique

known as Levenshtein distance measurement technique

[12]. Also, Ayan et al. [13] proposed a technique

“Clarifying natural language input using targeted

questions” that used some predefined questions for

understanding the natural language input from the user

and hence provided suitable results. Llopis et al. [14]

provided an example for creating a natural language

interface to query a database. The authors explain

different constraints and data structures used for creating

this interface. Afterward, Li et al. [15] proposed an

interactive interface for querying relational databases that

used an interactive approach for understanding the user’s

natural language queries. This interactive approach was

inappropriate tool for understanding the natural language

queries, as it was time consuming and complex. This

system was continuously interacting with the database

user in order to understand a single natural language

query of database user through asking multiple questions

to clearly recognize a single natural language query.

Hence, the system can process multiple queries in order

to successfully understand and execute a single natural

language query, thereby making the system more

complex.

From the preceding literatures, a novel smart technique

(SDRED) is proposed for querying the databases using

natural language. The proposed technique is superior to

the previously mentioned system in [15] as it has several

features including:

 Instead of asking continuous questions or

continuously interacting with the database user,

the proposed system only takes a single query

from the database user in natural language.

Afterward, it processes the single query and finally

provides desired results to the user, thus making

the interface much simpler with less complexity

compared to the work in [15].

 The proposed technique is robust as it corrects the

mistakes of the database user automatically that

may occur while writing queries in natural

language.

 There are different methods embedded in the

proposed technique that make it a new system for

querying the databases in natural language.

III. METHODOLOGY

Generally, the SQL is necessary query language to

interact with a relational database. However, the

limitations in using SQL include the tedious task of

remembering the syntax of different SQL queries. Thus,

the current work proposed a SDRED to overcome this

limitation and to allow a common user-friendly and easy

 SDRED: Smart Data Retrieval Engine for Databases 3

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

access and interaction database. It allowed the database

users interaction with the database in a natural language

like English language. In the proposed system, the

databases intelligent system SDRED design will be

working on the top of the standard SQL query engine.

The SDRED is responsible for taking the input from user

who typed in natural language, namely the English

language to extract useful information from the input to

transform it into an SQL query. The generated SQL query

is than passed to the standard SQL query engine to

execute the SQL query and to produce the desired results

for the user. Several training structures were implemented

in the SDRED to train the system for the desired

processing and for extracting useful information from the

input, which finally transformed into SQL query. These

training structures train the system for the desired

processing and also guide the system when a totally new

type of information is encountered. Such training

structures are the key which make the system intelligent.

The proposed intelligent system consists of different

phases/modules through which the user’s input passes

and formulates an SQL query at the end. Moreover, each

module contains different training structures that guide

them in performing specific tasks and support them to

discover new information during processing and

preserving the obtained information for future uses.

During the user’s natural language query processing, the

main motto is to obtain the names of relational database

tables or the attributes of tables or any values in a

particular table, and finally use it to construct the SQL

query. Thus, the Meta data of database is used for

searching the above mentioned information that contains

all the information regarding a database. It will be also

used it to extract useful information from the user’s

natural language query. Once the intelligent system is

able to obtain the names of database’s table or the

attribute name of any table or both, then the SQL query

construction will take place. The whole intelligent

SDRED system and its different modules are shown in

Figure 1.

The different modules and training structures used in

each module are discussed in following subsections.

A. Lexical Analysis

The first step in the processing of the user’s query (Q)

is the Lexical analysis [16], which is typed in English.

Each word in the natural language query is separated. The

unnecessary words/information is removed using stop-

word (Ws) training structure that consists of all the

unwanted words called stop-words. Subsequently,

whenever the user’s natural language query has certain

stop-words in it, they are checked using this data-

structure and are thus removed. Initially, this training

structure consists of basic Ws, such as if, to, so, at, in, on,

etc., but with time when more natural language queries

are supplied to the SDRED, this training structure is

expanded. When some new Ws are discovered during the

processing of user’s natural language queries, then they

are also automatically added to Ws, thus making it an

intelligent training structure.

Once all the stop-words contained in the user’s natural

language query are removed, then the useful words

(known as tokens) are passed to the next phase for further

processing. Accordingly, during lexical analysis phase

the useful words (Tokens) are generated. These generated

tokens may contain the names of database tables or table

attribute names or any value contained in database table.

