
I.J. Information Technology and Computer Science, 2018, 11, 1-13
Published Online November 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.11.01

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

Design and Implementation of a Benchmarking

Tool for OpenFlow Controllers

Eric Gamess
Jacksonville State University, MCIS Department, Jacksonville, AL 36265, USA

E-mail: egamess@jsu.edu

Daniel Tovar and Alberto Cavadia
Central University of Venezuela, School of Computing, Caracas, Venezuela

E-mail: alejorod18@gmail.com, osoflash_2@hotmail.com

Received: 11 September 2018; Accepted: 27 September 2018; Published: 08 November 2018

Abstract—The growth of data traffic on the web, the

virtualization of services, and the changes in the pattern

of traffic between users and data centers have led to a

reassessment of the current methods of doing network

administration. Software Defined Networks (SDNs)

propose a paradigm that delegate the control of packets

and flows to applications, developed according to specific

requirements, where the OpenFlow protocol can be used

for communications. The development of this type of

applications, as in any other development area, requires

tests and measurement tools to facilitate a performance

evaluation. However, the current open-source

performance measurement applications for SDN

networks cover only very basic characteristics, while

there is a wide range of SDN controllers with support to

many versions of OpenFlow, making the selection of the

controller a difficult point to address. In this paper, we

propose a distributed performance evaluation tool for

SDN controllers, that can assess the throughput, latency,

percentage of memory consumption, percentage of CPU

utilization, and consumption in kB for input/output

interfaces, using OpenFlow version 1.3. Our tool is based

on Cbench, and adds new functionalities such as the

graphical representation of results to analyze the

outcomes. To validate our tool, we make a performance

evaluation of well-known SDN controllers such as Ryu,

OpenDaylight, OpenMUL, and Floodlight, in

environments under great stress of requests.

Index Terms—SDN, SDN Controller, OpenFlow,

Performance Evaluation, Ryu, OpenDaylight, OpenMUL,

Floodlight.

I. INTRODUCTION

SDN (Software Defined Networking) [1,2] is a new

paradigm to experiment and cover new requirements,

without interrupting the existing networks, that is leading

to innovative network architectures and management

systems. In SDN networks, the intelligence is logically

centralized in the controllers, which support several

protocols and standards for communication with the

managed devices, where OpenFlow [3-5] seems to be the

more common. OpenFlow is an emerging and open

protocol that allows the controllers to communicate with

OpenFlow switches, to create the forwarding path for

flows of packets, inside networks.

Many SDN controllers have been proposed with

diverse characteristics. Hence, it can be difficult for a

network administrator to make a decision about which

controller to select. An objective evaluation will be very

helpful, that should include performance measures. As

evidenced, a tool to evaluate the performance of SDN

controllers can facilitate decisions.

In this research work, we propose a distributed

performance evaluation tool for SDN controllers, using

OpenFlow as the communication protocol. With our tool,

users can assess the throughput, latency, percentage of

memory consumption, percentage of CPU utilization, and

consumption in kB for input/output interfaces, of SDN

controllers. We used our benchmarking tool to compare

four famous SDN controllers: OpenDaylight, Ryu,

Floodlight, and OpenMUL. Our experiments show that

OpenMUL and Floodlight have a similar performance.

The lowest results were obtained by Ryu. We also

validated our tool with Cbench, a famous open-source

program to assess SDN controllers.

The paper is structured as follows. Section II discusses

the related works. In Section III, we introduce the

concepts related to SDN. Section IV describes the main

features of the OpenFlow protocol. We introduce the

most popular SDN controllers available and use them to

validate the operation of our assessment tool, in

Section V. Section VI describes the architecture,

development, and functionalities of the proposed

measurement tool. We discuss the results achieved in our

tests in Section VII. Finally, Section VIII concludes the

paper and gives directions for future work.

II. RELATED WORKS

Many works have been done to compare SDN network

controllers with respect to architecture, efficiency, and

controllers’ features. For example, the authors of [6]

2 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

discussed five different versions of OpenFlow switch

standard (1.0, 1.1, 1.2, 1.3, and 1.4), four different

platforms for simulation and emulation of SDN (Mininet,

EstiNet, ns-3, and Trema), seven types of controllers

(NOX, POX, Floodlight, OpenDaylight, Ryu, Mul, and

Beacon), and different switch software and tools.

However, there are just a few works that contrast them in

the area of performance evaluation.

Hassan and Ahmed [7] developed Cbench, an open-

source tool to evaluate the performance of OpenFlow

controllers. The authors realized experiments to measure

the performance and latency in testbeds with different

amounts of SDN switches controlled by a single SDN

controller, ranging from 1 switch to 128 switches. In the

performance tests, “Packet-In” messages were sent to

measure the stress capacity supported by the controller.

The aim was to obtain the maximum number of messages

that can be handled by the controller in a specific amount

of time. Hassam and Ahmed experimented with six SDN

controllers: NOX, Beacon, Floodlight, Maestro,

OpenMUL, and OpenIRIS.

Jarschel, Lehrieder, Magyari, and Pries [8] presented

OFCBenchmark, an OpenFlow benchmarking tool that

creates a set of virtual switches, which can be configured

independently from each other to emulate a certain

scenario, and can keep their own statistics.

