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Abstract—The growth of data traffic on the web, the 

virtualization of services, and the changes in the pattern 

of traffic between users and data centers have led to a 

reassessment of the current methods of doing network 

administration. Software Defined Networks (SDNs) 

propose a paradigm that delegate the control of packets 

and flows to applications, developed according to specific 

requirements, where the OpenFlow protocol can be used 

for communications. The development of this type of 

applications, as in any other development area, requires 

tests and measurement tools to facilitate a performance 

evaluation. However, the current open-source 

performance measurement applications for SDN 

networks cover only very basic characteristics, while 

there is a wide range of SDN controllers with support to 

many versions of OpenFlow, making the selection of the 

controller a difficult point to address. In this paper, we 

propose a distributed performance evaluation tool for 

SDN controllers, that can assess the throughput, latency, 

percentage of memory consumption, percentage of CPU 

utilization, and consumption in kB for input/output 

interfaces, using OpenFlow version 1.3. Our tool is based 

on Cbench, and adds new functionalities such as the 

graphical representation of results to analyze the 

outcomes. To validate our tool, we make a performance 

evaluation of well-known SDN controllers such as Ryu, 

OpenDaylight, OpenMUL, and Floodlight, in 

environments under great stress of requests. 

 

Index Terms—SDN, SDN Controller, OpenFlow, 

Performance Evaluation, Ryu, OpenDaylight, OpenMUL, 

Floodlight. 

 

I.  INTRODUCTION 

SDN (Software Defined Networking) [1,2] is a new 

paradigm to experiment and cover new requirements, 

without interrupting the existing networks, that is leading 

to innovative network architectures and management 

systems. In SDN networks, the intelligence is logically 

centralized in the controllers, which support several 

protocols and standards for communication with the 

managed devices, where OpenFlow [3-5] seems to be the 

more common. OpenFlow is an emerging and open 

protocol that allows the controllers to communicate with 

OpenFlow switches, to create the forwarding path for 

flows of packets, inside networks. 

Many SDN controllers have been proposed with 

diverse characteristics. Hence, it can be difficult for a 

network administrator to make a decision about which 

controller to select. An objective evaluation will be very 

helpful, that should include performance measures. As 

evidenced, a tool to evaluate the performance of SDN 

controllers can facilitate decisions. 

In this research work, we propose a distributed 

performance evaluation tool for SDN controllers, using 

OpenFlow as the communication protocol. With our tool, 

users can assess the throughput, latency, percentage of 

memory consumption, percentage of CPU utilization, and 

consumption in kB for input/output interfaces, of SDN 

controllers. We used our benchmarking tool to compare 

four famous SDN controllers: OpenDaylight, Ryu, 

Floodlight, and OpenMUL. Our experiments show that 

OpenMUL and Floodlight have a similar performance. 

The lowest results were obtained by Ryu. We also 

validated our tool with Cbench, a famous open-source 

program to assess SDN controllers. 

The paper is structured as follows. Section II discusses 

the related works. In Section III, we introduce the 

concepts related to SDN. Section IV describes the main 

features of the OpenFlow protocol. We introduce the 

most popular SDN controllers available and use them to 

validate the operation of our assessment tool, in 

Section V. Section VI describes the architecture, 

development, and functionalities of the proposed 

measurement tool. We discuss the results achieved in our 

tests in Section VII. Finally, Section VIII concludes the 

paper and gives directions for future work. 

 

II.  RELATED WORKS 

Many works have been done to compare SDN network 

controllers with respect to architecture, efficiency, and 

controllers’ features. For example, the authors of [6] 
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discussed five different versions of OpenFlow switch 

standard (1.0, 1.1, 1.2, 1.3, and 1.4), four different 

platforms for simulation and emulation of SDN (Mininet, 

EstiNet, ns-3, and Trema), seven types of controllers 

(NOX, POX, Floodlight, OpenDaylight, Ryu, Mul, and 

Beacon), and different switch software and tools. 

However, there are just a few works that contrast them in 

the area of performance evaluation. 

Hassan and Ahmed [7] developed Cbench, an open-

source tool to evaluate the performance of OpenFlow 

controllers. The authors realized experiments to measure 

the performance and latency in testbeds with different 

amounts of SDN switches controlled by a single SDN 

controller, ranging from 1 switch to 128 switches. In the 

performance tests, “Packet-In” messages were sent to 

measure the stress capacity supported by the controller. 

The aim was to obtain the maximum number of messages 

that can be handled by the controller in a specific amount 

of time. Hassam and Ahmed experimented with six SDN 

controllers: NOX, Beacon, Floodlight, Maestro, 

OpenMUL, and OpenIRIS. 

Jarschel, Lehrieder, Magyari, and Pries [8] presented 

OFCBenchmark, an OpenFlow benchmarking tool that 

creates a set of virtual switches, which can be configured 

independently from each other to emulate a certain 

scenario, and can keep their own statistics. 

OFCBenchmark provides statistics of response rate, 

response time, and number of unanswered packets for 

each switching device. Unlike Cbench [7] which offers 

aggregated statistics of controller throughput and 

response time for all the switching devices, 

OFCBenchmark gives fine-grained statistics for 

individual switching devices. 

In their work, Darianian, Williamson, and Haque [9] 

conducted an experimental evaluation of two open-source 

distributed OpenFlow controllers (ONOS and 

OpenDaylight), using Cbench. They reported throughput, 

latency, and thread scalability of these two controllers in 

both physical and virtualized (OpenStack) environments. 

