
I.J. Information Technology and Computer Science, 2018, 2, 33-44
Published Online February 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.02.04

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

Phoenix: A Framework to Support Transient

Overloads on Cloud Computing Environments

Edgard H. Cardoso Bernardo
1
, Wallace A. Pinheiro

2
, Raquel Coelho G. Pinto

1

1
Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ, Brazil,

2
Centro de Desenvolvimento de Sistemas (CDS), Brasília, DF, Brazil

E-mail: edgardbernardo@yahoo.com.br, wallace@cds.eb.mil.br, raquel@ime.eb.br

Received: 30 September 2017; Accepted: 17 November 2017; Published: 08 February 2018

Abstract—This paper aims to present a computational

framework capable of withstanding the effects produced

by transient overloads on physical and virtual servers

hosted on cloud computing environment. The proposed

framework aims at automating management of virtual

machines that are hosted in this environment, combining

a proactive strategy, which performs load balancing when

there is not overload of physical and/or virtual machines

with a reactive strategy, which is triggered in the event of

overload in these machines. On both strategies, it is

observed the service level agreement (SLA) established

for each hosted service according to the infrastructure as

a service (IaaS) model. The main contribution of this

paper is the implementation of a computational

framework called Phoenix, capable of handling

momentary overloads, considering the CPU, memory and

network resources of physical and virtual machines and

guaranteeing SLAs. The results demonstrate that Phoenix

framework is effective, and it has outstanding

performance in handling overloads virtual machine

network, which has achieved the isolation of momentary

overload on the physical machine preventing the

propagation of their effects on the cloud.

Index Terms—Cloud Computing, Resource Management,

Load Balancing, Distributed Systems, Virtual Machine.

I. INTRODUCTION

Cloud computing can be defined as a type of parallel

and distributed system, built from a collection of

virtualized and interconnected computers. These are

available dynamically as unified resources having their

services based on services levels [1, 3].

The cloud service model has three types of service

model; Software as a Service (SaaS), Platform as a

Service (PaaS) and Infrastructure as a Service (IaaS). For

SaaS service model, it is available software or

applications that the customer can subscribe and access

from the cloud.

The PaaS offers to the customer a suitable

development platform with tools to be able to support

their needs.

The IaaS is bottom layer of cloud the reference model.

This service model provides the resources (with

computing power: CPU, memory, storage and network)

and abstract into numbers of virtual machines for the

cloud subscribers [18].

In cloud computing environments, there are big sets of

Physical Machines (PMs) containing Virtual Machines

(VMs). This combination allows multifaceted and

dynamic aspects of cloud computing and requires

efficient and optimized techniques for resource

provisioning and load balancing. For this purpose, cloud

monitoring is required to identifying overutilized and

underutilized of PMs which hosting VMs [14].

Mechanisms of vertical and horizontal scaling,

described by [2], should ensure an elastic behaviour to

these environments [4]. However, even in a virtualized

environment, provided by cloud computing, threatens,

extremely harmful to the functionality of services, can

emerge: instability periods, failed related to storage of

data, performance reduction, among others, which can

compromise seriously the credibility of some service

providers.

The Resource Assignment Strategy (RAS) is based on

the integration of activities performed by the cloud

provider to allocate resources available in this

environment to meet the needs of the hosted applications.

It provides the type and amount of resources required at

the time and for the time required for each user

application to complete its work [16].

Transient overloads as flash crowds [5], which can

demand all existent computational resources in a short

period of time, still may cause an eventual interruption of

service, which can lead to a break of contract between

service providers and their clients. These contracts can

stipulate, for example, cloud data center resources (e.g.

CPU, memory, network bandwidth and storage) may be

allocated based on the reduction of energy usage as on

satisfaction of Quality of Service (QoS) requirements

specified by users via SLAs.

Thus far, in cloud environment, there are often

situations of not demand contrast with peak demands for

resources this way, good Resource Allocation Strategy

(RAS) is required. So, an optimal RAS should avoid

resource contention, scarcity of resources, resource

fragmentation and over provisioning [16].

This paper proposes a framework called Phoenix that

combines set of proactive and reactive strategies in order

34 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

to support transient overload caused by flash crowds

using a virtualized environment in cloud computing.

Load balancing of VMs in PMs is used as a proactive

strategy, avoiding premature overload of these machines.

However, once the limits established to PMs are reached

too fast, the reactive strategy is triggered to find the

necessary resources.

After experiments, we conclude that the proposed

algorithms automatically support overloading of

resources. The proposal has proven to be appropriate to

the reality of cloud computing data centers, ensuring the

dynamic allocation of resources in the cloud.

This paper is organized as follows: Section II presents

related work, Section III presents proposed solution,

Section IV discusses about the overload experiments and

finally Section V provides remarks and future research

directions.

II. RELATED WORKS

In cloud environment, there are often situations of peak

demands and non-demand for resources. Hence to match

with these uncertain demands for resources, good

Resource Allocation Strategy is required. It provides an

on-demand services by means of dynamic allocation of

resources to provide reliable and high available services

to the users.

Thus, to balance the level of supply and demanding of

resources, Resource Allocation Strategy must be able to

handle the following issues regarding the resources:

Contention, Fragmentation, Over-provisioning and under-

provisioning. [15]. Those issues have been investigated in

the literature. In addition, it is necessary to take into

account contracts between service providers and

customers, such as SLAs. The above approaches

present some ways for problem mitigation.

Zhen et. al [25] use the predictive load model to predict

future uses of application resources accurately. But they

used this method only in dynamic VM consolidation. If

the expected future load of a server indicates an underuse

of resources, the VM migration will not occur. This

reduces the number of VM migration as well as the

number of false hotspot events. Zhen et. al [25] also

introduced the concept of "skewness" to improve the

overall use of server resources. During migration, this

server is used as a target, which ability can be reduced by

accepting the migrant VM. Unlike the one proposed in

[25], Phoenix considers a server that the server is

overloaded when the server's cumulative load is greater

than the parametrized upper limit. This can prevent

unnecessary migrations from being initiated due to a

momentary increase in resource utilization. The Phoenix

uses a mechanism that accumulates historical data of the

measurements of each resource value and operates a

configurable delay where the value considered is an

accumulated of the measured values as described by

Siberschatz et al. [17]. By doing this, is avoided that

resource utilization peaks are considered as overloads this

mechanism is a cumulative load of the PM server or VM.