OFCBenchmark provides statistics of response rate,

response time, and number of unanswered packets for

each switching device. Unlike Cbench [7] which offers

aggregated statistics of controller throughput and

response time for all the switching devices,

OFCBenchmark gives fine-grained statistics for

individual switching devices.

In their work, Darianian, Williamson, and Haque [9]

conducted an experimental evaluation of two open-source

distributed OpenFlow controllers (ONOS and

OpenDaylight), using Cbench. They reported throughput,

latency, and thread scalability of these two controllers in

both physical and virtualized (OpenStack) environments.

The experimental results show that ONOS provides

higher throughput and lower latency than OpenDaylight,

which suffers from performance problems on larger

networks.

In [10], Xiong, Yang, Zhao, Li, and Li proposed a

novel analytical performance model of OpenFlow

networks based on queueing theory. They modeled the

packet forwarding of OpenFlow switches and the

“Packet-In” message processing by the SDN controller,

as the queueing systems MX/M/1 and M/G/1,

respectively. Subsequently, they built a queueing model

of OpenFlow networks in terms of packet forwarding

performance and solved its closed-form expression of

average packet sojourn time and the corresponding

probability density function.

Bholebawa and Dalal [11] made a performance

evaluation of two famous SDN controllers (POX and

Floodlight) by analyzing network throughput and round-

trip delay using Mininet [12,13], an efficient network

simulator. They used four topologies (single, linear, tree,

and user-defined) to connect the switches together, and an

external controller. According to their experiments,

Floodlight outperforms POX, for both round-trip time

and throughput.

Rowshanrad, Abdi, and Keshtgari [14] evaluated

Floodlight and OpenDaylight, in terms of latency and loss,

with Mininet. They used different topologies (single,

linear, and tree) and network loads. Their results show

that OpenDaylight outperforms Floodlight in low loaded

networks and also for tree topologies in mid-loaded

networks in terms of latency. Furthermore, Floodlight can

outperform OpenDaylight in heavily loaded networks for

tree topologies in terms of packet loss, and in linear

topologies in terms of latency. The authors also

concluded that there is no significant difference in

performance between Floodlight and OpenDaylight in

other cases.

In [15], Wang, Chiu, and Chou used the EstiNet

OpenFlow network simulator and emulator to compare

two open-source popular OpenFlow controllers - Ryu and

NOX. They studied the behavior of the controllers when

they control a network with loops and how quickly they

can find a new routing path for a greedy TCP flow after a

link’s status has changed. Their simulation results show

that (1) Ryu results in the packet broadcast storm problem

in a network with loops; (2) Ryu and NOX have different

behavior and performance in detecting link failure and

changing to a new routing path.

III. SOFTWARE DEFINED NETWORKING

Since their creation, communications networks have

required management. Initially, it was a difficult task,

given the number of different network devices (switches,

routers, firewalls, etc) from different manufacturers and

with different configuration environments. To facilitate

the task, network administration protocols emerged (e.g.,

SNMP [16]) that solved the problem of the numerous

manufacturers, but were very limited in relation to the

direct administration of devices with proprietary

protocols and interfaces, hence, making it impossible to

maintain a single interface for administration.

In response to the need to improve the administration

and versatility of networks, Software Defined Networks

(SDNs) [1,2] were developed. They are founded on a set

of techniques to make the networks programmable. The

traditional architecture of the network devices is modified

and now consists of two planes: data and control.

In a conventional network, when a packet arrives at a

switch, the rules integrated into the proprietary firmware

of the switch decide what to do with the packet. Through

the same output port, the switch forwards all the packets

of a flow to the same destination. In an SDN network, it

is possible to have access to the switch flow tables, in

order to modify, eliminate, or add new flow rules, which

allows controlling the traffic of the network in a dynamic

way.

SDN is a new paradigm that separates the control plane

from the rest of the layers of the devices as shown in

Fig.1 [8]. Most data are processed only by the data plane

of the switches; this plane consists of a series of ports that

 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers 3

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

are used for the reception and retransmission of data,

according to the flow tables. Thus, the data plane is

responsible for the reception, storage, and dispatch of

data, together with the modification of headers when

necessary.

Fig.1. Architecture of SDN.

The control plane is physically separated from the

SDN switches, so that routing decisions are made outside

the switches, in a centralized device known as the SDN

controller, dedicated to answering requests from SDN

switches, and configured through APIs.

The logical structure of a software defined network is

shown in Fig. 2 [17]. As previously stated, the central

controller performs all complex functions, including

routing, policy declaration, and security checks. This

constitutes the SDN control plane, and consists of one or

more SDN servers.

Fig.2. Logical Structure of Software Defined Networking.

As soon as a packet arrives at the network device, it

looks for a match in its flow table. If the table has an

entry for this flow, it forwards the packet through the

indicated output port. If there is no entry in its flow table,

the network device encapsulates the packet and sends a

request to the SDN controller (Packet-In). According to

its policies, the SDN controller decides whether the flow

is permitted in the network. If so, it finds a path for this

flow in the network and adds the necessary entries in the

flow table of each node of the chosen path. Subsequently,

the network devices forward the packet based on the

entry of the flow table specified by the controller.

