
I.J. Information Technology and Computer Science, 2009, 1, 49-57 
Published Online October 2009 in MECS (http://www.mecs-press.org/) 

Multiresolution Fuzzy C-Means Clustering Using 
Markov Random Field for Image Segmentation 

 
Xuchao Li 

College of Information Science and Media, Jinggangshan University, Ji’an, China 
bsx7096@sohu.com 

 
Suxuan Bian 

College of Nursing, Jinggangshan University, Ji’an, China 
lixuchaoliaoning@sina.com 

 
 

Abstract—In this paper, an unsupervised multiresolution 
image segmentation algorithm is put forward, which 
combines interscale and intrascale Markov random field 
and fuzzy c-means clustering with spatial constraints. In the 
initial label determination of wavelet coefficient phase, the 
statistical distribution property of wavelet coefficients is 
characterized by Gaussian mixture model, the properties of 
intrascale clustering and interscale persistence of wavelet 
coefficients are captured by Markov prior probability 
model. According to maximum a posterior rule, the initial 
label of wavelet coefficient from coarse to fine scale is 
determined. In the image segmentation phase, in order to 
overcome the shortcomings of conventional fuzzy c-means 
clustering, such as being sensitive to noise and lacking of 
spatial constraints, we construct the novel fuzzy c-means 
objective function based on the property of intrascale 
clustering and interscale persistence of wavelet coefficients, 
taking advantage of Lagrange multipliers, the improved 
objective function with spatial constraints is optimized, the 
final label of wavelet coefficient is determined by iteratively 
updating the membership degree and cluster centers. The 
experimental results on real magnetic resonance image and 
peppers image with noise show that the proposed algorithm 
obtains much better segmentation results, such as accurately 
differentiating different regions and being immune to noise.   
 
Index Terms—image segmentation, Markov random field, 
wavelet transform, fuzzy c-means, multiresolution, scale  
 

I.  INTRODUCTION  

Segmentation has been found extensive applications in 
areas such as quantitative analysis of brain tissues, scene 
analysis, content-based image retrieval and object 
tracking[1,2]. The purpose of image segmentation is to 
partition the given image into a number of regions with 
significantly different properties, such as statistical and 
structural information. Segmentation is implemented by 
assigning each pixel to one of a finite number of classes 
or labels, based on certain contextual property of the 
neighbouring pixels.  

In recent years, image segmentation technique based 
on stochastic field model has received extensive attention, 
one of the most influence on image segmentations is 
Markov random field (MRF)[3]. It is roughly classified 
into three types, namely, the single resolution and 
multiresolution segmentation based space domain [4, 5], 
multiresolution segmentation based wavelet domain [6].  

The single resolution segmentation approach assumes 
that the spatial distribution of regions consists of a single 
random field, the feature field based on original image is 
described by conditional probability function given a 
label field, the label field is modeled as MRF to impose 
smoothness constraints on the image segmentation [7]. 
The technique based on single resolution has 
demonstrated substantial success for image segmentation, 
but the single resolution MRF model usually favors the 
formation of large regions and leads to over segmentation, 
although the segmentation performance can be improved 
by using a larger neighborhood for each pixel, it maybe 
blurs the high frequency of image, these shortcomings 
produce unfavourable influence on image analysis.  

The multiresolution segmentation based space domain 
[8] assumes that the spatial distribution of regions 
consists of a serial of random field models from coarse to 
fine scale, the coarse scale label field affects the fine 
scale label field by the interscale label transition 
probability of MRF. The approach takes into account the 
interscale contextual information of pixels, it can improve 
the accuracy of boundary localization, but when the 
image is blurred by noise, the spatial domain 
multiresolution approach will lose the performance of 
region classification and boundary detection. Although 
spatial filter can reduce the effect of noise, but the high 
frequency information of image is badly worn out. 
Moreover, the feature field model is still established by 
probability density function (pdf) of pixels, which can not 
accurately capture the wide range frequency features of 
image. Since image has locally varying statistical 
distributions such as texture regions, smooth shading 
regions, flat regions or their combinations of aburt 
features, the spatial non-stationary feature contradicts 
single frequency statistical characterization based on 
pixels.  
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The multiresolution segmentation based wavelet 
domain receives extensive attention. Wavelet transform 
decomposes an image into a casual hierarchical sub-
images,  which are characterized by a serial of MRF 
models with good time-frequency characteristics[9]. The 
approach can incorporate the interscale persistence and 
intrascale clustering properties of wavelet coefficients 
into the label field prior probability model, it can 
overcome the shortcoming that the label prior probability 
model easily produces over segmentation. Moreover, 
wavelet transform can reduce noise without smearing 
high frequency information of image, since the features 
of image are extracted by high pass and low pass filter 
with different frequencies, the filter bank adapt to the 
non-stationary characterization of image.  