In addition, the proposed architecture uses the concept of

distance from the cluster balance range to find a target

host when evaluating migrations.

Khanna et al. [27] monitor the resources (CPU and

memory) of physical and virtual machines. They

proposed the idea of fixed threshold value that would

limit the maximum use of resources. If a feature exceeds

a predefined threshold and there is a chance of SLA

violation, then the system migrates a Virtual Machine

(VM) to another Physical Machine (PM). Phoenix, in

addition to considering the network resource, uses a

similar principle to perform the migration, the lower cost

VM being chosen to be removed from the PM. In

addition, when the network overload occurs, the

migration of the unaffected machines is done, starting

with the lowest cost.

Anton et al. [28] proposed algorithms for efficiently

mapping the energy efficiency of virtual machines to

suitable cloud resources. They created different methods

of VM selection, such as "minimization of migration

policy," "higher potential growth policy," and "random

policy of choice" to choose a migration-specific VM. The

authors suggested that it is not a wise decision to keep the

usage limit set because the workload is changing

continuously. In their subsequent article [33], the authors

proposed Inter Quartile Range (IQR) and Median

Absolute Deviation (MAD) methods to dynamically find

the upper limit of a server.

According to Anton et al. [27], if the current host load

is greater than the upper bound, then it is considered

overloaded. The concept of adaptive boundary works

much better than the static threshold in the dynamic cloud

environment. They also proposed methods such as Local

Regression (LR) and Robust Local Regression (LRR) to

predict the future load, but in those methods, hosts are

considered overloaded only when the intended use is

greater than or equal to 100%. Phoenix considers a

overloaded PM when current and future load is greater

than parameterized upper limit. This can prevent

unnecessary migrations from being initiated due to a

momentary increase in resource utilization. We use an

exponential moving average based prediction technique

[5] which is a cumulative charge of the PM server or VM.

Wood et al. [7] introduced a system called Sandpiper to

automate the task of detecting overloads and determining

a new mapping of physical resources to virtual resources

and initiating the necessary migrations in a virtualized

data center. To ensure that a small transient peak does not

trigger unnecessary migrations, an overhead is only

marked if the thresholds or SLAs are exceeded for a

sustained time. The migration occurs only when at least k

of the most recent observations, as well as the next

predicted value exceeds a threshold. The limit that is

considered in this article is static. The authors use the

automatic regression method to calculate the next

predicted value. After a hotspot detected, the VM whose

maximum volume-to-size (VSR) ratio is migrated. When

the system load is high, it is not possible to migrate to

VM with the highest VSR. In this case, the VM swap

occurs to reduce the load on the cache. According to Zhen

et al. [27] this strategy will not work effectively during

 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments 35

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

the system's peak load, since switching VMs will increase

the migration load unnecessarily. Phoenix uses a similar

method to identify overhead, but being in contrast with

Wood et al. [7], Phoenix migrates to lower-cost VM in

the case of CPU or RAM overhead. In the case of

network overload, the VM that is overloaded remains in

the source PM while the other VMs, in descending order

of volume, are migrated to PMs that are capable of

receiving them.

The VOLTAIC (Volume Optimization Layer to Assign

Cloud) system, as described by Carvalho and Duarte [6],

functions as an autonomous resource manager for the

cloud and aims to increase the quality of service provided

to customers and avoid wasting computational resources

[6]. This system uses controllers based on fuzzy logic to

detect the saturation of PMs and proposes algorithms to

reciprocate VM automatically, considering VM usage

profiles and availability of resources in each PM.

VOLTAIC is compatible with most platforms that support

the libvirt library, such as: Xen [8], VMWare [9] and

KVM [11].

Norman et al. [30] developed a management algorithm

for dynamic allocation of virtual machines to physical

servers. The algorithm is based on measuring historical

data, predicting future demand and remapping VMs to

PMs, and it is subsequently referred to as Measure-

Forecast-Remap (MFR). Time series forecasting

techniques and bin packaging heuristics are combined to

minimize the number of PMs required to support a

workload. In this algorithm, the prediction method is used

to find the resource demand of individual VMs. Based on

predicted values, VMs are organized in descending order

and the first-fit heuristic is used to migrate the VMs.

Conversely, Phoenix is a computational architecture

capable of to support transient overloads, such as flash

crowds, in cloud computing environments. Therefore,

Phoenix uses an algorithm whose automatically manage

PMs and VMs, being able to monitoring resources (CPU,

RAM, Network) of PMs and VMs automatically, manage

VM hosting and handling in PMs, detect and load

transient overloads taking into consideration the SLAs

and finally, it is also able to perform load balancing

between PMs. To detect overloads, the Phoenix uses a

detector that has a configurable trigger that establishes

the limit of use for each PM feature. To measure the

resources of the PMs and VMs it is used a mechanism

that accumulates historical data of the measurements of

each resource value and operates a configurable delay

where the value considered is an accumulated of the

measured values, as described by Siberschatz et al. [17].

By doing this, is avoided that resource utilization peaks

are considered as overloads. Based on this value,

considered decisions are made that result in the

movement of the VM, either to treat a PM overload, the

load balancing or even the identification of the VM

overload. As for movements of the VMs, these are based

on the increasing order of the momentary use of the

resources. For this purpose, the volume of use of the

resources is calculated each VM. Based on the obtained

values, a VM list in ascending order of volume is

established. From this list, VMs are moved as PMs. The

PMs receives VM according to their capacity and it

situation in relation to average capacity of t cluster’s PMs.

Kochut and Beaty [26] proposed an analytical model of

VM migration that provides estimates of the expected

gain in response time due to a migration decision. The

model is based on the M/M/1 queuing model and

considers the characteristics of a virtualized environment,

such as migration costs and overhead, due to the

additional consumption of resources. This VM is selected

for migration that minimizes system response time.