With all the complex functions absorbed by the SDN

controller, the network devices (SDN switches) only

handle the data flows, with the entries in their flow tables.

The communications between the SDN controller and the

other network devices are made through standardized

protocols (Southbound protocols); one of the most

common is the OpenFlow [3-5] protocol. The controller

is responsible for handling the flow tables of the network

devices. The management of the SDN controller is done

through a flexible API, that facilitates a dynamic behavior

of the network, without having to deal with low-level

aspects of the network.

In the application layer, network developers can design

programs that perform various tasks without needing to

know how the network devices operate, so they can

abstract these concepts and be dedicated solely to the

development of the logic of the applications. This allows

a faster development and deployment of new applications

that direct network flows to meet specific needs in terms

of security or performance.

IV. OPENFLOW

OpenFlow [3-5] is an open standard designed as a

communication protocol between the control and data

planes of SDN. It was developed at Stanford University

in 2008 [18] with the purpose of allowing research and

innovation on existing infrastructures, under the usage of

multiple flows, that do not interfere with production

traffic.

SDN promotes the centralization of the control plane

and creates multiple flows with programmable

characteristics defined through a high level of abstraction.

Hence, through OpenFlow, users can experiment with

new protocols to test the current paradigms that define the

way in which we define and create networks. OpenFlow

is based on the premise that the control plane should be

separated from the data plane. In the architecture, the

controller takes care of the control plane, and the network

devices (SDN switches) maintain the data plane, both

intercommunicating through the OpenFlow protocol, as

can be seen in Fig. 3.

Fig.3. Structure of OpenFlow.

OpenFlow switches are categorized into two groups, (1)

“dedicated” and (2) “hybrid”. Those that fall into the first

4 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

group are unable to perform common layer 2 and layer 3

processing, and those that enter the last group are

common switches and routers, with added support for the

OpenFlow protocol. The OpenFlow ports are similar to

network interfaces for the transfer of packets. They can

be classified as physical, logical, and reserved, where the

last two ones are virtual ports. Therefore, OpenFlow

defines a number of available ports for processing, which

does not necessarily match the number of physical

interfaces in the switch.

An OpenFlow switch has at least one flow table, where

an action is associated with each entry in the table, and a

secure channel that allows communications with the

controller [19]. These tables outline the OpenFlow flows

that define the data plane. For a switch to achieve high

performance at low cost, the entries are based on flows,

instead of packets. Each flow entry has a series of

associated instructions. These may involve the

modification of the actual packet or the list of actions.

Some of the instructions can redirect the packet

(including new metadata and updated fields) to another

table where it will be treated in the same way. If the

searching process in the flow table does not result in a hit,

the actions of the switch will depend on the instructions

defined in case of failure. This entry specifies the series

of actions to perform when the incoming packet does not

meet any of the entries in the table [20].

Packets are accompanied by a group of actions,

initially empty. The flow entries modify this group with

instructions that can add actions such as Write-Action.

This group of actions follows the packet through tables

and can be modified in each table until the end of the

navigation. When the navigation is finished, all the

actions of the group will be executed.

The OpenFlow messages that allow the communication

between the SDN switches and the controller are

exchanged on a secure channel. The messages start with

the OpenFlow header. This header specifies the version

of the OpenFlow protocol, the type of message, the length

of the message, and the transaction ID of the message

[21]. The OpenFlow protocol defines three message types,

each with multiple subtypes:

 Controller-to-switch: These messages are initiated

by the controller to handle or inspect the state of a

switch and may or may not require a switch

response.

 Symmetric: They are messages sent without prior

request, in both directions. Hello messages are

typically sent back and forth between the

controller and switches when the connection is

first established. Echo request and reply messages

can be used by either the switches or controller to

measure the latency or bandwidth of a controller-

switch connection.

 Asynchronous: These are messages sent to the

controller without having been previously

requested, since they communicate the arrival of

packets, changes of states, or errors. A typical

example is the Packet-in messages, which may be

used by a switch to send a packet to the controller

when there is no flow-table match.

Although it is usual to talk about OpenFlow in IP

networks, it is not necessary for the packets to have any

special format as long as the flow tables can compare the

fields of the packet header. This allows the

experimentation with new addresses, routings, and

naming schemes. For example, a flow can be identified

through the MAC addresses using a new value in the

EtherType field, or at the IP level with a new IP

version[22].

V. SDN CONTROLLERS

The controller is the main element of an SDN network

and is considered as its operating system. The controller

centralizes the decisions for all the communication that

passes through the devices and provides an overview of

the network. A general description of an SDN controller

would be: software system or collection of systems that

together provide [23]:

 A management of the state of the network

 A high-level data model that captures the

relationship between managed resources, policies,

and other services provided by the controller.

 An application programming interface which

exposes the services offered by the controller for

applications.

To validate our performance measurement tool, we use

several SDN controllers: OpenDaylight, Floodlight, Ryu,

and OpenMUL. The choice was based on the supported

features, the commercial competitiveness, the current use

of the controller in projects in development or networks

already established for production, and its future

projection.

