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Abstract—Clustering based-density is very attractive 

research area in data clustering. DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) 

algorithm is the pioneer in this area. It can handle varied 

shaped and sized clusters. Also, it copes with noise and 

outliers efficiently, however it fails to handle clusters 

with varied densities due to the global parameter Eps. In 

this paper, we propose a method overcomes this problem, 

this method does not allow large variation in density 

within a cluster and use only two input parameters that 

will be called minpts and maxpts. They govern the 

minimum and maximum density of core objects within a 

cluster. The maxpts parameter will be used to control the 

value of Eps (neighborhood radius) in original DBSCAN. 

By allowing Eps to be varied from one cluster to another 

based on density of region this make DBSCAN able to 

handle varied density clusters and discover homogeneous 

clusters. The experimental results reflect the efficiency of 

the proposed method despite its simplicity. 

 

Index Terms—Cluster analysis, DBSCAN algorithm, 

clustering algorithms, homogeneous clusters. 
 

I.  INTRODUCTION 

Because of information technology age that we live in 

nowadays, most organization collect huge amount of data 

every day, this motivate scientists and researchers to 

search for methods to analyze the collected data and 

maximize the benefit that can be earned from these 

repositories of data, this lead to the emergence of data 

mining and knowledge discovery from data. Data 

clustering methods that are used to group data into 

subsets, each subset is called cluster. Objects within the 

cluster have high similarity to each other and are 

dissimilar to objects in other clusters. Similarity or 

dissimilarity is based on distance or k-nearest neighbors 

or shared nearest neighbors or links. The functions that 

can be used to calculate similarity or dissimilarity are 

given in Table 1. Where d refers to dimensionality of 

space. 

There are a lot of clustering algorithms that have been 

proposed. These algorithms may be classified into 

partitioning methods, hierarchical methods, density-based 

methods, model-based methods, and grid-based methods 

[1] as shown in Fig. 1. 

 

Fig.1. Classification of Clustering Algorithms 

Partitioning methods divide a set of data with n objects 

into k clusters based on distance as a measure of 

dissimilarity among objects and their representative 

clusters. K-means [2] is the most famous and well-studied 

method in this category of clustering algorithms. It selects 

-randomly or heuristically- k initial representatives. Then 

assigns each object to the closest representative cluster. 

Then computes new representative for each cluster as the 

mean value of objects within it. Then redistributes objects 

over the new representatives and computes new 

representative again. This process is iterated until 

termination condition is met; representative does not 

change, or object cease to change their clusters, or 

maximum number of iterations reached. There are many 

other algorithms in this category such as PAM 

(Partitioning Around Medoids) [3], CLARA (Clustering 

LARge Applications) [3], CLARANS (Clustering Large 

Applications based on RANdomized Search) [4]. 

In PAM algorithm the medoid of cluster is somewhat 

different from means in k-means, where medoid of 

cluster is an actual point in data that is most near to the 

center. PAM also starts by selecting k medoid points as 

representatives for clusters and assigns each point to the 

nearest medoid. The quality of clustering is measured as 

the average dissimilarity among points and their clusters 

is minimized. In each step, PAM swaps between one 

selected medoid and another point in data and 

redistributes points over clusters and computes the quality 
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of clustering. The swap process between one medoid and 

another data point is repeated as long as the quality of 

clustering is improved. i.e the average distances between 

each point and its cluster is minimized. 

Table 1. Similarity and dissimilarity measure for interval-scaled attributes 

Name of function Mathematical formula Comment 

Minkowski Distance 

1

1

( , ) ( )

qd
q

i i

i

dis X Y x y


                                (1) q is positive real number 

Euclidean Distance 

2

1

( , ) ( )
d

i i

i

dis X Y x y


                               (2) 
equals to minkowski diatance where 

q=2 

Average distance 

2

1

1
( , ) ( )

d

i i

i

dis X Y x y
d 

                            (3) 
is modified version of Euclidean 

distance 

Manhattan Distance 
1

( , )
d

i i

i

dis X Y x y


                                   (4) 
equals to minkowski diatance where 

q=1, sensitive to outliers  

Maximum Distance 1( , ) maxd

i i idis X Y x y                               (5) 
equals to minkowski diatance where 

q∞ 

Pearson correlation 
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              (6) used in gene expression clustering 

Mahalanobis distance 1( , ) ( ) ( )Tdis X Y x y S x y                            (7) 
used in hyper ellipsoid clusters, S is 

covariance matrix  

Cosine similarity 
2 2

1 1

( , ) cos
T

d d

i i

i i

x y
sim X Y

x y



 

 

 

                      (8) 
used in document clustering 

Chord distance 
1

2 2

1 1

( , ) 2 2

d

i i

i

d d

i i

i i

x y

dis X Y

x y



 

 


 

                      (9) used for normalized attributes 

 

CLARA applies PAM on random sample of data 

instead of the whole data. To get improved result, 

CLARA applies PAM on multiple samples - each of size 

40+2k - taken from the original data and returns the best 

medoids. So that it can handle larger data than PAM [3]. 

