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Abstract—Nanotechnologies, exceedingly Quantum-dot 

Cellular Automata (QCA), presents a notable perception 

for upcoming nanocomputing. Feature extent of circuits 

is moving to sub-micron point that produces the 

sophisticated device intricacies. In this work, QCA is 

considered as an application technique for reversible 

logic. A multi-layer reversible Fredkin circuit is proposed 

with QCA nanotechnology. The accomplishment of the 

outlined circuit is substantiated with five existing Fredkin 

gate, which exhibits from 71.20% to 37.50% 

improvement in term of cell intricacy. The proposed 

design uses 55 cells concerning only 0.03 μm
2
 area and 

latency is 0.75. The power consumption by the proposed 

circuit is also presented in this literature. The proposed 

design has been realized with QCADesigner version 2.0.3. 

 

Index Terms—Quantum-dot Cellular Automata (QCA), 

Fredkin Gate, QCADesigner, Energy dissipation. 

 

I.  INTRODUCTION 

Due to the exponential diminution in element size in 

CMOS archetype, devices are further disposed to extreme 

leakage current and power dissipation. In accordance 

with Moore's law [1], every 18 months the measure of 

transistors that could be cohesive into a particular chip is 

doubled that causes in saving area and lessening device 

magnitudes. In this outlook, quantum-dot cellular 

automata (QCA) is the appropriate nominee that has not 

any of the mentioned complications and abilities 

particularly minimal power dissipation with small 

magnitude feature and high switching frequency [2]. 

Landauer [3] presented that, irrespective of the 

underlying technology, typical logic circuits deplete heat 

in an order of kTln2 joules for every bit of information 

that is dropped. Afterward, Bennett [4] established that if 

computations are executed devoid of abolishing the 

information then rationally zero dissipation is possible. 

Because of favorable assets like minimal extent, extreme 

packing thicknesses and lower signal interruptions, QCA 

has achieved consideration in recent times. It was initially 

outlined in binary formula, however, multi-valued logic 

(MVL) which offers rapid implementation and 

inputs/outputs fall [5]. Besides, reversibility in a quantum 

computing is outlined a bijective relation concerning 

inputs to outputs that directs to minimize power 

dissipation. Rest of the literature is prepared as follows: 

Section 2 represents the synopsis of QCA and reversible 

logic. Section 3 signifies the proposed multi-layer 

Fredkin gate. The comprehensive comparison of the 

proposed gate with the existing designs are organized in 

Section 4. Overall power dissipation by the outlined 

circuit is discussed in Section 5. Lastly, conclusions are 

pointed in Section 6. 

 

II.  SUMMARY: BACKGROUND OF BINARY QCA 

The binary quantum-dot is a four-sided cell alongside 

four quantum dots engaging the four apexes of the cell. 

Every single cell embraces two additional charges and the 

electrons can channel between dots and ultimately 

subjugate the antipodal locations due to Coulombic 

repulsion to complete minimal area [2]. Based on 

repulsion law of Coulomb, two electrons can individually 

engage antipodal positions in the cell. Therefore, each 

cell can encompass polarization status of either P = +1 or 

P = −1 with binary states 1 and 0, individually are 

explained in Figure 1. 

 
Electron

Tunnel
P= + 1    P= -1

Quantum dot

 

Fig.1. Four dotted QCA cell with binary encoding 

The QCA assemblies of the essential gates are 

illustrated in Figure 2 to 4; specifically, QCA wire, 

majority voter and the inverter. QCA wires can be either 

made up of 45
o
 cells or 90

o
 cells. These cells used to 

transmit binary data from one side to another. Three input 
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majority voter (Maj3) is the fundamental logic gate in 

QCA which can be comprised by five QCA cells where 

three used as inputs, one is output and another is the 

unique middle cell. The middle cell sometimes familiar as 

device cell that shifts to principal polarization [6] and 

determines the stable output. Quite a few designs based 

on basic building blocks of QCA are organized in [7-26]. 

The logical equation of Maj3 is as follows: 

 

 
(a) 

 
(b) 

Fig.2. QCA wire (a) 45o (b) 90o 

 

MV (A, B, C) = AB+BC+CA                  (1) 

 
 

Maj Output=1
`

B=1

A=0

C=1
 

Fig.3. Fundamental form of 3-input majority voter gate 

The QCA inverter basically transmits the cell 

polarization to the reverse polarization as presented in 

Figure 4. QCA circuits require apposite clocking to 

switch the flow of information that also supports essential 

power to operate the circuit. To operate the input to the 

anticipated output, signals need to be conceded through 

four stable clock zones [27] namely, Relax, Switch, Hold, 

and Release.  