A. OpenDaylight

OpenDaylight is an open source collaborative project,

carried out by the Linux Foundation in collaboration with

numerous companies in the area of computing and

networking such as Cisco Systems, Dell, Ericsson, HP,

Intel, etc. OpenDaylight can be the central component of

any SDN architecture, allowing users to reduce

operational complexity, extend the lifetime of existing

networks, and enable new services and capabilities only

available in SDN.

The OpenDaylight project is one of the most recent

projects to develop an open-source SDN controller.

OpenDaylight is developed in Java, has several

distributions, and a series of complements whose

objective is to allow a more transparent interaction with

the controller. For example, OpenDaylight can work with

Karaf [24,25], a generic platform that provides high-level

functions and services designed specifically for the

creation of servers based on OSGi [26,27] (Open Service

Gateway Initiative). OSGi is a modular system and a

service platform for the Java programming language. It

 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers 5

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

allows Java packages to be remotely installed, started,

stopped, updated, and uninstalled without requiring a

reboot, in a simple way.

By default, OpenDaylight does not install specific

functionalities. After the installation of the controller, the

additional functionalities can be installed using the Karaf

console. Through Karaf, users can select the required

functionalities from a list that is comprehensive enough

to suit most network environments.

OpenDaylight is an infrastructure in which the

southbound, located on the border with network elements,

can work with multiple protocols, such as OpenFlow 1.0

and 1.3, BGP-LS, etc. Another important feature of its

architecture is the SAL (Service Abstraction Layer),

which exposes services to the superior modules, and

complies with the requested services, independently of

the underlying protocol that is used between the

controller and the network devices. This provides

protection against protocol changes or versions changes

of the same protocol, over time. Fig. 4 [28] depicts the

structure of the OpenDaylight controller.

Fig.4. Architecture of OpenDaylight.

B. Ryu

Ryu is used for managing flow control to enable

intelligent networking [29]. On the one hand, it is known

as an open source framework for building SDN

applications. On the other hand, it is also known as a

NOS (Network Operating System) that not only supports

the management of OpenFlow devices, but also allows

users to work with devices through NETCONF [30],

OVSDB (Open vSwitch Database Management Protocol),

sFlow [31], NetFlow [32,33], VRRP [34] (Virtual Router

Redundancy Protocol), and SNMP [16] (Simple Network

Management Protocol).

Ryu has a design inspired by the construction of

monolithic controllers, with a component-based

architecture that offers greater scalability at the cost of

efficiency, since it is implemented in the Python

programming language. Ryu supports a wide variety of

OpenFlow versions in the range [1.0, 1.4]. Fig. 5 shows

the general architecture of Ryu.

Ryu applications are entities that implement multiple

functions of Ryu based on components and libraries, such

as the OpenFlow controller, the topology viewer, the L2

switch, the firewall, etc. The framework offers a useful

and comprehensive group of these components, that can

be modified and grouped, with the ability to communicate

with other components. The creation of new components

does not tie the component to a single language, since the

communication is done with standard messages.

Fig.5. Architecture of Ryu.

C Floodlight

Floodlight is an OpenFlow controller written in Java

under the Apache license. It is supported by a community

of developers, including some Big Switch Networks

engineers. Floodlight is a collection of applications built

on top of the controller itself. The controller performs a

series of common functionalities to monitor and control

the OpenFlow network, while the applications are aimed

for different activities to solve user requirements over the

network.

Fig.6. Architecture of Floodlight.

Since it is written in Java, it runs on top of a JVM

(Java Virtual Machine). The Floodlight architecture is

modular, as shown in Fig. 6. Like other controllers,

Floodlight offers its services through southbound and

northbound. In the northbound, the modules are exposed

6 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

through APIs that are executed by using a REST port.

Any application can interact with the controller, by

sending HTTP-REST commands, allowing the request of

information or the invocation of services. It has numerous

specific purpose modules that provide the basis for

network functions, such as Topology Manager, Link

Discovery, Device Manager, Performance Monitor, etc.

These are necessary to offer services to applications and

take actions in the underlying network.

On the other hand, in the southbound, Floodlight

listens on the TCP port specific for the OpenFlow

protocol (versions 1.0, 1.3, and 1.4), to initiate

connections with SDN switches.

In the westbound, the Java API allows the development

of modules in Java and their rapid interaction with the

central controller. The modules are loaded by the system

during the start of the controller and integrated into it,

thus allowing communications with the basic network

functions and providing a rapid response to network

events, such as the appearance of new packets or flows.

D. OpenMUL

OpenMUL is an open source SDN controller,

developed mainly in C by the OpenMUL Foundation,

with a multi-threaded infrastructure that promises high

performance, reliability, and capacity to host modular

applications. It provides a wide variety of applications in

its northbound interfaces and is capable of working with

multiple southbound protocols such as OpenFlow

1.0/1.3/1.4, OVSDB, NETCONF [30], etc.

OpenMUL has a modular architecture with the aim of

providing flexible functionalities for the orchestration of

networks through an easy interface with multiple access

points. It has multiple APIs for several languages and

RESTful APIs for web applications in the northbound.

The groups of functionalities can be observed in Fig. 7

[35].

Fig.7. Architecture of OpenMUL.