CLARANS algorithm is based on the idea of graph 

where each node represents k-medoids (clustering result), 

two nodes are neighbors if they differ by only one 

medoid. CLARANS draws a sample of neighbors in each 

step and does not restrict the search sub-graph like 

CLARA. So that its clustering result is better than that of 

CLARA [4]. 

 

 

Fig.2. How many clusters in the original dataset 

All portioning methods can handle data with spherical 

shaped clusters only and cannot handle varied shaped 

clusters unless they are well separated. Also, they cannot 

handle overlapped clusters. In addition to they require 

number of clusters in advance, and this is another 

problem. See the following Fig. 2, how many clusters in 

this dataset? There is more than one answer shown in Fig. 

2. The answer depends on the required result, the type of 
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the clustering algorithm used, in addition to the definition 

of required clusters, and the metric measure used by the 

algorithm. This motivates researchers to search for other 

clustering categories like hierarchical and density-based 

methods. 

Hierarchical methods generate a dendrogram like a tree 

structure representing the clustering process. The 

dendrogram can be generated from bottom up as in 

agglomerative methods or can be generated from top 

down as in divisive methods [1]. Agglomerative methods 

are more famous than divisive methods. In single link 

algorithm [5] (Agglomerative method), each object in the 

input dataset is considered as a singleton cluster, in each 

step the algorithm selects the two most similar clusters to 

merge them until all objects are in the same cluster or 

level of dissimilarity is reached or required number of 

clusters is reached. Disadvantages of the hierarchical 

methods is that any step cannot be backtracked or undo, 

also these methods require o(n
2
), there is no objective 

function to be minimized as in partitioning methods. 

Advantage of hierarchical methods is their ability to 

discover varied shaped clusters. Examples for algorithms 

in this category are average link [6] and complete link [7], 

CURE (Clustering Using Representatives) [8], BIRCH 

(Balanced Iterative Reducing and Clustering using 

Hierarchies) [9], CHAMELEON [10], and ROCK. 

(RObust Clustering using linKs)[11]. ROCK algorithm is 

dedicated to deal with Boolean and categorical attributes. 

Density-based methods have introduced a new 

definition for clusters; where clusters are recorded as 

dense regions separated from each other by sparse 

regions. The density of object here may be computed as 

the number of objects in its neighborhood radius as in 

DBSCAN [12] algorithm which is a pioneer algorithm in 

this category, OPTICS (Ordering Points To Identify the 

Clustering Structure) [13] is another algorithm which is 

an extension of DBSCAN but it doesn’t produce clusters 

explicitly. Another algorithm is DENQLUE (DENsity 

based CLUstEring) [14]. 

Grid based methods, instead of applying clustering on 

data objects directly; they house data objects in grid cells 

by partitioning each dimension into finite number of cells 

of equal length. Then compute some statistical 

information about objects in each cell; such as number of 

objects, average mean of objects, standard deviation, and 

some other information as described in STING algorithm 

[15]. 

Here we propose an effective idea to improve the 

results of DBSCAN algorithm. This idea allows the 

algorithm to control the density within each cluster, by 

allowing small variance in density within a cluster. The 

proposed algorithm uses two input parameters; the first 

one allows the algorithm to adapt the Eps in each cluster, 

and the other is minpts as in DBSCAN. This paper is 

organized as follow. Section 2 reviews some of the 

previous work related to the proposed method. The 

proposed method is presented in section 3. Section 4 

shows some experimental results of the proposed method 

and we conclude with section 5. 

 

II.  RELATED WORK 

In this section we review some algorithms related to 

the proposed one. First, we review DBSCAN algorithm, 

which is the pioneer algorithm. 