In the last decade, soft computing approaches, such as 
k-means, possibilistic c-means (PCM)[10] and fuzzy c-
means (FCM) clustering[11], have been successfully used 
for image segmentation. K-means forces each pixel to be 
associated with exactly one label, it is not realistic, since 
the uncertainty is almost everywhere in medical image, 
particularly in the case of magnetic resonance image 
(MRI) due to partial volume effects and noise (during the 
acquirement). Consequently, the labels of border between 
tissues can not be thought as belonging to a single region 
and must be determined by the degree of membership, 
fuzzy method is a strong tool to solve the problems.  

PCM clustering algorithm[10] is firstly proposed by 
Krishnapuram Raghu and Keller James M. in 1996, it is a 
variant FCM algorithm, the PCM objective function is 
constructed by the Euclidean distance between the 
likelihood function of sample and clustering centers, the 
algorithm can overcome the unfavourable influence of 
noise or outliers on image segmentation. But the 
difficulty of the algorithm is how to determine the 
likelihood function of characterizing samples and cluster 
centers, and how to incorporate spatial constraint into the 
objective function, which directly affects the 
segmentation results. Moreover, PCM algorithm is 
sensitive to initialization, it is usually initialized by the 
standard FCM algorithm.  

The first studied FCM algorithm by Jim Bezdek [12], 
who constructed FCM objective function for image 
segmentation, but the algorithm has some limitations, 
firstly which is sensitive to noise, noise can be reduced by 
the chosen space filter groups, but the edges of image is 
seriously lost. Secondly, lacks of spatial context 
information constraints, the spatially neighboring pixels 
maybe belong to the same region that can be of great aid 
in image segmentation. Thirdly, is sensitive to initial 
values and easily converges a local maxima.  

In order to overcome the shortcomings of standard 
FCM clustering and PCM algorithm without taking into 
account spatial constraints, many researchers have 
incorporated local spatial statistical information into the 
conventional clustering algorithm[13] to improve the 
performance of image segmentation by modifying the 
objective function, but the improved objective function is 
established in single or multiresolution space domain[14] 
instead of wavelet domain.  

In this paper, a wavelet domain MRF and FCM 
clustering algorithm with spatial constraints for robust 
multiresolution image segmentation is proposed, it has 
the following features:  

The given image is decomposed into different 
subbands, which can reduce noise and accurately extract 
the features of image. In order to represent the observed 
image for multiresolution Bayesian segmentation, we 
construct a serial of feature field and label field models.  

At the initial label determination of wavelet coefficient 
stage, the feature field is described by Gaussian mixture 
model (GMM)[15], it can provide a good fit to the global 
statistical distribution of wavelet coefficients. In order to 
capture the intrascale clustering and interscale persistence 
properties of local wavelet coefficients, the contextual 
statistical information of intrascale and interscale label 
field models are captured by Markov prior probability 
model, the model parameters are estimated by improved 
expectation maximization (EM), according to maximum a 
posterior (MAP) estimate, the initial label of wavelet 
coefficient across scales is determined. Taking advantage 
of the initial label of wavelet coefficient, we can obtain 
initial clustering centers and the degree of membership 
for the following improved FCM algorithm.  

At the image segmentation stage, we incorporate the 
local statistical distribution and contextual information of 
wavelet coefficients into the FCM objective function, the 
local statistical information captures the clustering 
property of intrascale wavelet coefficients, the contextual 
information captures the persistence property of 
interscale wavelet coefficients. We optimize the modified 
FCM objective function, an unsupervised multiresolution 
image segmentation algorithm from coarse to fine scale is 
obtained.  

