
I.J. Information Technology and Computer Science, 2018, 10, 62-68
Published Online October 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2018.10.08

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 10, 62-68

RDF Link Generation by Exploring Related

Links on the Web of Data

Kumar Sharma
Department of Computer Science and Engineering, University of Kalyani, Kalyani, West Bengal, India.

E-mail: kumar.asom@gmail.com

Ujjal Marjit
Center for Information Resource Management (CIRM), University of Kalyani, Kalyani, West Bengal, India.

E-mail: marjitujjal@gmail.com

Utpal Biswas
Department of Computer Science and Engineering, University of Kalyani, Kalyani, West Bengal, India.

E-mail: utpal01in@yahoo.com

Received: 06 July 2018; Accepted: 12 August 2018; Published: 08 October 2018

Abstract—Interlinking RDF resources is a vital aspect of

the Semantic Web technology. It is the basis of Linked

Data that provides interlinked datasets on the web. One of

the principles of Linked Data is interlinking resources

from different data sources on the web. Data interlinking

is a critical and challenging problem that every Linked

Data generation applications face. Various approaches

have been evolved for resolving this problem, but, for

more massive datasets, it becomes almost indefinite time

while linking similar or related resources. Linking RDF

resources is like the problem of entity matching, record

matching or duplicate resource detection. More or less

they attempt to point to the same problem, but the RDF

link generation is the task of finding related resources on

the web. In this article, we present an approach for

generating RDF links using the similarity measure

between two RDF resources and by exploring associated

relationships of the matched resources. The idea is to find

related resources and link them with an RDF resource

that is being generated.

Index Terms—Linked data, semantic web, link discovery,

rdf, interlinking.

I. INTRODUCTION

Interlinking of RDF resources is the most common

problem in a Linked Data generation activity [1]. It takes

more time than needed and consumes more network

resources when the dataset is too large. Before publishing

RDF dataset based on Linked Data, it is relevant to

identify related resources on the web and ingest links to

those resources in the RDF dataset. In literature, this

problem is sincerely attended by many researchers, and

mostly they tried to find the sameness nature of the

resources. However, if we recall the fourth principle of

Linked Data [2] where it says, "include links to other

URIs, so that they can discover more things” which

implies that we can ingest not only similar resources but

also the related resources that can entail more information.

That is why in literature we find three kinds of RDF links:

relationship link, identity link, and vocabulary link. The

problem of interlinking resources is also known as co-

reference resolution, identity uncertainty, record

matching, instance identification [3], duplicate resource

detection [4], entity co-reference [5], and record linkage

[6]. The record linkage matches two records situated at

two different datasets based on specific criteria. This is

primarily used to establish the relationship between

multiple RDF datasets. Such type of work is found in [7].

If we carefully look at the problem of identity

matching of two resources, it reveals the idea of matching

behaviors of the two resources. Like this RDF resources

can have many behaviors that are described by their

property-value pairs. RDF resources are instances of

some classes in a domain ontology having n number of

property-value pairs. From this, we derive that matching

two resources require matching their domain ontologies

and property-value pairs. If all these matches then we can

say that two resources are identical or similar, this is also

called the task of instance matching. However, for the

relationship linking these requirements are not needed.

Two resources can relate to each other even if they

belong to different ontologies and share different

behaviors. RDF is a flexible data model where resources

can add new property-value pairs that belong to different

vocabulary and ontology. Hence, such resources can

break down the conditions of the instance-matching

problem. But they can be matched using predefined rules

with minimal behavioral matching. Identity and

relationship linking issues are related, but they vary in

similarity measure.

In this article, we present the problem of relationship

linking. The source resources are matched with the target

resources from the selected datasets. If the resources are

matched using some property values, then they are

 RDF Link Generation by Exploring Related Links on the Web of Data 63

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 10, 62-68

interlinked with the target resources as well as the linked

datasets of the target resources. This activity is executed

in a distributed environment during the generation of

RDF resources from legacy datasets. This way, the task

of link generation is achieved without involving large

number pairwise resource comparisons, which helps in

converting a considerable volume of legacy datasets into

RDF while supporting information linking. The

remaining sections of the article are organized as follows:

in section 2 we discuss the related works, section 3

presents the research objective, and section 4 presents the

proposed approach for link generation. Section 5 shows

the experimental results as well as the performance

analysis, and finally, section 6 concludes the article.