A.  DBSCAN algorithm 

DBSCAN is the most famous clustering algorithm that 

can find varied shaped of varied size clusters. It has a 

trouble in handling varied density clusters; this problem 

results from its dependency on the global user input 

parameter neighborhood radius which called Eps, it 

requires other input parameter called minpts; these two 

parameters judge the process of finding clusters. We see 

the problem arise because the algorithm concentrates only 

on minimum density allowed within a cluster and ignores 

the maximum density allowed within it. It allows any 

core point to expand the cluster without any top limitation 

on density. So, it allows large variance in density within a 

cluster. If we need to discover clusters of varied density 

we must search for a method to control the maximum 

density allowed within the cluster, this is what this paper 

propose. DBSCAN depends on some basic definitions as 

follow: - 

 

1. Eps-neighborhood of a point x denoted by NEps(x) 

={y  Dataset | dis(x,y) ≤ Eps}. Look at Fig. 3. 

2. Point x is directly density reachable from point y 

with respect to Eps and minpts if:- 

a.  x  NEps(y). 

b.  | NEps(y)| ≥ minpts. 

All points that reside in the Eps neighborhood 

radius of the red point (core point A or C) are 

directly density reachable as shown in Fig.3. 

3. Point x is density reachable from y with respect to 

Eps and minpts if there exist a chain of points 

z1,z2,…,zn. Where y=z1 and x=zn, such that each 

point in the chain is direct density reachable from 

the previous one as shown in Fig. 4.a; this relation 

is not always reversible, as you see in Fig. 4.a, x is 

density reachable from y but y is not density 

reachable from x since x is border point. However, 

if x and y are core points then they are density 

reachable from each other.  

 
 

A 
C 

N 

N 

N 

N 

N 

N 

N 
B 

Eps 

 

Fig.3. Type of points A and C are core points, B is border point, points 
labeled N are noise points, red arrow represent Eps, minpts = 4. 

4. Point x is density connected to y with respect to 

Eps and minpts if there exist point z such that x 

and y are density reachable from z with respect to 

Eps and minpts. As shown in Fig. 4.b, two points x 
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and y are density connected if there is a chain of 

core points connecting them. 
 

 

Fig.4. Density reachability and connectivity. 

5. Cluster is non-empty subset of the input dataset 

with maximality and connectivity  

a. if x  C and y is density reachable from x with 

respect to Eps and minpts then y  C. 

b. if x  C and y  C then x is density connected to 

y with respect to Eps and minpts. 

6. Noise is a set of points that are not belonging to 

any cluster. See Fig. 3, noise point does not belong 

to any neighborhood radius of core point and have 

number of points in its Eps radius less than minpts. 

 

Based on the previous definitions DBSCAN cannot 

handle datasets shown in Fig. 5 due to the presence of 

varied density clusters that are very close to each other. 

Any cluster consists of core points and border points. 

Noise points are discarded and will not belong to any 

cluster. The DBSCAN algorithm is described as follow: - 

 

DBSCAN(data,Eps,minpts) 

Clus_id=0  

 FOR i=1 to size of data 

    IF data[i] is unclassified   THEN 

       IF (|NEps(data[i])|≥minpts ) THEN 

            Clus_id=clus_id +1 

           Expand_cluster(data, data[i], Eps, minpts, clus_id) 

       ENDIF 

   ENDIF 

NEXT i 

All unclassified points in data are noise 

End DBSCAN 

 

Expand_cluster(data, data[i], Eps, minpts, clus_id) 

Seed=data[i].regionquery(data[i],Eps) 

Data[i] and all unclassified points in seed are 

assigned to clus_id 

Seed. delete(data[i]) 

While seed<> empty do 

Point=Seed.getfirst 

Neighbor= point.regionquery(point, Eps) 

IF  Neighbor.size ≥ minpts THEN 

Append all unclassified points in neighbor 

to seed and assign them to clus_id 

ENDIF 

Seed.delete(point) 

End while 

End Expand_cluster 

 

 
Dataset1 

 
Dataset2 

Fig.5. Datasets with very close varied density clusters. 

There are many researchers tried to enhance DBSCAN 

algorithm to handle varied density clusters, we review 

some of their works in next subsection. 

B.  Varied densities clusters 

Here, we review some of recent researches discussed 

the problem of multi-density clusters. In DVBSCAN [16], 

it is based on DBSCAN and add two more threshold to 

control clustering process; they are cluster density 

variance and cluster similarity index. The resulting 

clusters of DBSCAN algorithm is very sensitive to small 

change in Eps, and the authors introduce two more 

parameters that impact on the result. Tuning of four 

parameters is very hard task. 