The experimental results show that ONOS provides 

higher throughput and lower latency than OpenDaylight, 

which suffers from performance problems on larger 

networks. 

In [10], Xiong, Yang, Zhao, Li, and Li proposed a 

novel analytical performance model of OpenFlow 

networks based on queueing theory. They modeled the 

packet forwarding of OpenFlow switches and the 

“Packet-In” message processing by the SDN controller, 

as the queueing systems MX/M/1 and M/G/1, 

respectively. Subsequently, they built a queueing model 

of OpenFlow networks in terms of packet forwarding 

performance and solved its closed-form expression of 

average packet sojourn time and the corresponding 

probability density function. 

Bholebawa and Dalal [11] made a performance 

evaluation of two famous SDN controllers (POX and 

Floodlight) by analyzing network throughput and round-

trip delay using Mininet [12,13], an efficient network 

simulator. They used four topologies (single, linear, tree, 

and user-defined) to connect the switches together, and an 

external controller. According to their experiments, 

Floodlight outperforms POX, for both round-trip time 

and throughput. 

Rowshanrad, Abdi, and Keshtgari [14] evaluated 

Floodlight and OpenDaylight, in terms of latency and loss, 

with Mininet. They used different topologies (single, 

linear, and tree) and network loads. Their results show 

that OpenDaylight outperforms Floodlight in low loaded 

networks and also for tree topologies in mid-loaded 

networks in terms of latency. Furthermore, Floodlight can 

outperform OpenDaylight in heavily loaded networks for 

tree topologies in terms of packet loss, and in linear 

topologies in terms of latency. The authors also 

concluded that there is no significant difference in 

performance between Floodlight and OpenDaylight in 

other cases. 

In [15], Wang, Chiu, and Chou used the EstiNet 

OpenFlow network simulator and emulator to compare 

two open-source popular OpenFlow controllers - Ryu and 

NOX. They studied the behavior of the controllers when 

they control a network with loops and how quickly they 

can find a new routing path for a greedy TCP flow after a 

link’s status has changed. Their simulation results show 

that (1) Ryu results in the packet broadcast storm problem 

in a network with loops; (2) Ryu and NOX have different 

behavior and performance in detecting link failure and 

changing to a new routing path. 

 

III.  SOFTWARE DEFINED NETWORKING 

Since their creation, communications networks have 

required management. Initially, it was a difficult task, 

given the number of different network devices (switches, 

routers, firewalls, etc) from different manufacturers and 

with different configuration environments. To facilitate 

the task, network administration protocols emerged (e.g., 

SNMP [16]) that solved the problem of the numerous 

manufacturers, but were very limited in relation to the 

direct administration of devices with proprietary 

protocols and interfaces, hence, making it impossible to 

maintain a single interface for administration. 

In response to the need to improve the administration 

and versatility of networks, Software Defined Networks 

(SDNs) [1,2] were developed. They are founded on a set 

of techniques to make the networks programmable. The 

traditional architecture of the network devices is modified 

and now consists of two planes: data and control. 

In a conventional network, when a packet arrives at a 

switch, the rules integrated into the proprietary firmware 

of the switch decide what to do with the packet. Through 

the same output port, the switch forwards all the packets 

of a flow to the same destination. In an SDN network, it 

is possible to have access to the switch flow tables, in 

order to modify, eliminate, or add new flow rules, which 

allows controlling the traffic of the network in a dynamic 

way. 

SDN is a new paradigm that separates the control plane 

from the rest of the layers of the devices as shown in 

Fig.1 [8]. Most data are processed only by the data plane 

of the switches; this plane consists of a series of ports that 
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are used for the reception and retransmission of data, 

according to the flow tables. Thus, the data plane is 

responsible for the reception, storage, and dispatch of 

data, together with the modification of headers when 

necessary. 

 

 

Fig.1. Architecture of SDN. 

The control plane is physically separated from the 

SDN switches, so that routing decisions are made outside 

the switches, in a centralized device known as the SDN 

controller, dedicated to answering requests from SDN 

switches, and configured through APIs. 

The logical structure of a software defined network is 

shown in Fig. 2 [17]. As previously stated, the central 

controller performs all complex functions, including 

routing, policy declaration, and security checks. This 

constitutes the SDN control plane, and consists of one or 

more SDN servers. 

 

 

Fig.2. Logical Structure of Software Defined Networking. 

As soon as a packet arrives at the network device, it 

looks for a match in its flow table. If the table has an 

entry for this flow, it forwards the packet through the 

indicated output port. If there is no entry in its flow table, 

the network device encapsulates the packet and sends a 

request to the SDN controller (Packet-In). According to 

its policies, the SDN controller decides whether the flow 

is permitted in the network. If so, it finds a path for this 

flow in the network and adds the necessary entries in the 

flow table of each node of the chosen path. Subsequently, 

the network devices forward the packet based on the 

entry of the flow table specified by the controller. 

With all the complex functions absorbed by the SDN 

controller, the network devices (SDN switches) only 

handle the data flows, with the entries in their flow tables. 

The communications between the SDN controller and the 

other network devices are made through standardized 

protocols (Southbound protocols); one of the most 

common is the OpenFlow [3-5] protocol. The controller 

is responsible for handling the flow tables of the network 

devices. The management of the SDN controller is done 

through a flexible API, that facilitates a dynamic behavior 

of the network, without having to deal with low-level 

aspects of the network. 