II. RELATED WORKS

RDF link generation is the process of determining

resources having similar identities. This problem is also

known as co-reference resolution, identity uncertainty,

record matching, and instance identification [4]. It has

been vastly researched in the field of relational databases

and XML [8, 9, 10, 11].

In literature, there exist several efforts related to the

task of link discovery. Most of them focus on finding

semantic relation by exploiting the resources on the web

of data. Silk [8], is a standard link discovery framework

which discovers semantically related resources located at

different linked data sources. It uses linkage rules and

conditions to match the resources. Each resource must

fulfill the linkage rules to develop the semantic relations

between them. The resources are fetched using the

SPARQL protocol. Rizopoulos propose an approach for

the automatic discovery of semantic relation [12]. Two

resources are compared using a bidirectional path. Each

pair of the resource is compared two times dealing with

the bidirectional similarity degrees. In [13], the authors

provide an option for interlinking resources using the

manual approach. With this approach, the entities from

real-world datasets have to be entered by the user.

There are many other approaches which generally

compare RDF resources with one another and finds the

semantic relation by determining the similarity measure

of the resources. With these approaches, it will take a

considerable amount of time when the dataset is too large.

Massive datasets require the scalable approach to avoid

the time-consuming processing of data. Also, if we

consider the link generation task during the initial stage

of the Linked Data generation from the legacy data

sources, then it will save time to process the huge

datasets. Currently, there are minimal scalable

approaches for the Linked Data generation from legacy

data sources. Lim et al. [14] present a distributed method

for converting data from the relational database to RDF

using Hadoop and MapReduce framework. Their

approach for converting legacy data to RDF is scalable,

but they do not mention about the task for link generation.

They use Hadoop and MapReduce framework with nine

worker nodes, each node configured with Intel i5 Quad-

Core 3.1GHz, 4GB RAM, and 8TB HDD. The input data

is stored in MySQL database from DBT2 benchmark data.

Similarly, Vahdati et al. [15] present a distributed

approach for converting research metadata from HBase,

CSV and XML formats to RDF. They use the

MapReduce paradigm for processing a large volume of

the data in parallel over multiple nodes. The evaluation

step shows that they use 12 worker nodes for data

conversion from HBase to RDF, which took 20 billion

HBase rows as input and produced 655 billion RDF

triples in 17 minutes. They have considered the task for

link generation for future work.

We propose a distributed solution for generating RDF

data from legacy data sources in [16]. We plan to

improve the process of link generation; however, the

implementation has not yet finished comparing with other

scalable approaches. Our solution for link generation

does not require the pairwise resource comparison with

every resource of the target dataset. It first performs the

pairwise resource comparison with the limited resources.

If the resources are matched, then it navigates to the

target resources. When it navigates to the target resource,

it extracts the other linked resources which are already

generated by some other link generation framework. This

overall process is performed on a distributed environment

using Apache Spark.

III. RESEARCH OBJECTIVE

The prime objective of this article is to discover

semantic links for the RDF resources. The task of link

generation is performed on a bibliographic dataset which

is converted from MARC 21 Formats into RDF. The

specific objectives are:

1. To develop an algorithm that can query over the

web of data for a particular resource.

2. To develop an algorithm that can calculate the

similarity measure between two RDF resources.

3. To discover the semantically related resources and

ingest those links into the RDF resource.

In this article, we demonstrate the link generation task

using bibliographic datasets. The bibliographic resources

are generated from a data conversion framework [16],

which converts MARC 21 Format for Bibliographic data

into RDF format in a distributed environment. Here, we

attempt to show the result of interlinking bibliographic

entities with other entities stored into different datasets on

the web and fulfill the requirement of Linked Data.

IV. RDF LINK GENERATION

The solution for relationship linking starts with the

count of minimal behavior parameter and matching

properties. Considering the source and target datasets as

DS and DT respectively, for a resource r in DS, query DT

for r, and if any resource is found then compare r with

matched resources in DT. The similarity measure at the

64 RDF Link Generation by Exploring Related Links on the Web of Data

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 10, 62-68

RDF statement level is used to analyze the resources.

RDF statement level similarity measure ensures that the

property of the resources in the target dataset agrees on

the matching rule and the value is matched based on the

value similarity measure. For each matched resource,

explore the resource on the web, analyze the properties

and look for the linked resources.