The rest of this paper is organized as follows: In 
section 2, two-dimensional discrete wavelet transform 
(DWT) of image is briefly introduced, then the feature 
field of image is described by GMM, the intrascale and 
interscale contextual information is captured by MRF, the 
model parameters are estimated by improved EM 
algorithm, according to MAP rule, the initial label of 
wavelet is determined. Section 3 gives the modified FCM 
objective function, which incorporates the intrascale 
clustering and interscale persistence properties of wavelet 
coefficients, optimizing the new objective function, an 
unsupervised image segmentation algorithm is obtained. 
The proposed is outlined in section 4. Simulation results 
on real MRI and peppers image with noise are given in 
section 5, and some conclusions are drawn in section 6.  

II. THE INITIAL LABEL DETERMINATION OF WAVELET 
COEFFICIENT  

A.  Image Multiresolution Representation by DWT  
Wavelet transform is a multiresolution analysis 

technique that has been developed and applied in various 
fields, such as astronomy, finances, quantum physics, 
signal processing, video compression and image 
processing[16,17], etc. Wavelet has a varying window 
size and finite duration to fit low and high frequency 

Copyright © 2009 MECS                                                                 I.J. Information Technology and Computer Science, 2009, 1, 49-57 



                    Multiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation 51

information of non-stationary signals, and produces an 
optimal time-frequency resolutions from coarse to fine 
scale [18].  

The continuous wavelet transform of a 1-dimensional 
signal ( )f x  is defined as  
           ,( , ) , ( , ) ( ) ( )a bR

Wf a b f a b f x x dxϕ ϕ= = ∫ ,               (1) 

                    
1
2

, ( )a b
x bx a

a
ϕ ϕ −⎛= ⎜

⎝ ⎠
⎞
⎟ .                                (2) 

Where, is called scale parameter that controls 
wavelet frequency, b  is called translation parameter that 
controls wavelet position (time), 

a

,�� denotes inner 
product. The function ,a bϕ  is called mother wavelet, 

which satisifies ∫  and generates the other 
wavelet functions with parameters a  dilation and  
translation.  

,a bϕ ( )x dx = 0
R

b

The two-dimensional wavelet transform is performed 
by consecutively convolving one-dimensional filter bank 
with the rows and columns of image. The given image is 
decomposed by applying low-pass and high-pass filters 
associated with a mother wavelet as shown in Fig.1. 

 and  denote the one-dimensional low-pass 
and high-pass filters, respectively, while 1:2 represents 
downsampling by a factor of 2 in horizontal and vertical 
direction of image. Fig.1 shows four subband images 
with  resolution in j-level wavelet transform, 
LLj denotes approximate subimage, we can recursively 
decompose it further to obtain next level multiresolution 
representation of the original image, and three subimages, 
LHj, HLj, HHj denote the horizontal, vertical and diagonal 
subband details. Fig. 2(b) shows that the image DWT 
decomposition and wavelet coefficients distribution. The 
given image is decomposed by three level wavelet 
transform in Fig.2(b), as can be seen, the wavelet 
transform preserves better the spatial-frequency features 
of image. As far as frequency property of wavelet 
coefficients is concerned, the stationary portions of image 
is described by a few large magnitude value wavelet 
coefficients. Moreover, the magnitude do not vary 
significantly across scales. On the contrary, the non-
stationary portions (around edges) of image is described 
by large magnitude value wavelet coefficients. As far as 
spatial property is concerned, the spatially relative 
position of wavelet coefficients remains unchange from 
coarse to fine scale. In other words, the persistence of 
wavelet coefficient magnitude propagates across scales, 
the property indicates the label of interscale wavelet 
coefficient maybe remains unchangeable. In Fig. 2(c), the 
subimages of three level wavelet transform can be 
represented by hierarchical structure, each coefficient in 
coarse scales has four wavelet coefficients in the next 
finer scale, as the pink color box shows the relationship 
between “parent” and its four “children”. According to 
the persistence property of interscale wavelet coefficients, 
it indicates that the label of children is closely similar to 
its immdeiate parent. Fig.2(d) shows the statistical 
distribution of the HH2 subband wavelet coefficients, it 
means that intrascale wavelet coefficients have clustering 

and compaction properties, the label of each wavelet 
coefficient depends on its direct neighbouring wavelet 
coefficients.  