In the application layer, network developers can design 

programs that perform various tasks without needing to 

know how the network devices operate, so they can 

abstract these concepts and be dedicated solely to the 

development of the logic of the applications. This allows 

a faster development and deployment of new applications 

that direct network flows to meet specific needs in terms 

of security or performance. 

 

IV.  OPENFLOW 

OpenFlow [3-5] is an open standard designed as a 

communication protocol between the control and data 

planes of SDN. It was developed at Stanford University 

in 2008 [18] with the purpose of allowing research and 

innovation on existing infrastructures, under the usage of 

multiple flows, that do not interfere with production 

traffic. 

SDN promotes the centralization of the control plane 

and creates multiple flows with programmable 

characteristics defined through a high level of abstraction. 

Hence, through OpenFlow, users can experiment with 

new protocols to test the current paradigms that define the 

way in which we define and create networks. OpenFlow 

is based on the premise that the control plane should be 

separated from the data plane. In the architecture, the 

controller takes care of the control plane, and the network 

devices (SDN switches) maintain the data plane, both 

intercommunicating through the OpenFlow protocol, as 

can be seen in Fig. 3. 

 

 

Fig.3. Structure of OpenFlow. 

OpenFlow switches are categorized into two groups, (1) 

“dedicated” and (2) “hybrid”. Those that fall into the first 
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group are unable to perform common layer 2 and layer 3 

processing, and those that enter the last group are 

common switches and routers, with added support for the 

OpenFlow protocol. The OpenFlow ports are similar to 

network interfaces for the transfer of packets. They can 

be classified as physical, logical, and reserved, where the 

last two ones are virtual ports. Therefore, OpenFlow 

defines a number of available ports for processing, which 

does not necessarily match the number of physical 

interfaces in the switch. 

An OpenFlow switch has at least one flow table, where 

an action is associated with each entry in the table, and a 

secure channel that allows communications with the 

controller [19]. These tables outline the OpenFlow flows 

that define the data plane. For a switch to achieve high 

performance at low cost, the entries are based on flows, 

instead of packets. Each flow entry has a series of 

associated instructions. These may involve the 

modification of the actual packet or the list of actions. 

Some of the instructions can redirect the packet 

(including new metadata and updated fields) to another 

table where it will be treated in the same way. If the 

searching process in the flow table does not result in a hit, 

the actions of the switch will depend on the instructions 

defined in case of failure. This entry specifies the series 

of actions to perform when the incoming packet does not 

meet any of the entries in the table [20]. 

Packets are accompanied by a group of actions, 

initially empty. The flow entries modify this group with 

instructions that can add actions such as Write-Action. 

This group of actions follows the packet through tables 

and can be modified in each table until the end of the 

navigation. When the navigation is finished, all the 

actions of the group will be executed. 

The OpenFlow messages that allow the communication 

between the SDN switches and the controller are 

exchanged on a secure channel. The messages start with 

the OpenFlow header. This header specifies the version 

of the OpenFlow protocol, the type of message, the length 

of the message, and the transaction ID of the message 

[21]. The OpenFlow protocol defines three message types, 

each with multiple subtypes: 

 

 Controller-to-switch: These messages are initiated 

by the controller to handle or inspect the state of a 

switch and may or may not require a switch 

response. 

 Symmetric: They are messages sent without prior 

request, in both directions. Hello messages are 

typically sent back and forth between the 

controller and switches when the connection is 

first established. Echo request and reply messages 

can be used by either the switches or controller to 

measure the latency or bandwidth of a controller-

switch connection. 

 Asynchronous: These are messages sent to the 

controller without having been previously 

requested, since they communicate the arrival of 

packets, changes of states, or errors. A typical 

example is the Packet-in messages, which may be 

used by a switch to send a packet to the controller 

when there is no flow-table match. 

 

Although it is usual to talk about OpenFlow in IP 

networks, it is not necessary for the packets to have any 

special format as long as the flow tables can compare the 

fields of the packet header. This allows the 

experimentation with new addresses, routings, and 

naming schemes. For example, a flow can be identified 

through the MAC addresses using a new value in the 

EtherType field, or at the IP level with a new IP 

version[22]. 

 

V.  SDN CONTROLLERS 

The controller is the main element of an SDN network 

and is considered as its operating system. The controller 

centralizes the decisions for all the communication that 

passes through the devices and provides an overview of 

the network. A general description of an SDN controller 

would be: software system or collection of systems that 

together provide [23]: 

 

 A management of the state of the network 

 A high-level data model that captures the 

relationship between managed resources, policies, 

and other services provided by the controller. 

 An application programming interface which 

exposes the services offered by the controller for 

applications. 

 

To validate our performance measurement tool, we use 

several SDN controllers: OpenDaylight, Floodlight, Ryu, 

and OpenMUL. The choice was based on the supported 

features, the commercial competitiveness, the current use 

of the controller in projects in development or networks 

already established for production, and its future 

projection. 

A.  OpenDaylight 

OpenDaylight is an open source collaborative project, 

carried out by the Linux Foundation in collaboration with 

numerous companies in the area of computing and 

networking such as Cisco Systems, Dell, Ericsson, HP, 

Intel, etc. OpenDaylight can be the central component of 

any SDN architecture, allowing users to reduce 

operational complexity, extend the lifetime of existing 

networks, and enable new services and capabilities only 

available in SDN. 

The OpenDaylight project is one of the most recent 

projects to develop an open-source SDN controller. 