Fig.1. Detailed view of SDRED system

The token generation algorithm is as follows:

Algorithm 1: Token Generation Algorithm

Input: The natural language query entered by

database user

Separate each word of the input query

Sort the words in any contiguous memory (a)

for i = 1 to size_of (a)

 If a[i] == Ws, then

 Remove the word from ‘a’

 else

 No change to ‘a’

End for

Pass the stored words in ‘a’ to next phase as tokens

Output: Multiple tokens

The procedure for the token generation algorithm is

illustrated in Figure 2.

B. Semantic Analysis and Semantic Matching

Kaufmann & Bernstein [17] presented an evaluation of

natural language interfaces by semantic analysis. Similar

technique based on the use of semantic analysis for

evaluating the natural language input was presented by

Habernal and Konopik [18]. In the current work, similar

technique for both the ones in [17, 18, 19] is employed.

The input to this phase is the useful words (tokens)

extracted by the lexical analyzer. This phase is

responsible for several task including i) matching the

tokens with the actual information in the database, ii)

understanding their meaning, and iii) replacing the

correct words in place of wrong tokens (if any). Thus,

4 SDRED: Smart Data Retrieval Engine for Databases

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

even if the user has typed wrong information in the input,

this phase is responsible for correcting the mistakes, thus

again making the system intelligent.

Fig.2. Procedure for Token Generation

This phase processes each token by searching it in the

Metadata of database. If the token is not present in the

database, then it is replaced with the help of semantic

measurement technique [20] and context modeling

technique [21], where the token (whose information is not

present in the database) is replaced with that token which

is present in the meta data of database having the least

semantics distance, i.e. which is similar to the meaning of

the given token. Thus, through this phase, even if the user

enters those table names or attribute names in natural

language query which are not in the database (but their

synonyms are present in meta data of database), this

module is able to replace the wrong information with the

correct one, which is present in the metadata of database

and which is similar to the meaning of user’s input word.

Thus, for the efficient working of this module, it required

to continuously interact with the metadata of database

and its training structures.

The following training structures are proposed for this

phase to perform the desired processing of tokens:

 Expression mapping set (Emap): This training

structure contains all the relational expression

words (e.g. greater than, less than) and their

corresponding mathematical expressions (e.g. >, <)

that are used in the SQL query. The semantic

analyzer uses Emap to search a relational

expression words from the tokens list and replaces

them with the actual relational expression. Thus,

they can be used to construct the final SQL query.

In this way, the training structure maps the

relational expression words written in natural

language to the actual relational expressions used

in standard SQL queries.

 Conjunction set (Cs): All the conjunction words

used in natural language (English) are stored in

this data structure, and are checked for a

conditional statement by the semantic analyzer. If

a successful match between the extracted tokens

and words in the Cs takes place, then there is a

conditional statement in the user’s query and it

needs to be processed accordingly, for which the

system is intimated by setting the conjunction flag.

When the conjunction flag is set, it means that the

user’s natural language query has a conditional

statement in it. Consequently when transformed,

the resulting SQL query too will have a

conditional part.

 Semantic set (Sc): This training structure contains

all the synonyms of the corresponding database

table names and the attribute names of tables. This

training structure is used when the user types

information which is not present in the metadata of

database, but is similar to the meaning of the

information stored in the metadata of database, e.g.

if the user types “enrollment number” in the

natural language query, but it is neither the name

of any table nor the name of any attribute (i.e. not

present in metadata of database), but it matches

with the synonym of one of the attribute name –

“roll number” (which is present in metadata of

database), then the semantic analyzer will replace

“enrollment number” with “roll number” for

constructing a correct SQL query.

The semantic analysis algorithm is illustrated as

follows:

Start

Separate each word from

user’s natural language

query and store in array ‘a’

Is

Count

= 0?

Pass ‘a’ to

next level

(‘a’ contains

all the valid

tokens)

Take next element

‘X’ from ‘a’, &

Compare ‘X’ with

all the elements of

stop-word training

structure

Does stop-word

training structure

contain ‘X’?

Remove ‘X’ from ‘a’

No

Yes

No

Yes

Set count = size of ‘a’

Decrement

Count by 1

Stop

 SDRED: Smart Data Retrieval Engine for Databases 5

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

Algorithm 2: Semantic analysis algorithm

Input: Token set ‘a’

for (i = 1 to size_of(a))

Step 1: Search the token in the Meta data (M) of the

database

If a[i] ∉ M

Then use Sc to find its semantic match & replace it

with actual token.