In DMDBSCAN [17], the authors select several values 

for the neighborhood radius Eps from the k-dist plot. 

They checked the k-dist plot by their eye depending on 

seeing sharp change in k-dist curve, and this is not always 

true because of the presence of noise and outlier points. 

Examine Fig. 6, this is true for the first dataset shown in 

Fig. 5 where you can see three levels of density within 

the dataset1. For the second dataset shown in Fig. 5, you 

see four levels of density, but the dataset2 shown in Fig. 5 

contains only three clusters of different densities, and this 

lead to split the densest cluster. For the third dataset 
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shown in Fig. 8, you see only one level of density in k-

dist plot shown in Fig. 6 but examine the dataset itself 

you see at least three levels of density. For the fourth 

dataset shown in Fig. 8, you see many small changes on 

the curve in Fig. 6, this may lead to find large number of 

clusters, but the dataset contains two clusters of varied 

densities. 

 

 
Dataset1                   Dataset2 

 

 
Dataset3                     Dataset4 

Fig.6. 3-dist plot for the first four datasets in experiment 

In [18] the authors propose to use spline cubic 

interpolation to find suitable values for Eps from the 

curve of k-dist plot. By using the interpolation, they find 

mathematically the inflection points of the curve where 

the curve changes its concavity and these points 

correspond to Eps values that will be used in DBSCAN. 

But this may lead to split some clusters. For example, see 

3-dist plot of dataset 2 in Fig. 6, you find seven inflection 

points that split the densest cluster, in 3-dist plot of 

dataset 4 also you find many of inflection points, this lead 

to get large number of clusters. And for the third dataset, 

there is only one inflection point. 

In K-DBSCAN [19], the authors use k-means 

algorithm to divide points into different density level to 

identify the corresponding densities in dataset, they 

calculate the density of point as the average sum of 

distance to k-nearest neighbors, and sort these distances, 

and from the density curve checking sharp change in 

density to determine the value of k in k-means. Then 

apply a modified version of DBSCAN algorithm in each 

level of density. The result depends on density levels 

result from the k-means. The average distance to k-

nearest neighbors is similar to k-dist plot, and the 

algorithm suffer from seeing incorrect multiple level of 

densities as in [17,18]. In [20] the author has introduced a 

framework to handle varied density clusters. 

 

III.  THE PROPOSED METHOD 

The main problem of DBSCAN algorithm is the large 

variance in density allowed within the cluster, this 

problem arise due to its global user input variable that is 

called Eps, it is very difficult to depend on single value 

for this parameter, most datasets contain clusters with 

varied densities, if the value of Eps is small the DBSCAN 

algorithm discovers only most dense clusters and low 

density clusters will be discarded as noise points, on the 

other hand if the value of Eps is large enough to discover 

low dense clusters this may lead to merge some of dense 

clusters of different densities unless they are well 

separated by sparse regions. To solve this problem, we set 

maximum value for density allowed within the same 

cluster. i.e the neighborhood of any core point must 

contain number of points greater than or equal to minpts 

and smaller than or equal to maxpts. 

When using the k-nearest neighbors you see that the 

neighborhood radius is small in dense regions and is large 

in sparse regions. This means, there exist reverse 

proportional between neighborhood radius and density of 

region, as the density increase the radius decrease and the 

vice versa. In the proposed method as the difference 

between the maxpts and minpts increase, the variance of 

density within the cluster increase. When the difference 

decreases the variance of density within the cluster 

decreases, this is a proportional relation between the 

difference between maxpts and minpts and the density 

variance within the clusters. 

The DBSCAN depends on k-dist plot where k = 4, that 

represent the low level of density for any core point. The 

proposed algorithm will depend on k-dist plot, where k = 

maxpts, that represent the maximum level of density for 

any core point. Depending on this idea the algorithm uses 

the distance to the maxpts neighbors as neighborhood 

radius for the region where this core resides, and the 

algorithm expands the current cluster by visiting all 

density reachable core points with respect to minpts, 

maxpts and Epscr (EPS of current region). As the 

difference between maxpts and minpts decrease the 

algorithm return as a result large number of homogenous 

clusters, whereas the difference between maxpts and 

minpts increase the algorithm return small number of 

lower homogenous clusters. 