VI. PROPOSED BENCHMARK TOOL

We conducted a study of existing performance

evaluation tools for OpenFlow controllers and found

improvement opportunities. In the open-source world, the

main tool is “Cbench.” It works with OpenFlow version

1.0 and provides multiple parameters for achieving

throughput and latency tests. Its operational model

consists in the simulation of SDN switches that send

requests (Packet-In) to the controller through the

OpenFlow protocol, with the goal of measuring the

throughput or the latency. Unfortunately, Cbench seems

to be a dead project. It has not been updated for several

years. Hence, it only supports an old version of

OpenFlow (version 1.0). For these reasons, we decided to

propose a more versatile tool, called OFC-BenchTool

(OpenFlow Controller-Benchmark).

OFC-BenchTool supports OpenFlow version 1.3, and

its architecture is based on a distributed master-slave

model, with message passing. Message passing allows

parallel processes to run synchronized tests against the

same controller, creating a large number of requests, thus

increasing the stress capacity during tests. Additionally,

with the goal of reporting hardware characteristics during

the performance assessment, we included the usage of

SNMP [16]. Through SNMP, we collect information to

strengthen the evaluation process. Our tool also has a

module to facilitate the analysis of information,

incorporating the generation of graphics to represent the

results obtained. The architecture of OFC-BenchTool is

represented in Fig. 8.

Fig.8. Architecture of OFC-BenchTool.

We chose the C programming language to develop

OFC-BenchTool, due to its robustness, numerous

libraries, and extensive documentation. In order to

facilitate specific functionalities, we used some

development libraries: gnuplot_i for the graphical module

in charge of displaying a graphical representation of the

results; libpcap for the capture and handling of network

packets; and Net-SNMP for the process of SNMP packets.

OFC-BenchTool permits three types of tests: (1)

latency, (2) throughout in isolated mode, and (3)

throughput in distributed mode. The three tests are based

on the client/server model, where a virtual switch is a

 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers 7

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

client and the controller is the server. In the latency test, a

unique slave process of the benchmark is involved which

creates one virtual switch. Before the test, the benchmark

obtains a timestamp. Then, the virtual switch sends a

Packet-In message to the controller for a new flow, and

waits for the Packet-Out response. As soon as the switch

receives the answer, it sends a new Packet-In message to

the controller for a new flow, and waits for the answer.

This process is repeated n times. At the end of the n

exchanges (Packet-In/Packet-Out), a second timestamp is

taken. The difference between the two timestamps is

divided by n, to get the latency.

In the throughput test in isolated mode, there is only

one slave process of the proposed benchmark to assess

the controller. This slave process creates several virtual

switches (a parameter specified by the users). Basically,

each virtual switch tries to overwhelm the controller by

sending Packet-In messages for new flows, as fast as they

can, and counts the number of Packet-Out responses

received. This process is repeated for 50 seconds. The

total number of Packet-Out messages received in one

second is reported as the throughput and is expressed as

flow/second, that is, the benchmark reports the number of

new flows that were successfully created.

The throughput test in distributed mode is similar to

the throughput test in isolated mode, but several slave

processes of the benchmark are created to assess the SDN

controller (the idea is to create more stress over the

controller). Through parameters, users can specify the

number of slave nodes, the number of virtual switches to

be created in each slave node, and the IP address of the

master. Basically, and similarly to the isolated mode,

each virtual switch tries to overwhelm the controller with

Packet-In messages. The master node is in charge of

maintaining the synchronization between the slave nodes,

performing SNMP requests, and handling the reports

generated by slaves. To keep the slaves synchronized, a

topology connection in star between the master and the

slaves is established. Initially, the master waits for the

slaves to be operational, and when all the slaves are

connected, the master sends a start command to each

slave. At the end of the test, the slaves send their reports

to the master. The master receives the reports and formats

them adequately for the graphic module, where they can

be presented in the form of lines, points, and bars.

Simultaneously to the synchronization of the slaves

during the stress tests, the master process sends SNMP

queries to the SDN controller, to monitor its state.

VII. RESULTS

This section describes the tests that were performed

with OFC-BenchTool, in order to evaluate the fulfillment

of the proposed objectives.

For all the tests done in this paper, 16 simulated

switches were created in each slave node. Also, we

performed 50 cycles, where 1 cycle is equivalent to 1

second.

A. Throughput Test in Isolated Mode

In this mode, we used the throughput test with 1 slave

node that created 16 virtual switches (Virtual Switch 0, ...,

Virtual Switch 15). Fig. 9 shows the throughput recorded

in each virtual switch, per second, when using OpenMUL.

The x-axis represents the time, in second, where 0 sec is

the beginning of the experiment. The y-axis has the

throughput, that is, the number of flows established by

second. As we can observe, there is no preference of

responses for a specific switch, that is, the treatment of

OpenMUL is uniform among the 16 virtual switches.

Also, it is worth mentioning that the throughput is low at

the beginning of the experiment, and then tends to

fluctuate around 275 flow/sec in each virtual switch.

Fig.9. Throughput per Switch – 1 Slave Node – OpenMUL.

Fig. 10 depicts the memory and CPU consumption in

the computer running the SDN controller (OpenMUL),

during this test. Both parameters are expressed as

percentages of the total memory and CPU.

Fig.10. Memory and CPU Consumption – 1 Slave Node – OpenMUL.

Fig. 11 shows the usage of the network interface of the

SDN controller (OpenMUL), during this test (I/O traffic).