 

0 1

 

Fig.4. Seven cell QCA inverter 

 

 

Clock signals for every single state are different and 

90
o
 phase shifted. The clocking flow is presented in 

Figure 5. Two particular kinds of crossover approach 

usually used in QCA circuit specifically, coplanar and 

multilayer. Multilayer crossover utilizes more than one 

layer of QCA cells, whereas coplanar crossover uses two 

separate cells for wire-crossing. In this study, multi-layer 

approaches are utilized [28]. 
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Fig.5. QCA signal for clocking zones  

Reversible logic accomplishes the reversible purpose 

where the output shapes can be utilized to recuperate 

input outlines by reason of one to one mapping. Orthodox 

logic circuits cannot reinstate the inputs from the 

generated outputs, defined to as reversibility. In this 

phase, reversible computing in the field of 

nanotechnology, specifically, quantum computing, 

widespread studies have been considered. Two 

methodologies are there to realize reversibility: 

substantial reversibility and logical reversibility. 

Substantial reversibility indicates that there must be some 

requirements for computation in opposite manner. 

Logical reversibility defines bijective relation between 

outputs and inputs, thus inputs can be reasoned from the 

outputs. A number of efforts to implement reversible 

circuit have been completed in many scientific papers [10, 

12-14, 18-23, 25, 26, 29]. Moreover, parity-conserving 

reversible circuits were designed in [30] for identifying 

inaccuracies in reversible circuits.  

 

III.  PROPOSED FREDKIN GATE IN QCA 

Fredkin circuit is a 3×3 reversible logic circuit [31]. 

The stable input A, B and C to Fredkin circuit have 

distinctive output as P =AB+ A', Q = A'B+ AC and R = A. 

Its quantum charge is five [26]. The appropriate truth 

table is presented in Table 1 and majority voter-based 

equation of Fredkin circuit consistent to truth table as 

explained in Table 1 can be obtained as 
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Table 1. Truth Table of proposed Fredkin circuit 

Input Output 

A B C P Q R 

0 0 0 0 0 0 

0 0 1 1 0 0 

0 1 0 0 1 0 

0 1 1 1 1 0 

1 0 0 0 0 1 

1 0 1 0 1 1 

1 1 0 1 0 1 

1 1 1 1 1 1 

 

P = mv(mv(A, B, 0), mv(A', C, 0), 1)              (2) 

 

Q = mv(mv(A', B, 0), mv(A, C, 0), 1)              (3) 

 

R = A                                     (4) 

 

The designed QCA structure of Fredkin circuit is 

presented in Figure 6 and QCA outline is in Figure 7. The 

proposed circuit is realized with only three majority 

voters and one inverter. Simulation result of designed 

gate is showed in Figure 8. Figure 8 establishes that for 

series of fixed inputs (A, B, C) as (0, 0, 0), the related 

series of outputs (P, Q, R) will be (0, 0, 0). For series of 

inputs (A, B, C) as (0, 0, 0), the relevant series of outputs 

(P, Q, R) will be (1, 0, 0). Correspondingly, for all input 

patterns, consistent results are presented in Figure 8. The 

results and the speculative values of Fredkin circuit as 

presented in Table 1 are equated which assesses the 

computation suitability of the proposed circuit. 
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Fig.6. Proposed layout of Fredkin gate in QCA 

The designed model has been functionally simulated 

with the QCADesigner ver. 2.0.3. Successive parameters 

in the bistable approximation and coherence vector 

simulation are employed which are the default forms in 

QCADesigner. These parameters are listed as: size of cell 

18nm, temperature 1K, dot diameter, 5.0, samples 

number 12800, time step 1.0e-16, convergence tolerance 

0.001, relaxation time 1.0e-15, radius of effect 65 nm, 

clock amplitude factor 2, relative permittivity 12.900000, 

layer separation 11.50, clock low 3.80e–023, clock high 

9.80e–022, concentrated iterations per sample 100. 
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Fig.7. QCA simulated circuit design of proposed Fredkin gate 
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Fig.8. Simulated waveform for Fredkin gate 

 

IV.  INTRICACY STUDY AND COMPARISON ANALYSIS OF 

PROPOSED FREDKIN CIRCUIT 

The hardware complications of the outlined design are 

organized in Table 2. From the table, it is perceived that 

the proposed Fredkin circuit requires three majority gate 

and single inverter. Number of cell required to design the 

gate is 55, and the area utilized by Fredkin gate is 0.03 

µm
2
. The cell extent of Fredkin gate is 0.018 µm

2
 which 

outcomes in 60% area use regarding the overall extent. 