A. Target Dataset Selection

In this step, we search the target-dataset to find out the

information related to the resource whose interlinking is

to be done. For a given resource in a source dataset, the

target dataset is queried via SPARQL query end-point.

The target datasets have to be selected based on the

nature of the data presented in the source dataset. For

example, for a bibliographic data, the target datasets

could be freebase
1
, yago

2
, DBpedia

3
 etc. In each target

dataset, we search for a given resource using resource's

searchable properties. The matched resources are

collected, and then those resources are again analyzed

using similarity measure with the minimal behavioral

match. The similarity measure gives the optimal result

which can be determined whether a resource is related or

not.

Algorithm 1: GenerateRDFLinks (Resource Rr): Given an RDF

resource, returns the interlinked resource Rr'

 Input: An RDF resource (rr)
 Output: Modified resource (rr')

1: T ← a set of target datasets;
2: K ← ε; //visit limit

3: linkCounter ← 0;

4: for each t T do
5: DURI ←URILookUp(rr.getSearchTerms(),

t.getAPIPath());
6: for each rURI in DURI do

7: tr ← getTargetResource(rURI);

8: sim ← sim_measure(tr, rr);
9: match ← false;

10: if sim == 1 then
11: rr' ← rr.addPredicate(owl:sameAs, rURI);

12: linkCounter++;

13: match ← true;
14: else if sim >= θ then

15: rr' ← rr.addPredicate(rdfs:seeAlso, rURI);

16: linkCounter++;
17: match ← true;

18: end if;
19: if match == true

20: rr'←rr.addPredicate(rdfs:seeAlso, Navigate (rURI));

 21: end if

22: if linkCounter >= K then;

23: break;
24: end if

25: end for

26: end for
27: return rr';

The final matched resources are explored looking for

the interlinked resources. We extract those resources that

belong to a particular group of interlinking. Such a group

is predefined which contains the properties such as

1 https://developers.google.com/freebase/
2 https://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/yago/#c10444
3 http://wiki.dbpedia.org/lookup/

owl:sameAs, rdfs:seeAlso, etc. We further navigate that

resource and again extract the interlinked resources.

Algorithm 1 & 2 demonstrate this process.

Algorithm 2: Navigate (Resource URI): Given an RDF resource

URI, returns the linked resources

 Input: An RDF resource URI (RURI)
 Output: List of linked resource URIs

1: P ← a set of linked properties;
2: K ← ε; //visit limit

3: linkCounter ← 0;

4: R ← en empty list;

5: for each p P do

6: RURI ← SparqlQuery(RURI, p.getURI(),?link);
7: R.add(RURI);

8: end for

9: return R;

Algorithm 1 takes an RDF resource as input and

returns the resource by interlinking with the matched

resources. It requires a set of target datasets to which the

interlinking has to be made. At this moment, the datasets

are manually searched and configured. Algorithm 1 visits

the target datasets and fetches the resource URIs. With

each resource in the visited dataset, the RDF resource is

downloaded and matched with the given resource using

resource similarity measure. The value of the similarity

measure determines the match. For this, a threshold value

is defined to determine whether the similarity measure is

equal to or greater than the specified threshold, then the

target resource is included under linkset. Further, the

matched resource is navigated to find out the linked

resources. Algorithm 2 shows this process. The linked

resources are also included in the linkset.

B. Comparing RDF Resources

Since an RDF resource consists of a set of RDF triples,

comparing two RDF resources is not a straightforward

job. An RDF triple, in turn, consists of 3-components:

Subject, Predicate, and Object. We consider the

comparison process at three different levels: comparison

at the resource level, statement level, and object (value)

level. It also requires comparing each & every triple of

the resources. Matching two resources requires a

similarity metric to compare pairs of resources, RDF

statement and their corresponding values (objects). We

describe similarity metrics built for RDF data. In the

following, we define the similarity function for

comparing string data, statements, and resources.

C. String Similarity Measure

For matching string data, the cosine similarity metric is

used. The similarity between two texts or strings is

defined as the cosine angle between vector

representations of the two strings. It is computed as

follows:

*
_ (,) ()

A B
Sim Str A B Cos

A B
 (1)

Where, Cos(θ) is the cosine similarity of two strings A

and B. The cosine similarity metric has been used

 RDF Link Generation by Exploring Related Links on the Web of Data 65

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 10, 62-68

because of its simplicity, efficient to evaluate, and always

gives the value between 0 and 1. It is worth mentioning

here that if the value belongs to number then no doubt

they are easily matched, and if the value is date & time

then their differences are calculated.