Although it does not use the same algorithm, Phoenix

uses the predictive model based on threshold of hotspot

and or load balancing using cluster equilibrium range.

Arzuaga et. al. [31] presented a new metric that

captures the load of the physical servers according to the

loads of the resident VMs. The load unbalance is

measured by using this metric. The proposed load-

balancing algorithm follows a greedy approach. The VM

that will produce the greatest imbalance metric

improvement is selected for migration. In addition to load

balancing, the VM migration performed by Phoenix will

also make the system more efficient by making the

systems more resilient to transient overloads since all

post-balancing PMs will be within the cluster's

equilibrium range. In this way, all PMs will have similar

conditions to withstand transient overloads.

Andreolini et al. [32] proposed a new management

algorithm to decide on VM overloads in a cloud

environment. Instead of the traditional threshold method,

the authors used the load profile evaluated through a

cumulative sum-based stochastic model. This method

eliminates unnecessary VM migrations due to the

momentaneous increase in load. The traditional best-fit

bin packing algorithm is used for reallocation of the

selected VM. Phoenix also eliminates unnecessary VM

migrations by using a mechanism that accumulates

historical data of the measurements of each resource

value and operates a configurable delay where the value

considered is an accumulated of the measured values as

described by Siberschatz et al. [17]. By doing this, is

avoided that resource utilization peaks are considered as

overloads. In addition, Phoenix also performs load

balancing and PM isolation caused by overloading

network beyond the SLA threshold, possibly because it is

Flash Crowd or even a DDoS.

III. PROPOSED SOLUTION

Phoenix is a framework to deal with transient overload,

such as flash crowds, in cloud computing environments.

This framework automatically manages PMs and VMs

and it is applicable to the model of Infrastructure as a

Service (IaaS) [3].

Phoenix framework executes the following activities:

monitors resources of PMs and VMs automatically,

manages movement and hosting of VMs, detects and

supports transient overloads taking into account SLAs,

and executes the load balance among PMs. Phoenix

framework, showed in Fig.1, is composed of a series of

36 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

components that support three main modules: Monitor,

Analyzer and Configurator (Migrator). Phoenix Admin

Interface helps the administration of these modules,

providing an interface that shows all parameters

monitored by the framework. The components of

Phoenix framework are detailed as follows:

Fig.1. Phoenix Framework

PMi – represents each PM in the framework. PMs host

services provided by the cloud. PM1 up to PMn-1 compose

the cluster of machines that hosts IaaS services and has

its resources managed by the framework. While PM hosts

the Analyzer module, the other machines host the

Monitor and Configurator modules.

VMi – represents each VM in the framework. VMs

execute clients’ applications.

Requisitions Network – corresponds to the network

infrastructure where users do requisitions to services

hosted in VMs.

Control and Migration Network - corresponds to the

network infrastructure where PMs exchange messages

about their status and where VMs are moved (migrated).

Thus, this network is dedicated to the management of the

framework.

Monitor Module – is responsible for gathering

resources information (use of network bandwidth, CPU

processing and memory usage) from PMs and VMs,

registering also the percentage of using (on average) of

these resources.

Analyzer Module – analyzes relevant events generated

by the Monitor module and evaluates the necessity of

migrate VMs. This migration can be caused by: overload

of PM resources, overload of VM resources, or

unbalanced load considering three factors, network

bandwidth, CPU processing and memory usage. Once a

relevant event happens, the Analyzer module sends a

request to the Configurator module.

Hypervisor – is responsible for creating, moving and

destroying VMs, receiving requests directly from the

Configurator module.

Virtualization API – is provided by libvirt library.

This API is related to resources virtualization and it

supports different hypervisors, including KVM that was

chosen as virtualization platform to implement the

proposed framework.

Configurator Module – receives moving requests

from the Analyzer module and uses the Virtualization

API to migrate VMs. It informs the Monitor module

when a VM migration is concluded. The Configurator

also allows the use of different strategies of migration,

defined by the Analyzer module.

Log Files – store information about resources used by

machines related to relevant events in different moments

of the day, as well as messages exchanged by the

framework modules. Each Monitor has a log file.

Configuration File – stores information about the

limits proposed to each VM and PM, based on SLA

established between the service provider and its clients.

As the framework adopts a Black-box approach, the

monitoring is made externally to VMs and PMs. Another

aspect to be highlighted is that the framework can use

different hypervisors.

A. Proposed Solution Operation

Phoenix operation was inspired on OODA loop [11].

There is a strong similarity between OODA loop phases

and the process executed by the framework, such as:

observation of (machines) status, orientation (based on

events), planning and decision about actions to be taken

and, finally, execution of the necessary actions. After this,

the loop is restarted. The dynamic behaviour of Phoenix

is schematically represented in Fig.2.

 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments 37

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

Fig.2. Functioning of Phoenix

The events observed by Monitor module are described

as follows:

Overload of VM Network – it indicates that the

percentage of network bandwidth usage is higher than the

predicted in SLA. The message used by Monitor to

indicates this event is: OVERNETVM.

Overload of PM – it indicates that the percentage of

use of CPU, memory or network bandwidth is higher than

an established limit (typically it is set to 90% of PM

capacity, allowing some time of reaction, before the

machine full capacity be reached). The message used by

Monitor to indicates this event is: OVERLOADPM.

Relevant Event – it denotes some significant variation

related to the PM status. In this case, it may be necessary

to execute a load balance, depending on the comparison

among PM load, the average load of all PMs and some

configurable variation (that can be set in Configuration

File). One or more VMs should be moved to other(s)

PM(s), in order to allow the load balance. The message

used by Monitor to indicates this event is:

RELEVANT_EVENT.

Reachability of VM SLA – it represents that an SLA

related to the usage of CPU, memory or network

bandwidth was reached. Probably, a new SLA should be

established between the service provider and the client, in

order to allow the client VM to support the load. The

message used by the Monitor to indicate this event is:

OVERLOADVM.