Otherwise

No change to ‘a’

Step 2: Search the token in Emap

if (a[i] ∈ Emap)

Then replace it with its mathematical expression in

Emap.

Else

No change to ‘a’

Step 3: Search the token in Cs

if (a[i] ∈ Cs)

Then set the conjunction flag.

End for

‘a’ contains all the finalized tokens, which are used to

generate the SQL query out of user’s natural language

query.

Pass this token set to SQL query generation module.

Output: Semantically matched and corrected token set

The procedure for semantic analysis is illustrated in

Figure 3.

C. Distance measurement

When the semantic analyzer corrects the tokens of

user’s natural language query, then all the tokens are

passed to this module for further processing. After

semantic analysis, there are certain tokens whose

semantic analysis is not possible due to spelling mistake

or by any other reason, thus a distance measurement

technique is used for those tokens. In the current work,

the Levenshtein distance/ edit distance [12] is used as

distance measurement technique for calculating the

distance between two tokens/words.

The Levenshtein distance measures the number of edits,

which are needed to perform in order to transform one

string into another. The allowed edit operations include:

insertion, substitution or deletion. There are other edit

distance measures such as Hamming distance, Longest

Common Subsequence (LCS) etc. but the reason to

choose Levenshtein distance as the edit distance are the

following: i) Levenshtein distance allows all the

important edit operations to be performed on the strings

i.e. insertion, deletion and substitution. On the contrary,

while LCS allows insertion, deletion, Hamming distance

allows substitution only. Hence, while Hamming distance

can only be used for strings/words of equal length, LCS

cannot be used in cases where we require substitution as

well. ii) Levenshtein is one of the most famous edit

distances used in software that help in translation of

natural languages. iii) Levenshtein is very helpful when

the objective is to find matches for short strings in long

texts. In the proposed intelligent system, a threshold as

Fig.3. Procedure for Semantic Analysis

been set, and if the Levenshtein distance between two

words (one being the un-matched token and the other

being the actual table name or attribute name) is less than

or equal to threshold then the natural language word is

Start

Set Count = size of ‘a’

Is Count

= 0?

Take next Token ‘T’

from ‘a’

Search ‘T’ in Meta-data

‘M’ of database

Is ‘T’ in

‘M’?

Find Semantic

match of ‘T’

from ‘SC’

Replace ‘T’ by

its Semantic

match
Search ‘T’ in ‘Emap’

Is ‘T’ in

‘Emap’?

Replace ‘T’ by

its Mathematical

expression in

‘Emap’

Search ‘T’ in ‘CS’

Is ‘T’ in

‘CS’?

Set

conjunction

flag = 1

Decrement Count

by 1

Pass ‘a’ for

SQL query

generation

Stop

Yes

No

No

Yes

Yes

No

Yes

No

6 SDRED: Smart Data Retrieval Engine for Databases

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

replaced by the actual word in the database, i.e. if the

calculated distance between a token and a word in the

metadata of database is less than or equal to the threshold

level, then the token is replaced by the word in metadata.

Thus, by using this technique, the query-processing

engine will become more robust as it is able to correct the

mistakes of user automatically.

After the successful completion of distance

measurement operation by levensteins distance [12], the

remaining tokens, which are not being used for SQL

query generation, are analyzed and are thus added to the

already existing training data present in different training

structures as feedback [15]. Accordingly, the proposed

intelligent system will automatically update the training

data whenever a natural language query is passed to it,

making the system more robust and efficient.

D. The SQL Query Generation

This phase is the final phase in the natural language

query processing, where the valid tokens are transformed

into a valid SQL query and is sent to the standard SQL

query engine for the execution of SQL query. The

process of transforming the valid tokens into the SQL

query is systematic process, where different components

are appended to the query at different steps and not at

once i.e., the retrieved table names or attribute names are

appended to the query at different steps, where they fit in

the SQL query. If the user directly types the SQL query

then it is directly given to the standard SQL query engine

for the execution because it is already present in the form

that is easily understood by the SQL query engine. At this

phase, the intelligent layer has all the necessary

information (e.g. table name and attribute name) required

to construct the SQL query, which is than formulated in

the form of SQL query and is passed to the SQL query

engine for execution. Thus, the SQL query is formulated

using the following expression:

P1 + attribute-name + P2 + table-name + P3 +

(attribute-name + P4)repeatedly (1)

Where, P1, P2, P3 and P4 are the different parts to be

appended to the SQL query by the intelligent layer at

different stages (e.g. P1 can be “select *” or “select” or

“select sum()”), and each part, together with conjunction

flag will determine whether the next part be appended to

the query or not, and also what will be the structure of

next part. The “attribute-name” and “table-name” are the

names of attribute and tables of database that the

intelligent system has detected during the processing of

user’s natural language query. The last part of the final

query formulated can be repetitive based on the structure

of P1, P2 and P3. After appending all the parts to the

SQL query by the intelligent layer, the SQL query

formulated will be passed to the standard SQL query

processing engine, which will execute the SQL query to

retrieve the desired results.

IV. MATHEMATICAL MODEL

The mathematical model of the proposed model

explains the whole processes of converting the natural

language query into SQL query mathematically.

Represent the natural language query by ‘Nq’ and the

final SQL query generated by the system is represented

by ‘Sq’. The different training structures are represented

by the stop-word by Ws, the expression mapping set is

represented by Emap, Sc denotes the semantic set and Cs

represents the conjunction set. Thus, after the Ws

removal process, the natural language query input ‘Nq’ is

converted into set of tokens ‘T’, which can be

mathematically represented as:

T = Nq - Ws (2)

These tokens are then passed for semantic matching

process, where the token set is modified, and the resulting

token set is calculated as:

TNew =T – (WEmap) + (Emap) (3)

Where, “WEmap” is the word in the expression

mapping set (Emap) which matches with a particular

word of user’s natural language query, and “EEmap” is

the actual expression against the matched word in Emap.

The table-name of database and the attribute name of a

particular table are calculated as:

Table-name (Tn) = TNew ∩ MT (4)

Attribute-name (An) = TNew ∩ MA (5)

Where, “MT” is the set of table-names in metadata of

database, and “MA” is the set of attribute-names in the

metadata of database. If both Tn and An are empty, then

semantic matching is performed due to which the new

token set is calculated as:

TNew = T – (WSc) + (SSc) (6)

Where, “WSc” is the word in the semantic-set (Sc)

which matches with a one of the words of user’s natural

language query, and “SSc” is the synonym of the

matched word in Sc. The process of distance

measurement also takes place after semantic matching.

Afterward, Tn and An are computed for calculating the

names of database tables and attributes.

Thus, the final SQL query generated by the intelligent

layer is represented mathematically as:

Sq = P1 + An + P2 + Tn + P3 + (An + P4)repeatedly (7)

Where, P1, P2, P3 and P4 are the different parts

appended to final SQL query by intelligent layer at

different stage. The SQL query “Sq” thus generated by

the intelligent layer is given as an input to the standard

SQL query processing engine, which executes it and

provides the desired results to the common database users

for their natural language queries. Based on the preceding

 SDRED: Smart Data Retrieval Engine for Databases 7

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

methodology and mathematical model, the proposed

intelligent system is illustrated in the following section.

V. PROPOSED SYSTEM

Figure 4 illustrates the proposed intelligent system,

where the user can interact with a relational database

system using a Natural language query.

Fig.4. The Proposed scheme overview

In the proposed system represented by the Intelligent

Layer in Figure 4, it is unnecessary to remember the

syntax of different SQL queries by the user. The database

user can type the database queries in natural language,

which will be transformed into SQL queries

automatically. The basic idea behind the implementation

of this system is to design an intelligent layer, which will

work on the top of SQL query processing engine. The

input to this intelligent layer will be the user’s natural

language queries as shown in Figure 4. The intelligent

layer will then transform the natural language queries into

SQL queries that can be easily understood by the standard

SQL query-processing engine that will then execute them

to provide the desired results to the user. The SDRED

steps for executing the natural language query are shown

in Figure 5.

Fig.5. SDRED steps for processing the user’s natural language query

Figure 5 illustrated that the SDRED is trained to

construct the SQL queries out of user’s natural language

queries as well as to detect and to correct the errors in the

natural language query. Thus, the proposed system will

take the natural language input from the user, perform

natural language processing on it, apply different

constraints and finally formulate a correct SQL query,

whose execution yields the desired output to the user.