This usage is represented as the accumulated amount of

bytes sent and received by the controller.

8 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

Fig.11. Input/Output Network Traffic through the Interface of the SDN
Controller – 1 Slave Node – OpenMUL.

B. Throughput Test in Distributed Mode

For the distributed mode, we made tests with 4 nodes

(1 master and 3 slaves). The master was in charge of the

synchronization of the slave nodes, the measurement of

parameters through SNMP, and the recollection of the

results from the slaves. The slave nodes were responsible

for carrying out the tests and sending their final results to

the master. Each slave node created 16 virtual switches

(Virtual Switch 0, ..., Virtual Switch 15), with a total of

48 virtual switches (3 × 16 = 48).

Figs. 12, 13, and 14 show the throughput recorded in

each virtual switch, per second, when using OpenMUL.

The x-axis represents the time, in second, where 0 sec is

the beginning of the experiment. The y-axis has the

throughput, that is, the number of flows established by

second.

Fig.12. Throughput per Switch – 3 Slave Nodes – OpenMUL – Slave 1.

Fig.13. Throughput per Switch – 3 Slave Nodes – OpenMUL – Slave 2.

In contrast to Fig. 9 (throughput in isolated mode)

where the throughput tends to fluctuates around 275

flow/sec for each virtual switch, the throughput in

distributed mode is lower (around 150 flow/sec per

virtual switch). This is due to the major stress suffered by

the controller, since it serves 16 switches in the isolated

mode, vs 48 switches in the distributed mode.

Fig.14. Throughput per Switch – 3 Slave Nodes – OpenMUL – Slave 3.

Fig. 15 depicts the memory and CPU consumption in

the computer running the SDN controller (OpenMUL),

during this test. Both parameters are expressed as

percentages of the total memory and CPU. When

compared with the Isolated Mode (see Fig. 10), we can

conclude that the memory consumption is similar in both

experiments. However, the CPU processing in much

higher in the Distributed Mode (30% vs 12%, at the end

of the experiment), and it is due to the major stress

suffered by the controller.

 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers 9

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

Fig.15. Memory and CPU Consumption – 3 Slave Nodes – OpenMUL.

Fig. 16 shows the usage of the network interface of the

SDN controller (OpenMUL), during the test (I/O traffic).

This usage is represented as the accumulated amount of

bytes sent and received by the controller. When compared

with the Isolated Mode (see Fig. 11), we can conclude

that the network usage in much higher in the Distributed

Mode (50000 kB vs 22000 kB, at the end of the

experiment), and it is due to the major stress suffered by

the controller.

Fig.16. Input/Output Network Traffic through the Interface of the SDN
Controller – 3 Slave Nodes – OpenMUL.

C. Throughput Test for Different Controllers

To compare different controller, the test of throughput

in Distributed Mode (see Section VII.B) was repeated

with other SDN controllers (OpenDaylight, Floodlight,

and Ryu). In order to make a fair comparison of these

controllers, the installation of each controller was

performed in the same environment, with the same

characteristics. That is, a computer with an Intel i7 CPU

and 4 GB of RAM, that was running Ubuntu 17.04 as the

operating system.

1) OpenMUL: The tests that were performed on the

OpenMUL controller were successful, the connection was

achieved with the controller in the default port (port

6653), the OpenFlow messages were answered correctly,

and at an expected rate. The results of these tests are

shown from Fig. 12 to Fig. 16.

2) Floodlight: Similarly to OpenMUL, the tests made

with the Floodlight controller were successful, and the

results are shown from Fig. 17 to Fig. 21. As can be

observed in our experiments, the throughput of

OpenMUL is a little over the throughput of Floodlight.

Fig.17. Throughput per Switch – 3 Slave Nodes – Floodlight – Slave 1.

Fig.18. Throughput per Switch – 3 Slave Nodes – Floodlight – Slave 2.

Fig.19. Throughput per Switch – 3 Slave Nodes – Floodlight – Slave 3.

10 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

Fig.20. Memory and CPU Consumption – 3 Slave Nodes – Floodlight.

Fig.21. Input/Output Network Traffic through the Interface of the SDN
Controller – 3 Slave Nodes – Floodlight.

1) Ryu: For the Ryu controller, the tests done showed

a much lower performance than the other controllers,

possibly due to the fact that Ryu is completely written in

Python, an interpreted language, which is much slower

than C or Java. The results are shown from Fig. 22 to

Fig.26.

Fig.22. Throughput per Switch – 3 Slave Nodes – Ryu – Node 1.

Fig.23. Throughput per Switch – 3 Slave Nodes – Ryu – Node 2.

Fig.24. Throughput per Switch – 3 Slave Nodes – Ryu – Node 3.

Fig.25. Memory and CPU Consumption – 3 Slave Nodes – Ryu.

Fig.26. Input/Output Network Traffic through the Interface of the SDN
Controller – 3 Slave Nodes – Ryu.

 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers 11

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

2) OpenDaylight: We faced problems with the

OpenDaylight controller during our tests. It worked well

during the first iterations, before reaching a point where it

looks like that it does not process any petition anymore.