D. Similarity measure for RDF Statement

In general, two RDF statements are equal if their

property-value pairs are similar. RDF statement measure

is a measure of similarity between two RDF statements

considering the similarity pairs of predicate and object. It

is defined as follows.

Definition 1. Given two RDF statements S1 and S2, a

similarity function sim_stmt, and a similarity threshold

thstmt, then S1 and S2 are similar if sim_stmt(S1, S2)=

thstmt.

For two RDF statements S1 and S2, the RDF statement

similarity measure is calculated as:

1 2 1 2 1 2_ (,) (,)* _ (,)P P Obj ObjSim Stmt S S Eq S S Sim Obj S S

(2)

Where Eq is a function telling whether two properties

are the same or not. Sim_Obj is another similarity

function which determines the similarity measure

between two objects with the help of string similarity

function.

E. Similarity measure for RDF Resources

As discussed, two RDF resources need comparison at

the object level. RDF resource similarity is calculated

using Jaccard similarity measure, which measures the

similarity between finite sample sets and is defined as the

cardinality of the intersection of sets divided by the

cardinality of the union of the sample sets.

Definition 2. Given two RDF resources R1 and R2, a

similarity function sim_res, and a similarity threshold

thres, then these two resources are said to be similar if

sim_res(R1, R2)= thres. For this, two resources should

have the same number of property-value pairs.

Given two RDF resources R1 and R2, the resource

similarity measure is calculated as:

Sim _ Res R
1
,R

2() =
R

1
ÇR

2

R
1
∪ R

2

 (3)

Where R1 and R2 contain finite sets of RDF

statements.

V. EXPERIMENT

The experiment is performed on the bibliographic

datasets that are being converted from MARC 21 Format

for Bibliographic data into RDF. Java 1.8 and Apache

Spark 2.2.0 have been used for converting data on Mac

OS X 10.13.4 system having 16GB of RAM and Core i7

processor. First of all, we show the performance report of

the proposed similarity measure. Then we provide the

experimental result of link generation task which is

performed using an RDF resource taken from a sample

dataset
4
. This dataset is collected using the conversion

framework as presented in [16]. Finally, we present the

time analysis of the proposed approach by performing

link generation task with larger datasets in a distributed

environment.

A. Performance on Similarity Measure

The performance of the similarity measure is analyzed

using the SPIMBENCH
5
 training datasets. The goal of

SPIMBENCH is to determine the similarity measure

between two OWL instances. SPIMBENCH provides two

sets of training datasets- one set contains ontology and

instances (Tbox), and another set includes only instances

(Abox). We have used only Abox datasets where

instances are described using 22 classes, 31

DatatypeProperty, and 85 ObjectType properties. The

task is to match the instances in the source dataset

(Abox1) against the instances of the target dataset

(Abox2). We thus tested the small set of training datasets
6

and produced a set of mappings (alignment) between the

pairs of matching instances as shown in Table 1. Here we

have shown only some part of the mappings. It shows

that the adjustments are not yet accurate as expected. This

is because some of the property-value pairs are slightly

different as our approach matches for same property-

value pairs using string similarity measure.

B. Querying Resources

The resources are searched using direct URI fetch on

the target database. URI search is achieved by DBpedia

lookup service. DBpedia look service provides DBpedia

resource URIs by related keywords. However, this

relation does not mean that the matched resources are

semantically related all the time. It could only the label of

the resource matches. That is why the resources have to

be further measured using similarity values between the

source resource and the target resource. The DBpedia

lookup service provides two APIs: Keyword Search and

Prefix Search. Here we follow keyword search which

uses the given string to find the related resources. For

example, the URL, as shown in Listing 1, fetches the

associated resources for the string "Art for all."