0H (z) 1H (z)

j N/2

 
 

Figure 1. Tree representation j-scale DWT decomposition 
 

       
 

(a) original image                  (b) three scale DWT decomposition jN/2 ×
 

   
  

(c) subband hierarchical representation    (d) coefficients distribution 
Figure 2. Image DWT decomposition and coefficients distribution 

B.  Establishment of Feature Field Statistical Model  
After the given image is decomposed by wavelet 

transform, we are interested in subimages of wavelet 
domain instead of the spatial domain where the original 
image exists. Because of multiresolution time-frequency 
property of wavelet transform, subband wavelet 
coefficients reflect the statistical features of subimages. 
Fig. 2(d) displays the histograms of wavelet coefficients 
of the HH2 subband of the original image, the wavelet 
coefficients exhibit approximately Gaussian statistics, 
GMM[15] can approach arbitrary pdf. To better model 
the subband statistical features of wavelet coefficients, 
we utilized GMM for approximating the histograms of 
wavelet coefficients. According to the decorrelated 
property of wavelet coefficients, we can assume that 
coefficients subbands are conditionally independent, the 
model likelihood of wavelet coefficients is expressed as 
the following product  
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/ 2 / 2

1

( | ) ( | )
j jN N

k k
k

f fω θ ω
×

=

= ∏ θ                           (3) 

Assuming that the image consists of M distinct regions, 
the model likelihood function of wavelet coefficient is 
approximated by GMM with M components, it is defined 
as  

                 
1

( | ) ( , )
M

m
k k k k k

m
f g mω θ π ω θ

=

=∑                          (4) 

Where, m
kπ is the mixture ratio of the component thm −

( , )m
k kg ω θ  of GMM and satisfies  

1

1
M

m
k

m
π

=

=∑ , ,1                     (5) 0 1m
kπ≤ ≤ m M≤ ≤

The conditional likelihood model of wavelet 
coefficient given the label can be formulated as following  

2( )1exp[ ( ) ( )]
2( | , )

2

m m m
k k k k k

m m
k k k m

k

g l
ω μ σ ω μ

ω θ
πσ

−− − −
=         (6) 

Where, , 2( ){ , , 1,2, , }m m m
k k k mθ μ σ= = L M m

kμ and  are 
mean and variance.  

2( )m
kσ

Thus the overall subband wavelet coefficients 
distribution of image is parameterized as follows  

2( ){ , , , 1,2, , / 2 / 2 ; 1,2, , }B m m m j j
j k k k k N N mθ π μ σ= = × =L ML        

(7) 
Where j denotes scale, B denotes wavelet coefficient 

three subbands.  

C.  MRF Theory in Wavelet Domain  
From (3) and (4), the histogram of wavelet coefficients 

can be approximated by GMM, but GMM only describes 
wavelet coefficients frequency statistical property, the 
spatial interactions between wavelet coefficients is not 
considered. Wavelet coefficients reflect the spatial- 
frequency information of image, subband wavelet 
coefficients from totally different two images maybe have 
the same frequency histogram, however, the spatial 
structure information of images is totally different. In 
order to characterize the spatial structure of image, we 
exploit MRF to describe the local interactions of wavelet 
coefficients.  

After the image is decomposed by J-level wavelet 
transform, we obtain 3J+1 subimages. It is assumed that 
the subimages are defined on a serial of subband lattics  

1 1{ , , ,J JLL B BS S S S−= L } { , ,j j jB HH HL LHS S S S=, , }j / 2jHH jS N=  
/ 2 jN× , N N× represents the size of original image. Let 

L denote the random field associated with the labels of 
the subimages, it is defined as 1 1{ , , , }J JB BLLL l l l− L= , 

. Let { , , }j j j jB HH HL LHl l l l= η denote neighborhood system 
of sites, it is defined as , 