OpenDaylight is developed in Java, has several 

distributions, and a series of complements whose 

objective is to allow a more transparent interaction with 

the controller. For example, OpenDaylight can work with 

Karaf [24,25], a generic platform that provides high-level 

functions and services designed specifically for the 

creation of servers based on OSGi [26,27] (Open Service 

Gateway Initiative). OSGi is a modular system and a 

service platform for the Java programming language. It 
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allows Java packages to be remotely installed, started, 

stopped, updated, and uninstalled without requiring a 

reboot, in a simple way. 

By default, OpenDaylight does not install specific 

functionalities. After the installation of the controller, the 

additional functionalities can be installed using the Karaf 

console. Through Karaf, users can select the required 

functionalities from a list that is comprehensive enough 

to suit most network environments. 

OpenDaylight is an infrastructure in which the 

southbound, located on the border with network elements, 

can work with multiple protocols, such as OpenFlow 1.0 

and 1.3, BGP-LS, etc. Another important feature of its 

architecture is the SAL (Service Abstraction Layer), 

which exposes services to the superior modules, and 

complies with the requested services, independently of 

the underlying protocol that is used between the 

controller and the network devices. This provides 

protection against protocol changes or versions changes 

of the same protocol, over time. Fig. 4 [28] depicts the 

structure of the OpenDaylight controller. 

 

 

Fig.4. Architecture of OpenDaylight. 

B.  Ryu 

Ryu is used for managing flow control to enable 

intelligent networking [29]. On the one hand, it is known 

as an open source framework for building SDN 

applications. On the other hand, it is also known as a 

NOS (Network Operating System) that not only supports 

the management of OpenFlow devices, but also allows 

users to work with devices through NETCONF [30], 

OVSDB (Open vSwitch Database Management Protocol), 

sFlow [31], NetFlow [32,33], VRRP [34] (Virtual Router 

Redundancy Protocol), and SNMP [16] (Simple Network 

Management Protocol). 

Ryu has a design inspired by the construction of 

monolithic controllers, with a component-based 

architecture that offers greater scalability at the cost of 

efficiency, since it is implemented in the Python 

programming language. Ryu supports a wide variety of 

OpenFlow versions in the range [1.0, 1.4]. Fig. 5 shows 

the general architecture of Ryu. 

Ryu applications are entities that implement multiple 

functions of Ryu based on components and libraries, such 

as the OpenFlow controller, the topology viewer, the L2 

switch, the firewall, etc. The framework offers a useful 

and comprehensive group of these components, that can 

be modified and grouped, with the ability to communicate 

with other components. The creation of new components 

does not tie the component to a single language, since the 

communication is done with standard messages. 

 

 

Fig.5. Architecture of Ryu. 

C  Floodlight 

Floodlight is an OpenFlow controller written in Java 

under the Apache license. It is supported by a community 

of developers, including some Big Switch Networks 

engineers. Floodlight is a collection of applications built 

on top of the controller itself. The controller performs a 

series of common functionalities to monitor and control 

the OpenFlow network, while the applications are aimed 

for different activities to solve user requirements over the 

network. 

 

 

Fig.6. Architecture of Floodlight. 

Since it is written in Java, it runs on top of a JVM 

(Java Virtual Machine). The Floodlight architecture is 

modular, as shown in Fig. 6. Like other controllers, 

Floodlight offers its services through southbound and 

northbound. In the northbound, the modules are exposed 
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through APIs that are executed by using a REST port. 

Any application can interact with the controller, by 

sending HTTP-REST commands, allowing the request of 

information or the invocation of services. It has numerous 

specific purpose modules that provide the basis for 

network functions, such as Topology Manager, Link 

Discovery, Device Manager, Performance Monitor, etc. 

These are necessary to offer services to applications and 

take actions in the underlying network. 

On the other hand, in the southbound, Floodlight 

listens on the TCP port specific for the OpenFlow 

protocol (versions 1.0, 1.3, and 1.4), to initiate 

connections with SDN switches. 

In the westbound, the Java API allows the development 

of modules in Java and their rapid interaction with the 

central controller. The modules are loaded by the system 

during the start of the controller and integrated into it, 

thus allowing communications with the basic network 

functions and providing a rapid response to network 

events, such as the appearance of new packets or flows. 

D.  OpenMUL 

OpenMUL is an open source SDN controller, 

developed mainly in C by the OpenMUL Foundation, 

with a multi-threaded infrastructure that promises high 

performance, reliability, and capacity to host modular 

applications. It provides a wide variety of applications in 

its northbound interfaces and is capable of working with 

multiple southbound protocols such as OpenFlow 

1.0/1.3/1.4, OVSDB, NETCONF [30], etc. 

OpenMUL has a modular architecture with the aim of 

providing flexible functionalities for the orchestration of 

networks through an easy interface with multiple access 

points. It has multiple APIs for several languages and 

RESTful APIs for web applications in the northbound. 

The groups of functionalities can be observed in Fig. 7 

[35]. 

 

 

Fig.7. Architecture of OpenMUL. 

 

 

 

VI.  PROPOSED BENCHMARK TOOL 

We conducted a study of existing performance 

evaluation tools for OpenFlow controllers and found 

improvement opportunities. In the open-source world, the 

main tool is “Cbench.” It works with OpenFlow version 

1.0 and provides multiple parameters for achieving 

throughput and latency tests. Its operational model 

consists in the simulation of SDN switches that send 

requests (Packet-In) to the controller through the 

OpenFlow protocol, with the goal of measuring the 

throughput or the latency. Unfortunately, Cbench seems 

to be a dead project. It has not been updated for several 

years. Hence, it only supports an old version of 

OpenFlow (version 1.0). For these reasons, we decided to 

propose a more versatile tool, called OFC-BenchTool 

(OpenFlow Controller-Benchmark). 