Many training structures were implemented to guide the

SDRED in processing the natural language input. The

proposed intelligent layer was designed to update the

training structures automatically whenever a new query is

submitted for execution, thus making the system smart.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed system (SDRED) for database query

processing is implemented using ASP.NET with SQL

server at backend. The Smart data retrieval engine is

designed to allow the common user to type the database

queries in natural language (English). Afterward, the

intelligent system is responsible for generating the SQL

queries out of user’s natural language queries

automatically. Finally, the output is provided to the user.

The different training structures were being implemented

using different data structures in ASP.NET. Two

University databases are created containing i) records of

all the faculty members/workers/students, and ii) details

of customers/products of a shopping store. For the

proposed SDRED system performance evaluation,

different natural language queries (given in Table 1) is

used as input to SDRED for execution.

Table 1. Natural Language Queries and their SQL queries
generated by “SDRED”

Input:

Natural

Language
Query – 1:

Display those faculty members who
are designated as Assistant professor.

SDRED
Output:

SQL Query

generated by

SDRED:

Select * from faculty as b where

b.designation like ‘Assistant

professor%’

Input:

Natural

Language
Query – 2:

Show me the details of department

with total faculty more than 10
members

SDRED

Output:

SQL Query

generated by
SDRED:

Select * from departments as a

where a.Total_Faculty > 10

Input:

Natural

Language

Query – 3:

Give me the phone number of

customer with name mohan

SDRED

Output:

SQL Query
generated by

SDRED:

Select a.name, a,phone_no from
customers as a where a.name like

‘%mohan%’

Input:

Natural

Language

Query – 4:

Display the total amount in sales

SDRED
Output:

SQL Query

generated by
SDRED:

Select sum(c.amount) as summation
from sales as c

The proposed smart system converted these natural

language queries into SQL queries and passes them to

standard SQL query engine for execution. After the

execution of these generated SQL queries, the results are

noted as shown in Figure 6 to 9. The natural language

queries given to the smart data retrieval engine for query

8 SDRED: Smart Data Retrieval Engine for Databases

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

execution are written is such a way to consider the

common mistakes committed by common-user while

interacting with databases. The proposed intelligent

system is so smart, where it detects these mistakes and

then corrects them to a large extent, and finally

formulates the correct SQL queries out of it. After

analyzing the SQL queries generated by SDRED for each

natural language query shown in Table 1, it is evident that

the proposed system is successfully able to convert the

natural language queries into their corresponding correct

SQL queries. Furthermore, the proposed system is

completely different from those mentioned in the

literature survey. This proposed technique is completely

new and includes some of the simple and efficient

techniques for processing the natural language query and

converting it into SQL query. Figure 6 depicts SDRED

system that is used to investigate the performance of the

proposed system.

Figure 7 illustrates query 2 where the user had typed

the wrong table name as “department”, but the intelligent

layer has automatically corrected it and replaced it with

the correct table name as “departments”.

As illustrates in Figure 7, the SDRED not only

constructs the SQL query out of user’s natural language

query, but also is automatically corrected the mistakes.

Similarly, in natural language query 2, the user again

types partial attribute name “faculty”, which if given to

standard SQL query engine will run to error, but the

proposed SDRED automatically find the correct attribute

name “Total_Faculty” from the metadata of database and

formulates the correct SQL query. Figure 8 illustrates the

results of query 3, where the user searches the customer

with name “Mohan”.

Fig.6. Database Result for Query – 1 by SDRED

Fig.7. Database Result for Query – 2 by SDRED

Fig.8. Database Result for Query – 3 by SDRED

Figure 8 includes the natural language query 3, where

the user searches the customer with name “Mohan”

(which if directly given to standard SQL query engine

will provide no results for this query, since “Mohan is not

present in the database”), while the proposed SDRED

formulates the SQL query in such a way that all the

names are displayed which contain word “Mohan”, and

then user can easily search particular tuple from the

retrieved result. Table V includes the results of query 4,

where the natural language query 4 is transformed into

the SQL query.

Figure 9 includes the transform of the natural language

query 4 into SQL query. The proposed SDRED first

checks if there is any column with name “Total amount”,

if not, then SDRED formulates SQL query in such a way

that it finds the summation of values under column name

“amount”.

Fig.9. Database Result for Query – 4 by SDRED

Consequently, from the preceding results it is evident

that SDRED not only formulates the SQL queries for

natural language queries, but also checks for the user

mistakes. Accordingly, it corrects them, so that the

formulated SQL queries will not produce erroneous

results to the user. The proposed SDRED system do not

require the database’s user to remember the exact names

of tables and their attributes in a database, because

SDRED automatically replaces the mistaken names of

tables and their attributes by exact and correct names.