One additional message created by Monitor is

MONITOR_INFO used to indicate beginning of the

monitoring operations or restart after a migration.

The monitor only sends messages in the situations

indicated by these events, in order to minimize the

number of messages generated.

Algorithm 1 demonstrates the main actions executed

by Monitor module based on monitored events. The

details about the functions used in the Algorithm 1 are

described after the algorithm.

Input: start_Monitor/stop_Monitor

Output:info_overnetvm(vm_info)/

 info_overloadvm(vm_info)/

 info_overloadpm(pm_info)/

 info_relevant_event(pm_info)

Function Monitor {
WHILE stop_Monitor = 'No'

 get_pm_info()

 pm_CPU=calculate_accu(pm_info, ‘CPU’)

 pm_MEM=calculate_accu(pm_info, ‘MEM’)

 pm_NET=calculate_accu(pm_info, ‘NET’)

 list_vm=get_vm_info()

 WHILE list_pm NOT EQUAL '' ''

 pm_CPU=calculate_accu(pm_info, ‘CPU’)

 pm_MEM=calculate_accu(pm_info, ‘MEM’)

 pm_NET=calculate_accu(pm_info, ‘NET’)

 WHILE list_vm NOT EQUAL '' ''

 vm_CPU=calculate_accu(vm_info,’CPU’)

 vm_MEM=calculate_accu(vm_info,’MEM’)

 vm_NET=calculate_accu(vm_info,’NET’)

 IF vm_net > limit_vm_NET

 SEND TO

 Analyzer(info_overnetvm(vm_info))

 ELSE IF vm_CPU > limit_vm_CPU OR

 vm_mem > limit_vm_MEM

 SEND TO Analyzer

 (info_overloadvm(vm_info))

 END WHILE

 IF (pm_CPU > limit_CPU OR pm_MEM >

 limit_MEM OR pm_NET > limit_NET)

 SEND TO Analyzer

 (info_overloadpm(pm_info))

 ELSE

 IF ((pm_CPU > earlier_pm_CPU +

 relevant_variation OR

 pm_CPU < earlier_pm_CPU –

 relevant_variation)

 OR

 (pm_MEM > earlier_pm_MEM +

 relevant_variation OR

 pm_MEM < earlier_pm_MEM –

 relevant_variation)

 OR

 (pm_NET > earlier_pm_NET+

 relevant_variation OR

 pm_NET < earlier_pm_NET –

 relevant_variation))

 ealier_pm_CPU = pm_CPU

 earlier_pm_MEM = pm_MEM

 earier_pm_NET = pm_NET

 SEND TO Analyzer

 (info_relevant_event(pm_info))

 END IF

 END IF

 END WHILE

END WHILE

}

38 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

The get_pm_info() function obtains information about

the resources (CPU, memory and network) of PMs.

The get_vm_info() function obtains a list of all VMs

and information about their resources (CPU, memory and

network). The information of each VM is stored in a

variable named vm_info.

To avoid transient values of CPU, memory and

network bandwidth, we proposed the use of the

calculate_accu function. It calculates the accumulated

value of each resource considering a reduction factor

according to Silberschatz et al. [17]. It is expressed by the

equation (1):

 () (1)

Where:

 Ni+1 - is a prediction for the next instantaneous

value to be captured.

 μ - is a constant with a value expressed between 0

and 1 (0 < μ < 1), which expresses how much the

snapshot value will be taken into consideration for

calculating the average. It serves as a reducer that

will allow a greater or lesser lag in detection of an

overload.

 - is the captured value of use

of the resource in percentage in iteration i.

 Ni - is the accumulated value of use of the previous

iteration feature.

The info_overnetvm function informs if the network of

a VM is overload.

The info_overloadvm function returns if the limit

given to CPU, memory or network bandwidth of a

VM is reached.

The info_overloadpm function informs if the limit

given to CPU, memory or network bandwidth of a

PM is reached.

The info_relevant_event function returns if a defined

variation of CPU, memory or network of a PM was

reached.

The Analyzer module begins when it receives messages

from the Monitor modules. It is composed of the

following sub-modules: Resource Manager, Decision

Maker and Migration Manager.

The Resource Manager sub-module is responsible

for receiving all messages from the Monitor modules.

After this, it calculates the volume and cost of

migrating each VM, the load of each PM and the

average load of the cluster composed of all PMs. All

this information and the original messages sent by

monitors are then repassed to the Decision Maker

sub-module. If it decides that migrations are

necessary, it informs this decision to the Migration

Manager sub-module.

Therefore, The Analyzer, through the Decision Maker

sub-module, evaluates the information related to VMs

and PMs. A set of rules is used to infer actions to be

taken by the framework. If it is confirmed that the limits

of overload related to a machine (VM or PM) were

reached or if it is necessary to balance the cluster, the

framework will call the suitable action to deal with the

situation. The actions are triggered obeying a priority,

depending on the event impact. Our analysis indicates

that the following ordering of actions should be

obeyed:

(1) Treat Overload of VM (when it receives data

from the info_overnetvm function),

(2) Treat Overload of PM (when it receives data

from the info_overloadpm function),

(3) Treat Relevant Event (when it receives data

from the info_relevant_event function), and

(4) Treat Reachability of VM SLA (when it

receives data from the info_overloadvm function).

The next subsections will detail each action taken

by Analyzer module.

A.1. Action to Treat Overload of VM

This action is quite important because most current

hypervisors, such as Xen [8] and KVM [10] do not limit

the network bandwidth usage. Therefore, it can

jeopardize a PM that support a VM suffering, for instance,

a flash crowd event. In this case, all others VMs hosted in

this PM can also be affected.

We propose a strategy to deal with a VM that

consumes a network bandwidth higher than the

established in SLA. This VM should be kept in its

original PM while others VMs should be migrated. Thus,

if it is necessary, this VM is isolated in one PM ensuring

its SLA. The others VMs can continue working in others

PMs, having also their SLAs protected.

In this process, it is important to follow an ordering of

VMs to be migrated. The VMs are sorted in order of

increasing migration cost. The concept used in this work

was defined in [7]. The idea is to release the resources as

fast as possible, migrating the lower cost machines first.