OFC-BenchTool supports OpenFlow version 1.3, and 

its architecture is based on a distributed master-slave 

model, with message passing. Message passing allows 

parallel processes to run synchronized tests against the 

same controller, creating a large number of requests, thus 

increasing the stress capacity during tests. Additionally, 

with the goal of reporting hardware characteristics during 

the performance assessment, we included the usage of 

SNMP [16]. Through SNMP, we collect information to 

strengthen the evaluation process. Our tool also has a 

module to facilitate the analysis of information, 

incorporating the generation of graphics to represent the 

results obtained. The architecture of OFC-BenchTool is 

represented in Fig. 8. 

 

 

Fig.8. Architecture of OFC-BenchTool. 

We chose the C programming language to develop 

OFC-BenchTool, due to its robustness, numerous 

libraries, and extensive documentation. In order to 

facilitate specific functionalities, we used some 

development libraries: gnuplot_i for the graphical module 

in charge of displaying a graphical representation of the 

results; libpcap for the capture and handling of network 

packets; and Net-SNMP for the process of SNMP packets. 

OFC-BenchTool permits three types of tests: (1) 

latency, (2) throughout in isolated mode, and (3) 

throughput in distributed mode. The three tests are based 

on  the  client/server  model,  where a  virtual  switch  is a 
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client and the controller is the server. In the latency test, a 

unique slave process of the benchmark is involved which 

creates one virtual switch. Before the test, the benchmark 

obtains a timestamp. Then, the virtual switch sends a 

Packet-In message to the controller for a new flow, and 

waits for the Packet-Out response. As soon as the switch 

receives the answer, it sends a new Packet-In message to 

the controller for a new flow, and waits for the answer. 

This process is repeated n times. At the end of the n 

exchanges (Packet-In/Packet-Out), a second timestamp is 

taken. The difference between the two timestamps is 

divided by n, to get the latency. 

In the throughput test in isolated mode, there is only 

one slave process of the proposed benchmark to assess 

the controller. This slave process creates several virtual 

switches (a parameter specified by the users). Basically, 

each virtual switch tries to overwhelm the controller by 

sending Packet-In messages for new flows, as fast as they 

can, and counts the number of Packet-Out responses 

received. This process is repeated for 50 seconds. The 

total number of Packet-Out messages received in one 

second is reported as the throughput and is expressed as 

flow/second, that is, the benchmark reports the number of 

new flows that were successfully created. 

The throughput test in distributed mode is similar to 

the throughput test in isolated mode, but several slave 

processes of the benchmark are created to assess the SDN 

controller (the idea is to create more stress over the 

controller). Through parameters, users can specify the 

number of slave nodes, the number of virtual switches to 

be created in each slave node, and the IP address of the 

master. Basically, and similarly to the isolated mode, 

each virtual switch tries to overwhelm the controller with 

Packet-In messages. The master node is in charge of 

maintaining the synchronization between the slave nodes, 

performing SNMP requests, and handling the reports 

generated by slaves. To keep the slaves synchronized, a 

topology connection in star between the master and the 

slaves is established. Initially, the master waits for the 

slaves to be operational, and when all the slaves are 

connected, the master sends a start command to each 

slave. At the end of the test, the slaves send their reports 

to the master. The master receives the reports and formats 

them adequately for the graphic module, where they can 

be presented in the form of lines, points, and bars. 

Simultaneously to the synchronization of the slaves 

during the stress tests, the master process sends SNMP 

queries to the SDN controller, to monitor its state. 

 

VII.  RESULTS 

This section describes the tests that were performed 

with OFC-BenchTool, in order to evaluate the fulfillment 

of the proposed objectives. 

For all the tests done in this paper, 16 simulated 

switches were created in each slave node. Also, we 

performed 50 cycles, where 1 cycle is equivalent to 1 

second. 

 

A.  Throughput Test in Isolated Mode 

In this mode, we used the throughput test with 1 slave 

node that created 16 virtual switches (Virtual Switch 0, ..., 

Virtual Switch 15). Fig. 9 shows the throughput recorded 

in each virtual switch, per second, when using OpenMUL. 

The x-axis represents the time, in second, where 0 sec is 

the beginning of the experiment. The y-axis has the 

throughput, that is, the number of flows established by 

second. As we can observe, there is no preference of 

responses for a specific switch, that is, the treatment of 

OpenMUL is uniform among the 16 virtual switches. 

Also, it is worth mentioning that the throughput is low at 

the beginning of the experiment, and then tends to 

fluctuate around 275 flow/sec in each virtual switch. 

 

 

Fig.9. Throughput per Switch – 1 Slave Node – OpenMUL. 

Fig. 10 depicts the memory and CPU consumption in 

the computer running the SDN controller (OpenMUL), 

during this test. Both parameters are expressed as 

percentages of the total memory and CPU. 

 

 

Fig.10. Memory and CPU Consumption – 1 Slave Node – OpenMUL. 

Fig. 11 shows the usage of the network interface of the 

SDN controller (OpenMUL), during this test (I/O traffic). 

This usage is represented as the accumulated amount of 

bytes sent and received by the controller. 
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Fig.11. Input/Output Network Traffic through the Interface of the SDN 
Controller – 1 Slave Node – OpenMUL. 