The outlined QCA design of Fredkin circuit is 

compared with the existing designs [19, 32–37] as 

presented in Table 2. The outlined Fredkin circuit has 

30.38, 28 and 57.14% enhancements over [19] in terms of 

figure of cell, cell area, and total area, correspondingly, 
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while over [36], the enhancements are 69.10, 68.97, 85 

and 25%, in terms of overall cell, cell area, total area and 

latency respectively. Likewise, other enhancements are 

assessed and presented in Figure 9. The assessment 

evidently defines that the outlined circuit is faster and 

enhanced than that of the existing ones. 

Table 2. Performance criterions of proposed circuit 

Parameter Proposed 
Design in 

[19] 

Design in 

[37] 

Design in 

[36] 

Design in 

[32, 34] 

Design in 

[33] 

Design in 

[35] 

Cell intricacy 55 79 88 178 191 243 246 

Cell area (µm2) 0.018 0.025 0.028 0.058 0.061 0.078 0.080 

Total area  
(µm2) 

0.03 0.07 0.098 0.2 0.22 0.34 0.37 

Area usage (%) 60 35.71 28.58 29 27.72 22.94 21.62 

Latency 0.75 0.75 0.75 1.0 1.0 1.0 1.0 
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Fig.9. A reasonable study of proposed Fredkin gate 

 

V.  POWER DISSIPATION  BY PROPOSED CIRCUIT 

Power dissipation assessment is a vital aspect in QCA 

circuit [38]. This part presents the overall power 

depletion by the designed circuit. The procedure 

organized in [39] is utilized to realize the depleted energy 

by the designed circuit in this study. The total depleted 

energy by any QCA circuit is deviated based on the 

utilized majority gate along with the number of used 

inverters [39]. 

Because of intrinsic nature, every single QCA cell in a 

circuit has consistent power depletion. Power 

consumption of QCA circuit will be elevated if the 

number of inverters and majority voter is raised. During a 

single clock cycle, the dissipated energy by any QCA 

layout can be estimated by accumulating the power 

consumption of all inverters as well as majority gates. 

Hamming distances between input variation to majority 

gate and to inverter are used to estimate their power 

dissipations [39]. The assessment is completed at several 

levels of channeling energy. The functional temperature 

is measured at T = 2 K. The estimation outcomes 

corresponding to Table 3 is surveyed in Figure 10. The 

symbolizations T, γ, Ek are utilized to characterize the 

temperature in which the procedure is carried out, 

channeling energy, and kink energy, correspondingly. 

The competence of the proposed design under thermal 

unpredictability is verified in this study. To verify the 

proficiency, the polarization outcome on each output cell 

at several temperatures is perceived [40]. The results are 

presented in Figure 11 which clarifies that by growing the 

temperature, the average output polarization (AOP) for 

every single output of the proposed circuit is reduced. 

Table 3. Power dissipation by proposed circuit at T=2 K 

Design 
Power depletion 

 γ =0.25 Ek γ =0.50 Ek γ =0.75 Ek γ =1.0 Ek 

Fredkin gate 98.3 101.8 107.3 113.6 
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Fig.10. Power dissipation by the proposed Fredkin gate 

 

Fig.11. Temperature influence of the proposed circuit 

The circuit executes competently up to temperature T = 

14 K and after this temperature, the AOP of every output 

is very minimal, and the signals reduce. QCA Designer is 

utilized to attain AOP for every single output cell. For 

instance, the highest and lowest polarization for output 

cell ‘Q’ of proposed circuit is 9.57e–001 and -9.59e–001 

at temperature T = 1 K, correspondingly. Therefore, the 

AOP for output cell ‘OUT’ is calculated as [(highest 

polarization+ lowest polarization)/2=] 3.524 as presented 

in Figure 11. 

 

VI.  CONCLUSION  

In nanoscale logic design, device density and heat 

depletion are the perplexing concerns. QCA and 

reversible logic together can resolve these issues. In this 

literature, an efficient reversible Fredkin logic gate is 

proposed. We survey the performance of the proposed 

circuit and then compared with the existing layouts. The 

designed Fredkin circuit is faster and improved than that 

of the previous models and offered considerably 

enhancement overall measured metrics for example 

extent, cell extent, delay and complexity. Besides the 

power depletion and reliability of the proposed circuit is 

reported. Energy depletion by the proposed circuit 

indicates that the design depletes minimum energy. The 

assessment of simulation outcome with truth table defines 

the design precision of the circuit. 
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