4https://github.com/kumarsharma/LegacyData2LinkedData/blob/master/

RdfXmldata/rdf_bibo_1.rdf
5https://project-hobbit.eu/challenges/om2018/om2018-tasks/
6http://users.ics.forth.gr/~jsaveta/.index.php?dir=OAEI_IM_SPIMBEN

CH_2017_5

66 RDF Link Generation by Exploring Related Links on the Web of Data

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 10, 62-68

Table 1. Similarity measure between two datasets

Entity 1 Entity 2
Expected

Alignment

Achieved

Alignment

http://www.b
bc.co.uk/thing

s/1#id

http://www.bbc.co

.uk/things/1#id
1.0 0.64

http://www.b
bc.co.uk/thing

s/2#id

http://www.bbc.co
.uk/things/149655

8551#id

1.0 0.65

http://www.b
bc.co.uk/thing

s/6#id

http://www.bbc.co
.uk/things/822880

662#id

1.0 0.68

http://www.b
bc.co.uk/thing

s/7#id

http://www.bbc.co
.uk/things/109925

88#id

1.0 0.83

http://www.b
bc.co.uk/thing

s/13#id

http://www.bbc.co

.uk/things/13#id
1.0 0.73

http://www.b
bc.co.uk/thing

s/328#id

http://www.bbc.co

.uk/things/328#id
1.0 0.82

http://www.b
bc.co.uk/thing

s/202#id

http://www.bbc.co
.uk/things/815017

456#id

1.0 0.89

http://www.b
bc.co.uk/thing

s/127#id

http://www.bbc.co
.uk/things/553524

636#id

1.0 0.89

http://www.b
bc.co.uk/thing

s/200#id

http://www.bbc.co
.uk/things/210977

9712#id

1.0 0.90

http://www.b
bc.co.uk/thing

s/158#id

http://www.bbc.co
.uk/things/115139

9101#id

1.0 0.90

http://www.b
bc.co.uk/thing

s/74#id

http://www.bbc.co
.uk/things/163654

4670#id

1.0 0.70

http://www.b
bc.co.uk/thing

s/36#id

http://www.bbc.co
.uk/things/194987

7939#id

1.0 0.90

Listing 1. URL to fetch the related resource from DBpedia

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?Que

ryClass=&QueryString=Art_for_all

The result is processed and parsed to get the related

resource URIs. For each matched resource URI, the RDF

resource is fetched, and they are compared using the

similarity measure function. The SPARQL query to fetch

the resource using its URI is given in Listing 2.

Listing 2. SPARQL query to fetch an RDF resource

SELECT ?predicate ?object
WHERE{

<resource_URI> ?predicate ?object
}

The above query fetches the corresponding resource in

RDF/XML format.

Listing 3. An RDF Resource

As shown in Listing 3, the resource’s key-title is “Art

for all." Hence the search string will be "Art for all." We

perform related resource finding using DBpedia’s URI

lookup operation. Here the minimum behavior match is

“keyTitle” and its value. The actual URL to call the API

is shown in Listing 4.

Listing 4. URL to request related resources

http://lookup.dbpedia.org/api/search.asmx/KeywordSearch?Que

ryClass=&QueryString=Art%20for%20all

The result is processed and parsed to get the related

resource URIs. Now, for each related resource URI, the

actual RDF resource is fetched and listed under target

resource list. For each target resource, the given resource

is compared using the similarity measure function. The

resultant resource with linked properties (rdfs:seeAlso) is

shown in Listing 4, and the full listing is available here
7
.

In the resultant linked dataset, it is to be noted that we

have linked to other resources from multiple sources.

Initially, we queried into DBpedia dataset and after that

using DBpedia resource the three different datasets such

as Yago, Freebase and Wikidata are visited and fetched

the linked resources.

Listing 5. RDF Resource with linked properties

7 https://raw.githubusercontent.com/kumarsharma/LegacyData2LinkedD

ata/master/RdfXmlLinkedData/rdf_bibo_1_linked.rdf

 RDF Link Generation by Exploring Related Links on the Web of Data 67

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 10, 62-68

C. Performance

The performance of the proposed approach is tested on

the distributed environment having three distributed

nodes on Mac OS X environment. For evaluation, we use

Harvard Library Bibliographic Datasets from Harvard

Library. Table 2 shows the input & output dataset size

and the total time to convert the input dataset into RDF

using the proposed distributed approach. This conversion

is without link generation. It shows that the data

conversion without link generation is faster as compared

to a non-distributed approach as shown in Table 3.