Regarding the candidate PMs to receive VMs, we

propose to prioritize PMs that have the lower load values

taking as reference the cluster average load. This

procedure aims to keep the cluster as balanced as possible

(and, consequently, minimizing the number of

migrations).

The cluster average load is expressed as the average of

real values obtained of CPU, memory and network

bandwidth usage. We propose that the administrator of

the architecture should define a suitable weight to each

one of these attributes, prioritizing what is more

important depending on the architecture resources. The

equation (2) that defines the Cluster Average Load (CAL)

is:

 (
(eig t) (eig t) (eig t)

(eig t eig t eig t)
)

(2)

Fig.3 presents a simulation of Phoenix behavior when

a VM consumes all network bandwidth of a PM. It also

shows the network usage (percentage) of three PMs (PM1,

 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments 39

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

PM2 and PM3) in three different times (T1, T2 and T3).

VMs are represented in PMs by different colors and

named as: VM1, VM2, VM3, VM4 and VM5. In T1, all

three PMs and their VMs are operating normally. In T2,

VM1 and, consequently, PM1 are overloaded by a flash

crowd event. In T3, VM1 is isolated in PM1, avoiding the

propagation of the problem to other VMs and to the

cluster.

Fig.3. Behaviour of Phoenix when a network bandwidth of a VM

increases beyond its specification in SLA

A.2. Action to Treat Overload of PM

During this action, the strategies to choose which VMs

will be migrated as well PMs that will receive these

machines are similar to the strategies used to deal with

overload of VM network. However, in this case, there are

no VMs overloaded.

The algorithm will move VMs to others PMs that have

the resources to receive them, prioritizing VMs of lower

cost [7]. The specific PMs that will receive VMs will be

selected according to their load values taking as reference

the cluster average load. The number of VMs to be

received by each PM also considers these values.

Therefore, a same PM can receive more than one VM in

order to keep the cluster in balance.

A.3. Action to Treat Relevant Event

This action checks if the cluster is unbalanced,

according to the parameters defined by the administrator

(variation of a PM load in relation to the cluster average

load is higher than a pre-defined value). If this is the case,

it is chosen the PM that has the higher load and a VM (or

VMs) of this machine to be migrated in order to bring

this PM to the balance. Following, it is chosen the PM

that has the lower load to receive the machines. After the

migration, the situation is continuously reevaluated to

check if more migrations are necessary.

A.4. Action to Treat Reachability of VM SLA

A message is sent to the administrator when any

parameter related to VM SLA is reached. This message

will contain the parameters and the corresponding values.

The clients should be advised of the problem by

suggesting changes in the SLA.

B. Message Exchange View

To demonstrate the message flow among the different

elements of Phoenix framework, Fig.4 illustrates some

scenarios divided into five frames. The first frame

indicates the messages exchanged among Monitors and

the Analyzer (MONITOR_INFO). This message starts the

activities. The second frame shows when one Monitor

informs the occurrence of an event to the Analyzer.

Depending on the event, the Analyzer may decide that it

is necessary to migrate a VM to keep the cluster in

balance. The frame three presents a scenario that

generates a message determining a migration

(MIGRATE). The frame four depicts a migration

between two PMs. In frame five, PMn-1 indicates the end

of the migration process through the message

(MIGRATION_FINISHED). Then, the PM that receives

the VM informs its status with a message

(MONITOR_INFO).

Fig.4. Message Flow among Different Elements of Phoenix Framework

IV. EXPERIMENTS

A series of experiments were done in order to analyze

the behavior of Phoenix framework. Fig.5 details the

environment used in the experiments: four computers

(LabC202, LabC203, LabC204, LabC205) containing

twelve VMs; one computer (LabC201) containing the

Analyzer module and an NFS (Network File System)

server; and one computer (LabC206) implementing a load

40 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

generator to simulate the network requisition from clients.

The iperf
1
 [12] program was installed in LabC206 to

simulate network requisitions from clients, and the stress
2

program was installed in four computers (LabC202,

LabC203, LabC204, LabC205) to simulate CPU and

memory requisitions.

Besides, the environment implemented two gigabit

Ethernet networks: one used for clients requisitions

(simulation of load made by the load generator), named

Requisitions Network, and other used by migration and

control, named Migration and Control Network. The

computers that hosted the VMs had two networks cards

each one. The load generator was connected to

Requisitions Network. Finally, the Control Network

connected the Analyzer module and the NFS server to the

Migration module. Table 1 describes hardware, software

features and configurations used on these experiments.

Fig.5. Environment of Experiments

The limits established to PMs (LabC202, LabC203,

LabC204, LabC205) were 80% to CPU, network and

memory. Beyond these limits, any PM is considered

overloaded. VMs (VM1 to VM12) were set to use 1 CPU

core, 1024 MB RAM and a 250 Mbps network card.

The next subsections will detail the experiments:

A. First Experiment: Load Balance

The first experiment aims to analyze the load balance

effectiveness of the Phoenix framework. It demonstrates

the proactive behavior that avoids the overhead of PMs in

situations of regular cluster operation (without major

1 https://iperf.fr/
2 https://launchpad.net/ubuntu/trusty/armhf/stress/1.0.1-1ubuntu1

transient overloads). The proposed algorithm evaluates if

a migration will improve the balance of the cluster.

Migration is performed only if this improvement is

verified.

Table 1. Hardware and Software Configurations

Features of PMs

and VMs
Software Configuration

Analyzer (LabC201):

Intel®Core i5 E7500,

3MB Cache L2, up to
2.93 GHz, 1066 MHz

FSB, 4 cores, 4 GB

RAM, 1Gbps network
card.

- Ubuntu 13.10

- Python 2.7

- SSH
- NFS Server

IP=192.168.7.1

Load Generator

(LabC206):
Intel® Core2Duo, 3Mb

Cache L2, up to 3.0

GHz, 1066 MHz FSB,
4GB Ram de 4GB,

1Gbps network card.