Despite our effort, we could not find any reason for the

malfunction of the controller. Hence, the test was

repeated with a smaller number of cycles. That is, we

used 16 cycles (instead of 50 cycles) for OpenDaylight

and the obtained results are shown from Fig. 27 to Fig. 31.

Fig.27. Throughput per Switch – 3 Slave Nodes – ODL – Node 1.

Fig.28. Throughput per Switch – 3 Slave Nodes – ODL – Node 2.

Fig.29. Throughput per Switch – 3 Slave Nodes – ODL – Node 3.

Fig.30. Memory and CPU Consumption – 3 Slave Nodes – ODL.

Fig.31. Input/Output Network Traffic through the Interface of the SDN
Controller – 3 Slave Nodes – ODL.

D. Comparison with Other Performance Tools

Tests with similar tools were carried out with

difficulties, since there are only a few related tools that

are open-source. The stronger open-source option is

Cbench [7]. The throughput test of Cbench was

performed against an OpenMUL controller, and the

obtained results were compared with the ones that we got

with our benchmarking tool.

It is very important to note that there is a significant

difference in both tests, which is the OpenFlow version

used. In the test performed with Cbench, the OpenFlow

version is 1.0, since it is the only supported version by

this tool. In the test performed to OpenMUL with our

benchmarking tool, the version of the protocol is 1.3,

which has significant changes. The results of the test

performed with Cbench are shown in Fig. 32. We can see

that this test has similar results to the ones obtained in the

isolated mode (see Fig. 9), confirming the correct

operation of our benchmarking tool.

12 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

Fig.32. Results of Cbench when Evaluating OpenMUL.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a performance evaluation

tool to assess SDN controllers. Our tool was developed in

the C programming language, with libraries that facilitate

the graphical representation of results and the handling/

construction of packets for OpenFlow and SNMP. The

tool has two modes (isolated and distributed). In the

isolated mode, a single test node is used, that emulates

virtual SDN switches. In the distributed mode, several

distributed slave nodes are created and synchronized by a

master node, to achieve a higher level of stress against the

SDN controller. To validate the tool, we carried out tests

with several popular SDN controllers.

With our tool, users can assess the throughput and

latency of SDN controllers, under different levels of

stress. Additionally, users can get information about

memory and CPU utilization of the controller during the

test. Our tool can significantly help network

administrators in the selection of an SDN controller, since

they can study the behavior of the controllers when they

reach their limits.

As future work, we plan to develop new functionalities

and modules to support:

 newest versions of the OpenFlow protocol

 graphic interfaces that improve the usability and

user experience

 error management based on logs

 tests in more complex networks with fault-tolerant

architecture.

REFERENCES

[1] P. Goransson, C. Black, and T. Culver. Software Defined

Networks: A Comprehensive Approach, Second Edition.

November 2016.

[2] J. Doherty. SDN and NFV Simplified: A Visual Guide to

Understanding Software Defined Networks and Network

Function Virtualization. Addison-Wesley Professional;

First Edition, March 2016.

[3] Open Networking Foundation. OpenFlow Switch

Specification. Version 1.5.1 (Protocol Version 0x06).

March 2015.

[4] O. Coker and S. Azodolmolky. Software Defined

Networking with OpenFlow, Packt Publishing, Second

Edition. October 2017.

[5] G. Blokdyk, OpenFlow: The Definitive Handbook.

CreateSpace Independent Publishing Platform. October

2017.

[6] M. Basheer Al-Somaidai and E. Bassam Yahya, Survey of

Software Components to Emulate OpenFlow Protocol as

an SDN Implementation, American Journal of Software

Engineering and Applications, Vol. 3, No. 6, pp. 74-82.

[7] A. Hassan and S. Ahmed, “Performance Comparison of

the State of the Art OpenFlow Controllers”. Halmstad,

September 2014.

[8] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, A

Flexible OpenFlow-Controller Benchmark, in

Proceedings of the 2012 European Workshop on Software

Defined Networking (EWSDN 2012), Darmstadt,

Germany, October 2012.

[9] M. Darianian, C. Williamson, and I. Haque, Experimental

Evaluation of Two OpenFlow Controllers, in Proceedings

of the 2017 IEEE 25th International Conference on

Network Protocols (ICNP), Toronto, ON, Canada,

November 2017.

[10] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li.

Performance Evaluation of OpenFlow-based Software-

defined Networks based on Queueing Model, Computer

Networks, Vol. 102, pp. 172-185, 2016.

[11] I. Bholebawa and U. Dalal, Performance Analysis of

SDN/OpenFlow Controllers: POX Versus Floodlight,

Wireless Personal Communications: An International

Journal, Vol. 98, No. 2, pp. 1679-1699, January 2018.

[12] B. Lantz, B. Heller, and N. McKeown. A Network in a

Laptop: Rapid Prototyping for Software-Defined

Networks. In Proceedings of the 9th ACM Workshop on

Hot Topics in Networks, Monterey, CA, USA. October

2010.

[13] B. Lantz, B. O’Connor, A Mininet-based Virtual Testbed

for Distributed SDN Development. In Proceedings of

SIGCOMM 2015, London, UK. August 2015.

[14] S. Rowshanrad, V. Abdi, and M. Keshtgari, Performance

Evaluation of SDN Controllers: Floodlight and

OpenDaylight, IIUM Engineering Journal, Vol. 17, No. 2,

2016.