B.  Throughput Test in Distributed Mode 

For the distributed mode, we made tests with 4 nodes 

(1 master and 3 slaves). The master was in charge of the 

synchronization of the slave nodes, the measurement of 

parameters through SNMP, and the recollection of the 

results from the slaves. The slave nodes were responsible 

for carrying out the tests and sending their final results to 

the master. Each slave node created 16 virtual switches 

(Virtual Switch 0, ..., Virtual Switch 15), with a total of 

48 virtual switches (3 × 16 = 48). 

Figs. 12, 13, and 14 show the throughput recorded in 

each virtual switch, per second, when using OpenMUL. 

The x-axis represents the time, in second, where 0 sec is 

the beginning of the experiment. The y-axis has the 

throughput, that is, the number of flows established by 

second. 

 

 

Fig.12. Throughput per Switch – 3 Slave Nodes – OpenMUL – Slave 1. 

 

Fig.13. Throughput per Switch – 3 Slave Nodes – OpenMUL – Slave 2. 

In contrast to Fig. 9 (throughput in isolated mode) 

where the throughput tends to fluctuates around 275 

flow/sec for each virtual switch, the throughput in 

distributed mode is lower (around 150 flow/sec per 

virtual switch). This is due to the major stress suffered by 

the controller, since it serves 16 switches in the isolated 

mode, vs 48 switches in the distributed mode. 

 

 

Fig.14. Throughput per Switch – 3 Slave Nodes – OpenMUL – Slave 3. 

Fig. 15 depicts the memory and CPU consumption in 

the computer running the SDN controller (OpenMUL), 

during this test. Both parameters are expressed as 

percentages of the total memory and CPU. When 

compared with the Isolated Mode (see Fig. 10), we can 

conclude that the memory consumption is similar in both 

experiments. However, the CPU processing in much 

higher in the Distributed Mode (30% vs 12%, at the end 

of the experiment), and it is due to the major stress 

suffered by the controller. 
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Fig.15. Memory and CPU Consumption – 3 Slave Nodes – OpenMUL. 

Fig. 16 shows the usage of the network interface of the 

SDN controller (OpenMUL), during the test (I/O traffic). 

This usage is represented as the accumulated amount of 

bytes sent and received by the controller. When compared 

with the Isolated Mode (see Fig. 11), we can conclude 

that the network usage in much higher in the Distributed 

Mode (50000 kB vs 22000 kB, at the end of the 

experiment), and it is due to the major stress suffered by 

the controller. 

 

 

Fig.16. Input/Output Network Traffic through the Interface of the SDN 
Controller – 3 Slave Nodes – OpenMUL. 

C.  Throughput Test for Different Controllers 

To compare different controller, the test of throughput 

in Distributed Mode (see Section VII.B) was repeated 

with other SDN controllers (OpenDaylight, Floodlight, 

and Ryu). In order to make a fair comparison of these 

controllers, the installation of each controller was 

performed in the same environment, with the same 

characteristics. That is, a computer with an Intel i7 CPU 

and 4 GB of RAM, that was running Ubuntu 17.04 as the 

operating system. 

 

 

 

 

 

 

 

1)  OpenMUL: The tests that were performed on the 

OpenMUL controller were successful, the connection was 

achieved with the controller in the default port (port 

6653), the OpenFlow messages were answered correctly, 

and at an expected rate. The results of these tests are 

shown from Fig. 12 to Fig. 16. 

2)  Floodlight: Similarly to OpenMUL, the tests made 

with the Floodlight controller were successful, and the 

results are shown from Fig. 17 to Fig. 21. As can be 

observed in our experiments, the throughput of 

OpenMUL is a little over the throughput of Floodlight. 

 

 

Fig.17. Throughput per Switch – 3 Slave Nodes – Floodlight – Slave 1. 

 

Fig.18. Throughput per Switch – 3 Slave Nodes – Floodlight – Slave 2. 

 

Fig.19. Throughput per Switch – 3 Slave Nodes – Floodlight – Slave 3. 
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Fig.20. Memory and CPU Consumption – 3 Slave Nodes – Floodlight. 

 

Fig.21. Input/Output Network Traffic through the Interface of the SDN 
Controller – 3 Slave Nodes – Floodlight. 

1)  Ryu: For the Ryu controller, the tests done showed 

a much lower performance than the other controllers, 

possibly due to the fact that Ryu is completely written in 

Python, an interpreted language, which is much slower 

than C or Java. The results are shown from Fig. 22 to 

Fig.26. 

 

 

Fig.22. Throughput per Switch – 3 Slave Nodes – Ryu – Node 1. 

 

 

Fig.23. Throughput per Switch – 3 Slave Nodes – Ryu – Node 2. 

 

Fig.24. Throughput per Switch – 3 Slave Nodes – Ryu – Node 3. 

 

Fig.25. Memory and CPU Consumption – 3 Slave Nodes – Ryu. 

 

Fig.26. Input/Output Network Traffic through the Interface of the SDN 
Controller – 3 Slave Nodes – Ryu. 
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2)  OpenDaylight: We faced problems with the 

OpenDaylight controller during our tests. It worked well 

during the first iterations, before reaching a point where it 

looks like that it does not process any petition anymore. 

Despite our effort, we could not find any reason for the 

malfunction of the controller. Hence, the test was 

repeated with a smaller number of cycles. That is, we 

used 16 cycles (instead of 50 cycles) for OpenDaylight 

and the obtained results are shown from Fig. 27 to Fig. 31. 