Table 2. Size of input data, output data and total time taken for

distributed data conversion

Dataset

Input

Size

(GB)

Output

Size (GB)

Triples

Count

(Billion)

Time

Taken

(Min)

Dataset 1 1.16 0.29 27.42 1.13

Dataset 2 1.02 0.34 22.16 1.09

Dataset 3 0.98 0.33 20.36 1.03

Dataset 4 0.917 0.32 21.46 1.08

Dataset 5 0.916 0.34 21.95 1.04

Table 3. Size of input data, output data and total time taken for non-

distributed data conversion

MARC 21

Dataset

Input

Size

(GB)

Output

Size (GB)

Triples

Count

(Billion)

Time

Taken

(Min)

Dataset 1 1.16 3.33 27.42 6.41

Dataset 2 1.02 3.40 22.16 6.10

Dataset 3 0.98 3.19 20.36 5.58

Dataset 4 0.917 3.30 21.46 5.61

Table 4 shows the result of comparison with the other

two distributed approaches for converting legacy data to

RDF. We have used up to three number of distributed

nodes, but with an increased number of nodes the

performance will always be improved.

Table 4. Comparison result

Approach
No. of

Nodes

No. of

Triples

(Billion)

Time

Taken

(Min)

Lim et al. [14] 9 116 3.1

Vahdati et al. [15] 12 655 17

Sharma et al. [16] 3 174 11

Notice that the average time for generating RDF triples

without link generation is always faster on a distributed

approach. But whenever the task of link generation is

involved the performance is degraded even with the

distributed approach. This is mainly because of network

operations. As shown in Table 5, the time taken to

perform link generation on the above datasets using the

proposed approach is more than 15 hours using three

distributed nodes. Hence it is observed that the task of

link generation is a time-consuming job because of

network fetch operations.

Table 5. Performance analysis on link generation

Dataset
Triples Count

(Billion)

Links

Count

(Billion)

Time Taken

(hour)

Dataset 1 27.42 1.33 18.80

Dataset 2 22.16 1.07 22.40

Dataset 3 20.36 0.86 16.15

Dataset 4 21.46 1.60 16.22

Dataset 5 21.95 1.11 12.90

VI. CONCLUSION

In this article, we present a link generation framework

for generating related links of RDF resources in a

distributed environment. The proposed approach uses the

idea of exploring related resources and extracting the

linked resources on the web. The related resource URIs

are queried using DBpedia APIs, and the corresponding

RDF resources are extracted using SPARQL queries.

Furthermore, we proposed an algorithm for comparing

RDF resources using resource similarity measure. The

proposed approach for link generation is useful when

RDF resources required to be linked with related

resources that belong to other data sources on the web.

The proposed work needs further improvement on the

performance when larger datasets are used as well as the

comparative analysis with different approaches which

will be the future scope of the work.

REFERENCES

[1] S. Dietze, H. Q. Yu, D. Giordano, E. Kaldoudi, N.

Dovrolis, and D. Taibi, "Linked Education: Interlinking

Educational Resources and the Web of Data," In

Proceedings of the 27th Annual ACM Symposium on

Applied Computing, ACM, 2012, pp. 366-371.

[2] C. Bizer, T. Heath, and T. Berners-Lee, "Linked Data:

Principles and State of the Art," In World Wide Web

Conference, 2008, pp. 1-40.

[3] A. Myłka, A. Myłka, B. Kryza, and J. Kitowski,

"Integration of Heterogeneous Data Sources in an

Ontological Knowledge Base," Computing and

Informatics, 31 (1), 2014, pp. 189-223..

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios,

"Duplicate Record Detection: A Survey," IEEE

Transactions on Knowledge and Data Engineering, 19 (1),

2007, pp. 1-16.

[5] E. Ioannou, O. Papapetrou, D. Skoutas, and W. Nejdl,

"Efficient Semantic-Aware Detection of Near Duplicate

Resources," In Extended Semantic Web Conference,

Springer, Berlin, Heidelberg, 2010, pp. 136-150.

[6] D. Song, and J. Heflin, "Domain-Independent Entity

Coreference in RDF Graphs," In Proceedings of the 19th

ACM International Conference on Information and

Knowledge Management, ACM, 2010, pp. 1821-1824.

[7] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov,

"Discovering and Maintaining Links on the Web of Data,"

In International Semantic Web Conference, Springer,

Berlin, Heidelberg, 2009, pp. 650-665.