From the promising results obtained by the proposed

system, it is recommended to use other natural languages

rather than English in the future. In addition, in future

implementation of all types of SQL queries can be

considered, by which the database user can not only

retrieve, but also can be able to modify the database using

natural language queries. Besides, this proposed

technique can be extended for image retrieval system,

where the Natural language processing technique can

parse the user queries and a back propagation based

neural network can be used to retrieve the images from

database, thereby creating an easy and efficient image

retrieval system.

VII. CONCLUSIONS & FUTURE

In this paper, a smart data retrieval engine for

databases has been reported, which is able to provide an

easy interface to the common database users, who can

type the queries in natural language and finally retrieve

the desired results from the database. All the components

 SDRED: Smart Data Retrieval Engine for Databases 9

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

of proposed intelligent system were discussed in details

and a complete procedure of transforming a natural

language query into SQL query has also been defined.

The main task of the proposed system was to extract

useful information from natural language query and then

use it to construct the corresponding SQL query. The

system has been implemented and multiple queries (in

natural language) were supplied as input. The results

established that the system efficiently converted the

natural language queries into their corresponding SQL

queries. It executed them and finally provided the desired

results to the user. Furthermore, the system automatically

corrected the mistakes (if any) in natural language queries

using semantic matching and distance measurement

techniques, thereby making the complete system easy,

simple and robust.

Also, in future we will increase the applicability of our

proposed system to much more complex natural language

queries (which will generate more complex nested SQL

queries).

APPENDIX A

The notations used in the present work are as follows:

S. No. Notation Meaning Remarks

1 Q or Nq
User’s query in

Natural Language
-

2 WS
Stop Word Training

set

Used to remove

unwanted words

from Nq.

3 a Array of Tokens -

4 Emap
Expression mapping

training set

Used to map
mathematical

expressions.

5 CS
Conjunction
training set

Contains all the
conjunction words.

6 SC Semantic set
Dictionary of

synonyms.

7 Sq SQL query
Generated by

SDRED.

8 T Set of Tokens -

9 WEmap

Word corresponding
to expression in

Emap

-

10 WSC

Word in SC which
matches with

particular word in
Nq

-

11 EEmap
Expression word in

Emap
-

12 SSC
Synonym of

matched word
-

13 Tn
Database Table

name
-

14 An
Database Attribute

name
-

15 MT
Set of Table names

in Meta-Data
-

16 MA
Set of Attributes in

Meta-Data
_

REFERENCES

[1] ElmasriRamez, and Shamkant B. Navathe, Fundamentals

of database systems, Pearson, (2014).

[2] Burleson, Donald K., et al., Handbook of Advanced SQL

Database Programmer, Rampant Tech Press, (2003).

[3] Ma, Zongmin, et al., Intelligent databases: technologies

and applications, IGI Global, (2007).

[4] Weizenbaum, Joseph, ELIZA—a computer program for

the study of natural language communication between

man and machine, Communications of the ACM, vol. 9, no.

1, pp. 36-45, (1966). DOI:10.1145/365153.365168

[5] Ilyasu Anda, Isah Omeiza Radiu, Enesi Femi Amine, “A

safety data model for data analysis and decision making”,

International Journal of Information Engineering and

electronic business (IJIEEB), Vol. 9, No. 4, pp. 21 – 30,

2017. DOI: 10.5815/IJIEEB.2017.04.04.

[6] Harrison John Bhatti, Babak Bashari Rad, “Databases in

Cloud Computing: A literature review”, International

journal of Information Technology and Computer Science

(IJITCS), Vol. 9, No. 4, pp.9-17, 2017. DOI:

10.2815/ijitcs.2017.04.02

[7] ElisaBertino, Barbara Catania, and Gian P. Zarri,

Intelligent database systems, ACM Press, Addison-Wesley,

(2001). ISBN: 0-201-87736-8.

[8] Lewis, David D., and Karen Spärck Jones, Natural

language processing for information retrieval,

Communications of the ACM, vol. 39, no. 1, pp 92-101,

(1996). DOI:10.1145/234173.234210

[9] Daniel Jurafsky, and James H. Martin, Speech and

Language Processing, Pearson, (2000).