 

 

Fig.27. Throughput per Switch – 3 Slave Nodes – ODL – Node 1. 

 

Fig.28. Throughput per Switch – 3 Slave Nodes – ODL – Node 2. 

 

Fig.29. Throughput per Switch – 3 Slave Nodes – ODL – Node 3. 

 

 

Fig.30. Memory and CPU Consumption – 3 Slave Nodes – ODL. 

 

Fig.31. Input/Output Network Traffic through the Interface of the SDN 
Controller – 3 Slave Nodes – ODL. 

D.  Comparison with Other Performance Tools 

Tests with similar tools were carried out with 

difficulties, since there are only a few related tools that 

are open-source. The stronger open-source option is 

Cbench [7]. The throughput test of Cbench was 

performed against an OpenMUL controller, and the 

obtained results were compared with the ones that we got 

with our benchmarking tool. 

It is very important to note that there is a significant 

difference in both tests, which is the OpenFlow version 

used. In the test performed with Cbench, the OpenFlow 

version is 1.0, since it is the only supported version by 

this tool. In the test performed to OpenMUL with our 

benchmarking tool, the version of the protocol is 1.3, 

which has significant changes. The results of the test 

performed with Cbench are shown in Fig. 32. We can see 

that this test has similar results to the ones obtained in the 

isolated mode (see Fig. 9), confirming the correct 

operation of our benchmarking tool. 
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Fig.32. Results of Cbench when Evaluating OpenMUL. 

 

VIII.  CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a performance evaluation 

tool to assess SDN controllers. Our tool was developed in 

the C programming language, with libraries that facilitate 

the graphical representation of results and the handling/ 

construction of packets for OpenFlow and SNMP. The 

tool has two modes (isolated and distributed). In the 

isolated mode, a single test node is used, that emulates 

virtual SDN switches. In the distributed mode, several 

distributed slave nodes are created and synchronized by a 

master node, to achieve a higher level of stress against the 

SDN controller. To validate the tool, we carried out tests 

with several popular SDN controllers. 

With our tool, users can assess the throughput and 

latency of SDN controllers, under different levels of 

stress. Additionally, users can get information about 

memory and CPU utilization of the controller during the 

test. Our tool can significantly help network 

administrators in the selection of an SDN controller, since 

they can study the behavior of the controllers when they 

reach their limits. 

As future work, we plan to develop new functionalities 

and modules to support: 

 

 newest versions of the OpenFlow protocol 

 graphic interfaces that improve the usability and 

user experience 

 error management based on logs 

 tests in more complex networks with fault-tolerant 

architecture. 

REFERENCES 

[1] P. Goransson, C. Black, and T. Culver. Software Defined 

Networks: A Comprehensive Approach, Second Edition. 

November 2016. 

[2] J. Doherty. SDN and NFV Simplified: A Visual Guide to 

Understanding Software Defined Networks and Network 

Function Virtualization. Addison-Wesley Professional; 

First Edition, March 2016. 

[3] Open Networking Foundation. OpenFlow Switch 

Specification. Version 1.5.1 (Protocol Version 0x06). 

March 2015. 

[4] O. Coker and  S. Azodolmolky. Software Defined 

Networking with OpenFlow, Packt Publishing, Second 

Edition. October 2017. 

[5] G. Blokdyk, OpenFlow: The Definitive Handbook. 

CreateSpace Independent Publishing Platform. October 

2017. 

[6] M. Basheer Al-Somaidai and E. Bassam Yahya, Survey of 

Software Components to Emulate OpenFlow Protocol as 

an SDN Implementation, American Journal of Software 

Engineering and Applications, Vol. 3, No. 6, pp. 74-82. 

[7] A. Hassan and S. Ahmed, “Performance Comparison of 

the State of the Art OpenFlow Controllers”. Halmstad, 

September 2014. 

[8] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, A 

Flexible OpenFlow-Controller Benchmark, in 

Proceedings of the 2012 European Workshop on Software 

Defined Networking (EWSDN 2012), Darmstadt, 

Germany, October 2012. 

[9] M. Darianian, C. Williamson, and I. Haque, Experimental 

Evaluation of Two OpenFlow Controllers, in Proceedings 

of the 2017 IEEE 25th International Conference on 

Network Protocols (ICNP), Toronto, ON, Canada, 

November 2017. 

[10] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li. 

Performance Evaluation of OpenFlow-based Software-

defined Networks based on Queueing Model, Computer 

Networks, Vol. 102, pp. 172-185, 2016. 

[11] I. Bholebawa and U. Dalal, Performance Analysis of 

SDN/OpenFlow Controllers: POX Versus Floodlight, 

Wireless Personal Communications: An International 

Journal, Vol. 98, No. 2, pp. 1679-1699, January 2018. 

[12] B. Lantz, B. Heller, and N. McKeown. A Network in a 

Laptop: Rapid Prototyping for Software-Defined 

Networks. In Proceedings of the 9th ACM Workshop on 

Hot Topics in Networks, Monterey, CA, USA. October 

2010. 

[13] B. Lantz, B. O’Connor, A Mininet-based Virtual Testbed 

for Distributed SDN Development. In Proceedings of 

SIGCOMM 2015, London, UK. August 2015. 

[14] S. Rowshanrad, V. Abdi, and M. Keshtgari, Performance 

Evaluation of SDN Controllers: Floodlight and 

OpenDaylight, IIUM Engineering Journal, Vol. 17, No. 2, 

2016. 