- Ubuntu 13.10
- Iperf (client)

IP=192.168.7.6

PM (LabC202 a

LabC205):

Intel®Core i5 E7500,

3MB Cache L2, up to
2.93 GHz, 1066 MHz

FSB, 4 cores, 4 GB

RAM, enabled
Virtualization

Technology, two 1Gbps

network card.

- Ubuntu 13.10

- Python 2.7
- Libvirt 1.1.1

- Psutil 0.6.1-2

- Qemu-kvm.5.4
- NFS client

- SSH

- Stress 1.0.1
- Iperf (server)

IP=200.20.188.68

to
200.20.188.71

CPU cores=4

Memory
size=4096

Network capacity

= 1Gbps
IP=192.168.7.2 to

192.168.7.5

CPU limit=80%
Memory

limit=80%

Network
limit=80%

VM (VM1 to VM12):

VCPU - 1 core
1GB RAM

250 Mbps network card.

- Ubuntu 13.10

- Stress 1.0.1

- Iperf (server)

 ”V 1 to

“V 12”

IP=192.168.7.101

to 192.168.7.112

CPU SLA = 1
core

Memory SLA =

1024 MB
Network SLA =

250 Mbps

To analyze different balance ranges, the load balance

algorithm was tested with four ranges related to the

cluster average load: 3%, 5%, 8% and 10%.

Initially, in this experiment, twelve VMs were

allocated in only one PM in order to cause an unbalanced

cluster. This experiment was repeated five times to each

range.

To present the experimental results, it was used

Phoenix Admin Interface. the information provided by

this interface considering the initial scenario of this

experiment (all VMs in the same PM). At the top of Fig.6,

PMs graphs are shown. Below each PM, graphs of its

VMs are presented. The x-axis presents the sample

collection time points (in seconds). For each graph, the y-

axis can indicate percentage levels of: network bandwidth

(green line), CPU processing (blue line) and memory

usage (magenta line). Besides, in PM graphs, the y-axis

can also indicate percentage levels of: PM overloads limit

(cyan line), PM load (yellow line) and CAL (1) (red line).

 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments 41

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

After detecting the unbalanced cluster, the algorithm

moved VMs trying to balance the cluster. Table 2

presents the results obtained to the different ranges of

balance. It can be observed that lower ranges demanded

more time and more migrations to generate a balanced

cluster.

In our experiments, the range of 8% presented the best

distribution considering lower time, number of

migrations and standard deviation of VMs per PMs

(standard deviation zero indicates exactly three VMs in

each PM).

Fig.6. Initial Distribution of VMs to the Cluster

Table 2. Experimental Results considering different Ranges of Balance

Range
Average

Number of

Migrations

Average Time
Standard

Deviation of

VMs per PMs

3% 13 3 min and 5 sec 1,2

5% 8 2 min and 38 sec 0,8

8% 8 1 min and 19 sec 0

10% 7 1 min and 10 sec 1,4

Fig.7 shows the final cluster status for the range of 8%.

It is possible to observe that all PMs presented their PM

load near to CAL (1). This fact demonstrates that the

cluster was balanced (lines in yellow compared to lines in

red).

B. Second Experiment: Overload of a VM Network

This experiment started from the balanced clusters

generated by the first experiment considering the range of

8%. Then, an overload of a VM network was created

simulating a flash crowd event in one VM. The algorithm

considered different actions to deal with this situation,

such as:

1. When a VM is overloaded, this VM may not be

held in its PM, migrating firstly VMs of higher

cost (strategy inspired in VOLTAIC);

Fig.7. Final Cluster Status for the range of 8%

2. When a VM is overloaded, this VM may not be

held in its PM, migrating firstly VMs of lower cost

(strategy inspired in Sandpiper); and

3. When a VM is overloaded, this VM is held in its

PM, migrating firstly VMs of lower cost (strategy

proposed by Phoenix framework);

The first strategy did not isolate the overloaded VM in

the original PM. It was observed that, initially, as the

overload VM had a relative lower cost related to other

VMs, it was migrated. After a period of time, the

overloaded VM became the higher cost VM and it was

migrated repeatedly among PMs avoiding the correct

operation of the cluster, causing damages to all PMs and

VMs. In this process, SLAs of several VMs could not be

supported. In VOLTAIC strategy [6], it is proposed to

allocate, as the final destination a PM that can support all

anomalous VMs. But, doing this, SLAs of these VMs

allocated in the same PM will eventually be not supported.

The second strategy also did not isolate the overloaded

VM in the original PM. It caused unnecessary migrations

as observed in the first strategy, jeopardizing the

operations of other VMs and PMs. After a period of time,

when the overload VM became the highest cost VM and

occupied all resources of the host PM, this strategy

isolated this VM in one PM.

The third strategy was quite effective, because it

isolated the overload VM in a PM since the beginning,

avoiding the migration of this VM through the cluster and

the negative effects of this migration (overload of

different PMs). At the same time, it migrated the others

VMs to PMs, allowing their regular operation. Doing this,

all VMs have their SLAs respected once they were

42 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

allocated to PMs with sufficient resources.

The iperf generated a traffic of about 300Mbps, while

the VMs network limit was 250Mbps. This caused a

network overload at VM8. Fig.8 shows the increase of the

network bandwidth usage in VM8 during this experiment.

It should be highlighted that labc203 presented a slightly

lower PM load than the other PMs.

Fig.8. VM Network Overload - Initial State

Once the overload was detected, Phoenix framework

started to migrate VMs that were not overloaded. Fig.9

shows the status of the cluster after VM9 was migrated. It

is possible to see that the VM8 network limit was reached

(100%). Therefore, the labc202 load (showed in yellow)

is higher than PMs load in other machines.

Fig.9. VM Network Overload - Intermediate State

Finally, Fig.10 shows the final status of the cluster

after the last migration (VM12). Thus, VM8 was isolated

in labc202. It is possible to notice that the two VMs

migrated were sent to labc203. It is worth to remember

that this machine presented initially a lower load than the

others. Because of that, the cluster was balanced after the

migration, considering a PM load variation of 8% related

to the CAL (1).