[10] Paredes-Valverde, Mario Andrés, et al, ONLI: An

ontology-based system for querying DBpedia using

natural language paradigm, Expert Systems with

Applications, vol. 42, no. 12, pp. 5163-5176, (2015).

[11] Ngamnij, Somjit et al., Semantic ontology mapping for

interoperability of learning resource systems using a rule-

based reasoning approach, Expert Systems with

Applications, vol. 40, no. 18, pp7428-7443, (2013).

DOI:10.1016/j.eswa.2013.07.027

[12] Heeringa, Wilbert, Measuring dialect pronunciation

differences using Levenshtein distance [Dissertation],

Rijksuniversiteit Groningen, (2004).

[13] NF Ayan, ArindamMandal, and Jing Zheng, Clarifying

natural language input using targeted questions, U.S.

Patent 13/866,509, (2013).

[14] Li, Fei, and Hosagrahar V. Jagadish, NaLIR: An

interactive natural language interface for querying

relational databases, Proceedings of the 2014 ACM

SIGMOD international conference on Management of

data. ACM, (2014). DOI:10.1145/2588555.2594519

[15] Damljanović, Danica, et al., Improving habitability of

natural language interfaces for querying ontologies with

feedback and clarification dialogues, Web Semantics:

Science, Services and Agents on the World Wide Web, vol.

19, pp1-21, (2013). DOI:10.1016/j.websem.2013.02.002

[16] Deebha Mumtaz, Bindiya Ahuja, “A Lexical Approach

for opinion Mining in Twitter”, International Journal of

10 SDRED: Smart Data Retrieval Engine for Databases

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 6, 1-10

Education and Management Engineering (IJEME), Vol. 6,

No. 4, pp. 20 – 29, 2016. DOI: 10.5815/ijeme.2016.04.03.

[17] Kaufmann, Esther, and Abraham Bernstein, Evaluating

the usability of natural language query languages and

interfaces to Semantic Web knowledge bases, Web

Semantics: Science, Services and Agents on the World

Wide Web, vol. 8, no. 4, pp377-393, (2010).

DOI:10.1016/j.websem.2010.06.001

[18] I. Habernal, M. Konopík, SWSNL: Semantic web search

using natural language, Expert Systems with Applications,

vol. 40, no. 9, pp3649–3664, (2013).

DOI:10.1016/j.eswa.2012.12.070

[19] Wen-Tau Y., Ming-Wei C., Xiaodong H., Jianfeng G.,

“Semantic parsing via staged query grape generation”,

Microsoft Research, Redmond, WA 98052, USA.

[20] Llopis, Miguel, and Antonio Ferrández, How to make a

natural language interface to query databases accessible to

everyone: An example, Computer Standards & Interfaces,

vol. 35, no. 5, pp 470-481, (2013).

DOI:10.1016/j.csi.2012.09.005

[21] Melyara. Mezzi, Nadjia. Benblidia, “Study of context

Modelling criteria in information Retrieval”, International

journal of Information Technology and Computer Science

(IJITCS), Vol. 9, No. 3, pp. 28-39, 2017. DOI:

10.5815/ijitcs.2017.03.04

Authors’ Profiles

Mir Shahnawaz Ahmad received the

B.Tech. degree in Computer Science and

Engineering from university of Kashmir,

Srinagar, J&K, India, and the M.Tech.

degree in Computer Science and

Engineering from SMVDU, katra, J&K,

India. He is currently working as an

Assistant Professor in SSM college of

Engineering and Technology, Parihaspora

Pattan, J&K, India. His main research focus lies in database

systems, Software Defined Networks, MANETs, IOT and Data

Sciences.

Syed Rameem Zahra received the

B.Tech. degree in Computer Science and

Engineering from university of Kashmir,

Srinagar, J&K, India, and the M.Tech.

degree in Computer Science and

Engineering from SMVDU, katra, J&K,

India. She is currently pursuing the Ph.D.

degree with the department of Computer

Science and Engineering, National

Institute of Technology Srinagar, J&K, India. Her area of

research is database systems, Wireless sensor networks,

VANETs and IoT security.

How to cite this paper: Shahnawaz Ahmad, Syed Rameem

Zahra, "SDRED: Smart Data Retrieval Engine for Databases",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.10, No.6, pp.1-10, 2018. DOI:

10.5815/ijitcs.2018.06.01