[15] S.-Y. Wang, H.-W. Chiu, and C.-L. Chou, Comparisons

of SDN OpenFlow Controllers over EstiNet: Ryu vs.

NOX, in Proceedings of the Fourteenth International

Conference on Networks (ICN 2015), Barcelona, Spain,

April 2015.

[16] G. Blokdyk, SNMP Simple Network Management

Protocol: Amazing Projects from Scratch, CreateSpace

Independent Publishing Platform, October 2017.

[17] N. Feamster, J. Rexford, and E. Zegura, “The Road to

SDN: An Intellectual History”. ACM SIGCOMM

Computer Communication Review, vol. 44, no. 2, pp. 87-

98, April 2014.

[18] N. Figuerola, “SDN – Redes Definidas por Software”.

October 2013.

https://articulosit.files.wordpress.com/2013/10/sdn.pdf.

[19] I. Gavilán, “Fundamentos de SDN (Software Defined

Networking)”. August 2013. http://es.slideshare.net/

igrgavilan/20130805-introduccion-sdn.

[20] S. Azodolmolky, “Software Defined Networking with

OpenFlow”, Packt Publishing Ltd., October 2013.

[21] P. Göransson and C. Black, “Software Defined Networks:

A Comprehensive Approach”, Morgan Kaufmann, May

2014.

[22] M. Palacin Mateo, “OpenFlow Switching Performance”.

July 2009.

 Design and Implementation of a Benchmarking Tool for OpenFlow Controllers 13

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 11, 1-13

[23] T. D. Nadeau and K. Gray, “SDN: Software Defined

Networks”. O’Reilly, August 2013.

[24] A. Nierbeck, J. Goodyear, J. Edstrom, and H. Kesler,

Apache Karaf Cookbook, Packt Publishing, August 2014.

[25] J. Edstrom, J. Goodyear, and H. Kesler, Learning Apache

Karaf, Packt Publishing, October 2013.

[26] G. Blokdyk, OSGi: Upgrader’s Guide, CreateSpace

Independent Publishing Platform, November 2017.

[27] H. Cummins and T. Ward, Enterprise OSGi in Action:

With Examples using Apache Aries, Manning

Publications, 1st edition, April 2013.

[28] OpenDaylight, “Wiki OpenDaylight”, https://wiki.

opendaylight.org/view/OpenDaylight_Controller:Architec

tural_Framework.

[29] K. Ohmura, “OpenStack/Quantum SDN-based Network

Virtualization”. May 2013.

http://osrg.github.io/ryu/slides/LinuxConJapan2013.pdf.

[30] R. Enns, M. Bjorklund, J. Schoenwaelder, and A.

Bierman, Network Configuration Protocol (NETCONF),

RFC 6241, June 2011.

[31] P. Phaal, S. Panchen, and N. McKee, InMon

Corporation’s sFlow: A Method for Monitoring Traffic in

Switched and Routed Networks, RFC 3176, September

2001.

[32] O. Santos, Network Security with NetFlow and IPFIX:

Big Data Analytics for Information Security, Cisco Press,

1st edition, October 2015.

[33] M. Allen Patterson, D. Robb, and A. Akhter, Unleashing

the Power of NetFlow and IPFIX, Amazon Digital

Services LLC, September 2013.

[34] S. Nadas, Virtual Router Redundancy Protocol (VRRP)

Version 3 for IPv4 and IPv6, RFC 5798, March 2010.

[35] N. Malik and D. Saikia, “An Introduction to OpenMUL

SDN Suite”. September 2014.

Authors’ Profiles

Eric Gamess received an M.S. in Industrial

Computing from the National Institute of

Applied Sciences of Toulouse (INSA de

Toulouse), France, in 1989, and a Ph.D. in

Computer Science from the Central

University of Venezuela, Venezuela, in

2000. He is currently working as a

professor at Jacksonville State University,

Jacksonville, Alabama, USA. Previously, he worked as a

professor at the Central University of Venezuela, Venezuela,

University of Puerto Rico, Puerto Rico, and “Universidad del

Valle,” Colombia. His research interests include Vehicular

Adhoc Networks, Network Performance Evaluation, IPv6, and

Network Protocol Specifications. He is a member of the

Venezuelan Society of Computing and has been in the

organization committee and the technical program committee of

several national and international conferences.

Daniel Tovar received a B.S. in Computer

Science from the Central University of

Venezuela, Venezuela, in 2017. He is

currently working at CGTS Corp, Caracas,

Venezuela, as a network and system

administrator. His research interest includes:

Network Simulations, Network

Performance Evaluation, Software Defined

Networks, and Web Development.

Alberto Cavadia received a B.S. in

Computer Science from the Central

University of Venezuela, Venezuela, in

2017. His research interest includes:

Computer Networking, High Performance

Computing, and Web Development.

How to cite this paper: Eric Gamess, Daniel Tovar, Alberto

Cavadia, "Design and Implementation of a Benchmarking Tool

for OpenFlow Controllers", International Journal of Information

Technology and Computer Science(IJITCS), Vol.10, No.11,

pp.1-13, 2018. DOI: 10.5815/ijitcs.2018.11.01