The proposed algorithm will depend on the following 

definitions: - 

 

1- Initiator of cluster is the core point that has the 

minimum neighborhood radius among all 

unclassified point and has maxpts of points within 

its neighborhood radius. 

2- The density of any core point p satisfies this 

relation:  minpts ≤ |NEpscr (p)|≤ maxpts. 

3- Point p is direct density reachable from q if p  

NEpscr (q), q is core wrt. Minpts, maxpts, and Epscr. 

4- Other definition is the same as that of DBSCAN 

algorithm in addition to handle the duplicated 

points as a single point. 

 

Now we present the details of the proposed algorithm 

that will be called HDCA (Homogenous Density 

Clustering Algorithm). This algorithm requires only two 

input parameters; they are minpts and maxpts that control 
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minimum and maximum density allowed within the 

cluster. Also, the algorithm uses the maxpts to find the 

appropriate value for the neighborhood radius of the 

current region, it refers to this value as Epscr. Here, 

cluster is defined as a region that has points of 

homogenous density satisfying maximality and 

connectivity conditions. 

To find clusters in the input dataset D of N points, the 

algorithm arranges the points in ascending order based on 

their distances to maxpts. So, the first data point in the 

ordered dataset is the initiator of the first cluster, and the 

distance to the maxpts is the value of Epscr 

(neighborhood radius of current region), the algorithm 

starts to expand the current cluster wrt. minpts, maxpts 

and Epscr until no point can be added to it, then it moves 

to the next unclassified point, this leads to set the distance 

of its maxpts neighbor to Epscr and expand cluster with 

ignoring previously classified points. Very small clusters 

may be ignored in the result. The following lines describe 

the proposed algorithm. 

 

HDCA(dataset, minpts, maxpts) 

For i = 1 to dataset.size 

Find distance to maxpts 

Next i 

Clusid = 0 

Sort points based on the calculated distance to maxpts in 

ascending order 

For i = 1 to dataset.size 

If p[i].Clusid = unclassified then 

Clusid+ = 1 

Expand_cluster(dataset, i, minpts, maxpts, Clusid) 

Endif 

Next i 

End HDCA 

Expand_cluster(dataset, i, minpts, maxpts, Clusid) 

Epscr = p[i].dis[maxpts] 

Seed = regionquary(p[i], Epscr) 

If (seed.size ≥ minpts) then 

All unclassified points in seed and p[i] are assigned to 

Clusid 

While (seed.size > 0) 

Curpt = seed.getfirst() 

Newseed = regionquary(Curpt, Epscr) 

If (Newseed.size ≥ minpts) then 

All unclassified points in Newseed are appended 

to seed 

All unclassified points in Newseed are assigned 

to Clusid 

Endif 

Seed.delete(Curpt) 

Endwhile 

Else 

P[i] is classified as noise temporary 

Endif 

End Expand_cluster  

 

 

 

IV.  EXPERIMENTAL RESULTS 

This section shows the result of applying the proposed 

method to some synthetic dataset containing data in two-

dimensional space to visualize the result easily. We have 

used different datasets containing clusters of varied 

densities, shapes, and sizes. The proposed method 

succeeded in discovering clusters even though the high 

closeness of each other. The first two datasets used in the 

experiment are shown in Fig. 5, the first dataset has 8137 

points in three clusters of varied density which are very 

close to each other and cannot be discovered by 

DBSCAN algorithm based on single global value for 

neighborhood radius. The second data set has 526 points, 

in three varied density clusters. The problem here is more 

difficult because each cluster is surrounded by another 

cluster of different density; the central cluster is the 

densest one which immediately surrounded by dense 

cluster without separation which are surrounded by sparse 

cluster, and the algorithm detects the clusters correctly as 

shown in Fig. 7 

 

 
Dataset1 

 
Dataset2 

Fig.7. Result from applying the HDCA method on datasets  
shown in Fig. 5. 
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Dataset3                                                                                 Dataset4 

    
Dataset5                                                                                 Dataset6 

Fig.8. Other datasets that are used in experiments 

    
Dataset3                                                                                 Dataset4 

    
Dataset5                                                                                 Dataset6 

Fig.9. Result from applying the HDCA method on datasets shown in Fig. 8. 
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1. Eps=0.4                                       2.  Eps=0.5 to 1                                       3. Eps=1.1 

   
4. Eps=0.8                                                    5. Eps=1 to 1.3 

   
6. Eps=1.5 to 1.9                                                    7. Eps=2 

     
8. Eps=0.4                                              9. Eps=0.5                                              10.  Eps=2 

    
11. Eps=1                                              12. Eps=2 
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13. Eps=3.5                                                           14.  Eps=4 

Fig.10. The resulting clusters from applying DBSCAN on the datasets using different values for Eps. 