Fig.10. VM Network Overload - Final State

V. CONCLUSION

This paper proposed the combination of proactive and

reactive strategies through a framework called Phoenix.

Those strategies minimize the effect of momentary

overloads in a cloud environment. Phoenix is divided into

three main modules. The first one is the Monitor module

that interacts with libvirt and gets the statistics of each

physical and virtual machine monitored and stores this

information. The second is the Analyzer module that uses

the profiles of PMs and VMs obtained through Monitor

to establish the strategy to be adopted for each situation.

The third module is the Configurator which implements

the strategies defined by the Analyzer in virtualized

environment using the libvirt. The Analyzer module

performs resource reallocation algorithms. The

algorithms analyze PMs and V s profiles and establis

patterns of behavior. Based on observed behaviors, PMs

that best suit to the demands of the VMs are chosen. In

addition, Monitor detects when PMs are in situations of

saturation and fire engines that try to ease the burden of

PMs to avoid the degradation or even isolate VMs with

network overload to avoid breakage of any SLA.

The experimental results showed the heuristics

effectiveness and load balancing support for PMs and

VMs overload with automatic firing profile survey

algorithms, analysis and VMs migrations. Algorithms

select physical and virtual machines in a situation of

saturation as candidates of better conditions relocations.

The results show that the application of heuristics and

migration selection algorithms allow the containment of

 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments 43

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

PMs network feature. Therefore, in the experiments

carried out, the proposal proved to be adequated to the

reality of cloud computing data centers, ensuring the

quality of service. In addition to the proposal for dynamic

allocation of resources in the cloud, this architecture

brings as a contribution to the implementation of a

strategy for containing overloads in virtualized

environments. Based on the results, we can conclude that

Phoenix is an effective proposal for dynamic reallocation

of virtual elements on physical servers.

There are some features that should be highlighted in

Phoenix and its competitor’s arc itectures. ese features

help to minimize the effects produced by the transient

overloads on physical and virtual servers hosted on

cloud computing environments. It is noteworthy that

Phoenix groups a set of features that do not exist

simultaneously in other approaches. Highlighting the

strategy that isolates a VM, when its network bandwidth

usage increases beyond its specification in SLAs. If all

network bandwidth of a PM is requested by one VM, the

others VMs are migrated.

As future work, we intend to use Multi-Criteria

Analysis to better qualify/prioritize CPU, memory and

network resources usage. We also intend to study the use

of predictive algorithms to analyze and identify profiles

of PMs and VMs with larger trends overload in order to

minimize the impact of overload on the virtualized

environment. Besides, it is possible to perform an

optimization in the load-balancing algorithm

consolidating VMs in a minimum number of PMs. This

would enable the optimization of PMs in order to save

energy (green computing).

REFERENCES

[1] Rajkumar Buyya, et al. Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation computer

systems, v. 25, n. 6, p. 599-616, 2009.

[2] Rewehel E, M. Mostafa, M.-S. M. A Survey on Load

Techniques in Cloud Computing. Internacional Journal of

Engineering Research & Technolgy (IJERT), v. 3, n. 2, p.

178–183, 2014.

[3] Mell, Peter, Grance, Timothy. The NIST definition of

cloud computing, recommendations of the national

institute of standards and National Institute of Standards

and Technology, p. 800-145, 2011.

[4] Weber, Andreas et al. Towards a Resource Elasticity

Benchmark for Cloud Environments. In: 2nd International

Workshop on Hot Topics in Cloud Service Scalability

(HotTopiCS 2014). ACM, 2014.

[5] Pan C, M. Atajanov. Flash Crowds Alleviation via

Dynamic Adaptive Network. In: Proceeding of Internet

Conference 2004. p. 21-28, 2004.

[6] Carvalho, Hugo E. T. Duarte, Otto Carlos. "VOLTAIC:

volume optimization layer to assign cloud resources."

Proceedings of the 3rd International Conference on

Information and Communication Systems. ACM, 2012.

[7] Wood, Timot. et al. Sandpiper: Black-box and gray-box

resource management for virtual machines. Computer

Networks, v. 53, n. 17, p. 2923–2938, dez. 2009.

[8] Barham, Paul et al. Xen and the art of virtualization.

ACM SIGOPS Operating Systems Review, v. 37, n. 5, p.

164-177, 2003.

[9] Eduard Bugnion, et al. Bringing Virtualization to the x86

Architecture with the Original VMWARE workstation.

ACM Transactions on Computer Systems (TOCS), v. 30,

n. 4, p. 12, 2012.

[10] Boyd, John R. The essence of winning and losing.

Unpublished lecture notes, 1996:< http://defence and the

national interest. d-n-i-net> Acess in 2017, February 4.

[11] A. Kivity, et al. KVM: the linux virtual machine monitor.

Proceedings of the 2007 Linux Symposium, p. 225–230,

2007.

[12] Iperf-fr. IPERF.:The TCP/UDP Bandwidth Measurement

Tool. < https://iperf.fr//>.

[13] Zhao Y. Z. Y, Huang W H. Adaptive Distributed Load

Balancing Algorithm Based on Live Migration of Virtual

Machines in Cloud. 2009 Fifth International Joint

Conference on INC, IMS and IDC, 2009.

[14] Amanpreet Kaur, Bikrampal Kaur, Dheerendra

Singh,"Optimization Techniques for Resource

Provisioning and Load Balancing in Cloud Environment:

A Review", International Journal of Information

Engineering and Electronic Business(IJIEEB), Vol.9,

No.1, pp.28-35, 2017. DOI: 10.5815/ijieeb.2017.01.04

[15] Pooja S. Kshirsagar, Anita M. Pujar,"Resource Allocation

Strategy with Lease Policy and Dynamic Load Balancing",

International Journal of Modern Education and Computer

Science(IJMECS), Vol.9, No.2, pp.27-33, 2017.DOI:

10.5815/ijmecs.2017.02.03

[16] V. Vinot ina, R. Sridaran, and . Ganapat i, “ survey

on Resource Allocation Strategies in Cloud Computing,”

International Journal of Advanced Computer Science and

Applications, vol. 3, no. 6, pp. 97–104, 2012.