[8] A. T. Bayrak, A. Tuğrul, A. İ. Yılmaz, K. B. Yılmaz, R.

Düzağaç, V. Bilimi, and O. T. Yıldız, "Near Duplicate

Detection in Relational Databases," In 2018 26th Signal

Processing and Communications Applications Conference

(SIU), IEEE, 2018.

68 RDF Link Generation by Exploring Related Links on the Web of Data

Copyright © 2018 MECS I.J. Information Technology and Computer Science, 2018, 10, 62-68

[9] P. Achimugu, A. Soriyan, O. Oluwagbemi, and A. Ajayi,

"Record Linkage System in a Complex Relational

Database-MINPHIS Example," Studies in Health

Technology and Informatics, 160 (Pt 2), 2010, pp. 1127-

1130.

[10] M. Weis, and F. Naumann, "Detecting Duplicate Objects

in XML Documents," In Proceedings of the 2004

International Workshop on Information Quality in

Information Systems, ACM, 2004, pp. 10-19.

[11] M. Weis, and F. Naumann, "Detecting Duplicates in

Complex XML Data," In Data Engineering, 2006.

ICDE'06. Proceedings of the 22nd International

Conference on, IEEE, 2006, pp. 109-109..

[12] N. Rizopoulos, "Automatic Discovery of Semantic

Relationships Between Schema Elements," In ICEIS, (1),

2004, pp. 3-8.

[13] A. K. Joshi, P. Hitzler, and G. Dong, "LinkGen:

Multipurpose Linked Data Generator," In International

Semantic Web Conference, Springer, Cham, 2016, pp.

113-121.

[14] K. B. Lim, H. G. Jun, and H. J. Kim, "Semantics

Preserving MapReduce Process for RDB to RDF

Transformation," International Journal of Metadata,

Semantics and Ontologies, 10 (4), 2015, pp. 229-239.

[15] S. Vahdati, F. Karim, J. Y. Huang, and C. Lange,

"Mapping Large Scale Research Metadata to Linked Data:

a Performance Comparison of HBase, CSV and XML," In

Research Conference on Metadata and Semantics

Research, Springer, Cham, 2015, pp. 261-273.

[16] K. Sharma, U. Marjit, and U. Biswas, "MAchine Readable

Cataloging to MAchine Understandable Data with

Distributed Big Data Management," Journal of Library

Metadata, 18 (1), 2018, pp. 13-29.

Authors’ Profiles

Kumar Sharma: Mr. Kumar Sharma holds

bachelor & master degree in Computer

Application. Presently, he is pursuing Ph.D.

degree in the Department of Computer

Science & Engineering, University of

Kalyani, West Bengal, India. His research

interests include Semantic Web, Ontology,

Web Technologies and Big Data. He also has vast experience in

mobile (iOS) application development in the field of Education,

Point of Sale, and utility applications.

Dr. Ujjal Marjit: Dr. Ujjal Marjit is the

System-in-Charge at the C.I.R.M.(Centre for

Information Resource Management),

University of Kalyani. He obtained his M.C.A.

degree from Jadavpur University, India in

2000. His vast areas of research interest reside

in Web Service, Semantic Web, Semantic

Web Service, Ontology, Knowledge Management, e-

Governance as well as Software Agents etc. More than 50

papers are published in the several reputed national and

international conferences and journals.

Dr. Utpal Biswas: Dr. Utpal Biswas

received his B.E, M.E and Ph.D. degrees in

Computer Science and Engineering from

Jadavpur University, India in 1993, 2001

and 2008 respectively. He served as a

faculty member in NIT, Durgapur, India in

the Department of Computer Science and

Engineering from 1994 to 2001. Currently, he is working as a

Professor in the Department of Computer Science and

Engineering, University of Kalyani, West Bengal, India. He is a

co-author of about 120+ research articles in different journals,

book chapters, and conferences. His research interests include

Optical Communications, Ad-hoc and Mobile Communications,

Sensor Networks, Semantic Web Services, E-governance, etc.

How to cite this paper: Kumar Sharma, Ujjal Marjit,

Utpal Biswas "RDF Link Generation by Exploring

Related Links on the Web of Data", International Journal of

Information Technology and Computer Science(IJITCS),

Vol.10, No.10, pp.62-68, 2018. DOI: 10.5815/ijitcs.2018.10.08