As the difference between maxpts and minpts increase 

the algorithm allow cluster to increase the density 

variance within it, as a result the number of clusters will 

decrease. The other datasets that are used in experiments 

are shown in Fig. 8. Dataset 3 has 8573 points distributed 

over varied shaped, sized and density clusters with the 

presence of noise points, there are two intertwined spiral 

clusters, and three ring clusters each one surrounds the 

others, these five clusters are of the same density, there 

are other two clusters have large variance in density, the 

algorithm extracts homogeneous clusters from them. 

Dataset 4 has 373 points distributed over two clusters of 

different density. Dataset 5 has 383 points in five 

spherical shaped clusters with two level of density. 

Dataset 6 has 3147 points in four clusters of different 

densities with no separation among them. 

Fig. 9 shows the resulting clusters from applying the 

HDCA algorithm on the datasets in Fig. 8. These results 

show the efficiency of the algorithm in extracting 

homogeneous clusters from the data.  

Fig. 10 shows the resulting clusters from applying the 

DBSCAN algorithm on the first four datasets that are 

shown in Fig. 5, 8 comparing these results with that of the 

proposed HDCA algorithm in Fig. 9, you note that the 

DBSCAN algorithm failed to find the homogenous 

clusters from the data. It fails to discover the actual 

clusters in dataset 1, 2, 3, 4 because of the presence of 

varied density clusters, and in dataset 3 when Eps = 2 as 

in Fig. 10.10 the two left clusters surrounded by sparse 

points, but these sparse points assigned to them, and this 

make each of them allow large variance in density. When 

Eps = 0.5, become smaller it discards the sparse points, 

and all clusters are of the same density. When Eps = 0.4, 

the smallest value used, it discards some border points 

from the two left clusters as shown in Fig 10.8-10.10.  

For the first dataset, when Eps = 0.4 it discovers only 

the densest cluster and other points considered as outliers. 

When Eps ranges from 0.5 to 1, it discovers two clusters 

because there is a sparse region separating them and 

removes the third cluster as outliers, when Eps = 1.1, it 

merges the densest cluster with the sparser one because 

there is no sparse region separate them, all this 

information is shown in Fig.10.1-10.3.  

For the second dataset, see Fig. 10.4-10.7, this is the 

most challenging dataset since clusters are very close to 

each other and contained within each other. When Eps = 

0.8, it splits the densest cluster to 32 clusters, when Eps 

ranges from 1 to 1.3 it discovers the inner densest cluster,  

when Eps ranges from 1.5 to 1.9 it merges the two inner 

clusters, when Eps =2 it doesn’t perform any clustering 

because it assigns all points to the same cluster, it fails to 

discover the correct clusters for any value of Eps, this is 

the main problem of DBSCAN algorithm that is solved 

by the proposed HDCA algorithm. 

For the fourth dataset, it is also challenging dataset. It 

contains two clusters that cannot be discovered by 

DBSCAN algorithm for any value for Eps as shown in 

Fig. 10.11-10.14, when Eps=1 it splits the two clusters 

and produces 12 clusters, when Eps = 2 it finds the denser 

cluster but splits the sparser one to six clusters to get 

seven clusters as a result. When Eps = 3.5, it discovers 

two wrong clusters, it splits the sparser one and merges 

one part of it with the denser cluster. When Eps = 4, it 

assigns all points to the same clusters.  

Note that all values used for Eps in DBSCAN 

algorithm are taken from the 3-dist plot shown in Fig. 6. 

 

V.  CONCLUSION 

Reviewing the DBSCAN algorithm, it is very 

interesting algorithm, it can handle clusters with varied 

shaped and sized but fails to handle clusters of varied 

density because of its global variable Eps, the proposed 

method tries to handle this problem by allowing 

homogeneous density connected cores to be grouped in 

one cluster. To achieve this; the proposed method 

determines maximum level of density allowed within 

each cluster, and this allows DBSCAN to use varied 

values for Eps according to the density of region. The 

experimental result revealed the ability of the proposed 

method to handle clusters with varied density. When 

comparing the results, we get from both algorithms on the 

same datasets, we find that the proposed algorithm easily 

discovered the actual clusters in the datasets. 
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