[17] A. Silberschatz, P. Galvin, G. Gagne, Operating System

Concepts Essentials, 2nd, Wiley Publishin g, 2013.

[18] M. Mohamaddiah, A. Abdullah, S.Subramaniam, & M.

Hussin. “ Survey on Resource llocation and

Monitoring in loud omputing,” International Journal of

Machine Learning & Computing, vol. 4, no. 1, pp. 31–38,

2014.

[19] Zoha Usmani, Shailendra Singh, A Survey of Virtual

Machine Placement Techniques in a Cloud Data Center,

In Procedia Computer Science, Vol 78, 2016, Pages 491-

498, ISSN 1877-0509.

[20] Sunilkumar S. Manvi, Gopal Krishna Shyam, Resource

management for Infrastructure as a Service (IaaS) in cloud

computing: A survey, In Journal of Network and

Computer Applications, Volume 41, 2014, Pages 424-440,

ISSN 1084-8045.

[21] Dillon, Tharam; WU, Chen; CHANG, Elizabeth. Cloud

computing: issues and challenges. In: Advanced

Information Networking and Applications (AINA), 2010

24th IEEE International Conference on. IEEE, 2010. p.

27-33.

[22] Parikh S, M. A survey on cloud computing resource

allocation techniques. Nirma University International

Conference on Engineering (NUiCONE); Ahmedabad.

2013. p. 1-5.

[23] J. M. Galloway, K. L. Smith, and S. S. Vrbsky. Power

Aware Load Balancing for Cloud Computing. In

Proceedings of the World Congress on Engineering and

Computer Science, volume 1, pages 19-21, 2011.

[24] Sunilkumar S. Manvi, Gopal Krishna Shyam, Resource

management for Infrastructure as a Service (IaaS) in cloud

computing: A survey, In Journal of Network and

Computer Applications, Volume 41, 2014, Pages 424-440,

ISSN 1084-8045.

[25] Xiao Zhen, Song Weijia, Chen Qi "Dynamic Resource

Allocation Using Virtual Machines for Cloud Computing

https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&sqi=2&ved=0CBwQFjAA&url=https%3A%2F%2Fiperf.fr%2F&ei=_vTbU7vWDovIsASG54KwBA&usg=AFQjCNHMVfyMLFT35mg9ZoEbfrC5q4xKnw
https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&sqi=2&ved=0CBwQFjAA&url=https%3A%2F%2Fiperf.fr%2F&ei=_vTbU7vWDovIsASG54KwBA&usg=AFQjCNHMVfyMLFT35mg9ZoEbfrC5q4xKnw

44 Phoenix: A Framework to Support Transient Overloads on Cloud Computing Environments

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 2, 33-44

Environment," in IEEE Transactions on Parallel and

Distributed Systems, vol. 24, no. 6, pp. 1107-1117, June

2013.doi: 10.1109/TPDS.2012.283.

[26] Kochut Andrzej, Beaty Kirk. On Strategies for Dynamic

Resource Management in Virtualized Server

Environments. In: 15th IEEE International Symposium on

Modeling, Analysis, And Simulation of Computer And

Telecommunication Systems, October; 2007. p. 193–200.

[27] Khanna Gunjan, Beaty Kirk, Kar Gautam, Kochut

Andrzej. Application performance management in

virtualized server environments. In: Proc of network

operations and management symposium, 10th IEEE/IFIP;

2006. p. 373–81.

[28] Beloglazov Anton, Abawajy Jemal, Buyya Rajkumar.

Energy-aware resource allocation heuristics for efficient

management of data centers for cloud computing. Future

Gener Comput Syst 2011:755–68. Elsevier.

[29] Srikantaiah Shekhar, Kansal Aman, Zhao Feng. Energy

aware consolidation for cloud computing. Clust Comput

2009; 12:1–5.

[30] Bobroff Norman, Kochut Andrzej, Beaty Kirk. Dynamic

placement of virtual machines for managing SLA

violations. In: 10th IFIP/IEEE International Symposium

on Integrated etwork anagement, I ’07. I ; 2007.

p. 119–27.

[31] Arzuaga Emmanuel, Kaeli David R. Quantifying Load

Imbalance on Virtualized Enterprise Servers. In:

WOSP/SIPE ’10. ; 2010. p. 235–42. January.

[32] Andreolini Mauro, Casolari Sara, Colajanni Michele,

Messori Michele. Dynamic Load management of Virtual

Machines in a Cloud Architectures. In: Cloudcomp 2009,

LNICST 34; 2010. p. 201–14.

[33] Beloglazov Anton, Buyya Rajkumar. Optimal online

deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic consolidation

of virtual machines in Cloud Data Centers. Concurr

Comput: Pract Exper 2012:1397–420. Wiley InterScience.

Authors’ Profiles

Edgard H. C. Bernardo received his MSc

in systems and computing at the Military

Institute of Engineering (IME). He works at

the Military Institute of Engineering (IME).

His research interest is Cloud Computing

focusing Virtualized infrastructures,

Algorithms and Systems Development.

Wallace A. Pinheiro received his D.Sc. in

Computer Science from Federal University

of Rio de Janeiro in 2010. He works at the

Centro de Desenvolvimento de Sistemas

(CDS), the Center of Technology and

Science of the Brazilian Army, in Brasília,

Brazil. His current research interest includes:

information retrieval, cloud computing, data

quality and data mining.

Raquel C. G. Pinto received his PhD in

systems engineering and computing at the

Federal University of Rio de Janeiro

(UFRJ). She is an associate professor at

the Section of Mathematics and Systems

Engineering, Military Institute of

Engineering (IME).

How to cite this paper: Edgard H. Cardoso Bernardo, Wallace

A. Pinheiro, Raquel Coelho G. Pinto, "Phoenix: A Framework

to Support Transient Overloads on Cloud Computing

Environments", International Journal of Information

Technology and Computer Science(IJITCS), Vol.10, No.2,

pp.33-44, 2018. DOI: 10.5815/ijitcs.2018.02.04