[15] S.-Y. Wang, H.-W. Chiu, and C.-L. Chou, Comparisons 

of SDN OpenFlow Controllers over EstiNet: Ryu vs. 

NOX, in Proceedings of the Fourteenth International 

Conference on Networks (ICN 2015), Barcelona, Spain, 

April 2015. 

[16] G. Blokdyk, SNMP Simple Network Management 

Protocol: Amazing Projects from Scratch, CreateSpace 

Independent Publishing Platform, October 2017. 

[17] N. Feamster, J. Rexford, and E. Zegura, “The Road to 

SDN: An Intellectual History”. ACM SIGCOMM 

Computer Communication Review, vol. 44, no. 2, pp. 87-

98, April 2014. 

[18] N. Figuerola, “SDN – Redes Definidas por Software”. 

October 2013. 

https://articulosit.files.wordpress.com/2013/10/sdn.pdf. 

[19] I. Gavilán, “Fundamentos de SDN (Software Defined 

Networking)”. August 2013. http://es.slideshare.net/

igrgavilan/20130805-introduccion-sdn. 

[20] S. Azodolmolky, “Software Defined Networking with 

OpenFlow”, Packt Publishing Ltd., October 2013. 

[21] P. Göransson and C. Black, “Software Defined Networks: 

A Comprehensive Approach”, Morgan Kaufmann, May 

2014. 

[22] M. Palacin Mateo, “OpenFlow Switching Performance”. 

July 2009. 



 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers 13 

Copyright © 2018 MECS                                            I.J. Information Technology and Computer Science, 2018, 11, 1-13 

[23] T. D. Nadeau and K. Gray, “SDN: Software Defined 

Networks”. O’Reilly, August 2013. 

[24] A. Nierbeck,  J. Goodyear,  J. Edstrom,  and H. Kesler, 

Apache Karaf Cookbook, Packt Publishing, August 2014. 

[25] J. Edstrom,  J. Goodyear,  and H. Kesler, Learning Apache 

Karaf, Packt Publishing, October 2013. 

[26] G. Blokdyk, OSGi: Upgrader’s Guide, CreateSpace 

Independent Publishing Platform, November 2017. 

[27] H. Cummins and  T. Ward, Enterprise OSGi in Action: 

With Examples using Apache Aries, Manning 

Publications, 1st edition, April 2013. 

[28] OpenDaylight, “Wiki OpenDaylight”, https://wiki. 

opendaylight.org/view/OpenDaylight_Controller:Architec

tural_Framework. 

[29] K. Ohmura, “OpenStack/Quantum SDN-based Network 

Virtualization”. May 2013. 

http://osrg.github.io/ryu/slides/LinuxConJapan2013.pdf. 

[30] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. 

Bierman, Network Configuration Protocol (NETCONF), 

RFC 6241, June 2011. 

[31] P. Phaal, S. Panchen, and N. McKee, InMon 

Corporation’s sFlow: A Method for Monitoring Traffic in 

Switched and Routed Networks, RFC 3176, September 

2001. 

[32] O. Santos, Network Security with NetFlow and IPFIX: 

Big Data Analytics for Information Security, Cisco Press, 

1st edition, October 2015. 

[33] M. Allen Patterson,  D. Robb,  and A. Akhter, Unleashing 

the Power of NetFlow and IPFIX, Amazon Digital 

Services LLC, September 2013. 

[34] S. Nadas, Virtual Router Redundancy Protocol (VRRP) 

Version 3 for IPv4 and IPv6, RFC 5798, March 2010. 

[35] N. Malik and D. Saikia, “An Introduction to OpenMUL 

SDN Suite”. September 2014. 

 

 

 

Authors’ Profiles 

 
Eric Gamess received an M.S. in Industrial 

Computing from the National Institute of 

Applied Sciences of Toulouse (INSA de 

Toulouse), France, in 1989, and a Ph.D. in 

Computer Science from the Central 

University of Venezuela, Venezuela, in 

2000. He is currently working as a 

professor at Jacksonville State University, 

Jacksonville, Alabama, USA. Previously, he worked as a 

professor at the Central University of Venezuela, Venezuela, 

University of Puerto Rico, Puerto Rico, and “Universidad del 

Valle,” Colombia. His research interests include Vehicular 

Adhoc Networks, Network Performance Evaluation, IPv6, and 

Network Protocol Specifications. He is a member of the 

Venezuelan Society of Computing and has been in the 

organization committee and the technical program committee of 

several national and international conferences. 

 

 

Daniel Tovar received a B.S. in Computer 

Science from the Central University of 

Venezuela, Venezuela, in 2017. He is 

currently working at CGTS Corp, Caracas, 

Venezuela, as a network and system 

administrator. His research interest includes: 

Network Simulations, Network 

Performance Evaluation, Software Defined 

Networks, and Web Development. 

Alberto Cavadia received a B.S. in 

Computer Science from the Central 

University of Venezuela, Venezuela, in 

2017. His research interest includes: 

Computer Networking, High Performance 

Computing, and Web Development. 

 

 

 

 

 

How to cite this paper: Eric Gamess, Daniel Tovar, Alberto 

Cavadia, "Design and Implementation of a Benchmarking Tool 

for OpenFlow Controllers", International Journal of Information 

Technology and Computer Science(IJITCS), Vol.10, No.11, 

pp.1-13, 2018. DOI: 10.5815/ijitcs.2018.11.01 

 

 