, where,

1 1, , }J JB Bη η− L{ ,LLη η=
j{ , }j j jB B B

i i Sη η= ∈ B
iη is the set of sites 

neighboring , i jB
ii η∉ and j jB B

ki k iη η∈ ⇔ ∈ . A random 
field L  is regarded as an MRF on S  with respect to a 
neighborhood systemη , the random field is defined as  

                          (8) 
{ }

( | ) ( | , )j j j j j
B j
i

B B B B B
i i ki

p l l p l l k
η

η
−

= ∈ i

According to Hammersley-Clifford theorem[19], a 
given random is an MRF if and only if its probability 

distribution ( )jB
ip l is a Gibbs distribution, the probability 

distribtion of the label field is formulated as  

    1( ) exp[ ( )]j jB
i ip l U l

Q
=                                   (9) B

Where is a normalizing con  
e en

, Q  stant (partition function),
( )jBU li  is th ergy function having the following form  

( ) ( )j j

B j
i

B B
i k i

k

U l V l
η∈

= ∑                                    (10) 

D. Establishment of Intrascale
Prior Probability Model  

n properties. From Fig. 2(b), 
w

 and Interscale Label Field 

As we see from Fig. 2(d), the wavelet coefficients have 
clustering and compressio

e can know the neighbor wavelet coefficients maybe 
have the same labels, so when determining the label of 
wavelet coefficients, we must consider the influence of 
intrascale wavelet coefficient labels. To take intrascale 
spatial context information into account, we adopt MRF 
prior probability model for imposing the interactions of 
wavelet coefficient label field. The prior probability 
model should express the belief that the pixels within a 
region have a higher probability. We use the second-order 
neighbourhood system with respect to the Euclidian 
distance, and only consider the interactions of wavelet 
coefficients with two pair site clique, as is shown in Fig.3.  

 

     
                         

 (a)                                             (b) 
cale neigh hood and clique. (a) A second-order 

 distance. (b) The 

odel of intrascale wavelet coefficient is defined as  

      
bourFigure 3. Intras

neighbourhood system with respect to the Euclidian
four associated two-site cliques.  
 

According to (9), the label field prior probability 
m

1( ) [exp( ( ))] /v vp l U l Q=                        (11) 
Here, 1Q  is a normalizing constant called the partition 

sublattics. ( )U l  is funct
ca e

ion,  denotes the position of v

lled th  intrascale energy function, which has the 
following form:  

( ) ( )v vU l V lτ=

v

( )B j vv s τ η∈∈

∑ ∑                         (12) 

jBv s∈ , ( )vηWhere  is the seco
syste

nd order neighbour 
m, h ly depends on , ( )vl v( )vV lτ , w ich on τ η∈ , are 

e clique tial function. The function has the 
followin   

( ) [ ( ) 1]v vV l l lτ τβ δ

th  poten
g form

( )B j vv s τ η∈∈

= − − −∑ ∑                  (13) 

Where, the Markov parameter β  
efficien

cont
interactions of local wavelet co ts, so that two 
ne

rols the spatial 

ighbouring wavelet coefficients are more likely to have 
the same label than the different labels. ( )δ �  is the 
discrete delta function, it is defined as  
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( )0
( )

( )1
a b

a b
a b

if l l
l l

if l l
δ

=⎧
− = ⎨ ≠⎩

                 (14)       

Fig. 2(b) indicates the interscale w  
have persistence property. Fig. 4  
co

b

avelet coefficients
shows a wavelet

efficient is decomposed by 3-level wavelet transform, 
each wavelet in coarse scale has four children in next fine 
scale. If we want to determine the label of node v at j-th 
scale, according to the interscale persistence property, the 
label of its parent node 5 in (j-1)th scale will affect the 
label of node v , moreover, node 5 has three brothers, 
which derive from the same parent node 1, their labels 
will affect the label of node v . We call the nodes of 2,3,4 
and 5 as the interscale neighbor of node v . It is assumed 
that the labels of interscale wavelet coefficients have one 
order Markov property, The prior proba ility model of 
interscale label field with quadtree neighborhood system 
is defined as  

1
2

1( | ) exp[ ( )]j j jB B B
v vp l l U lγ

− = −                     (15) 
2Q

Where, is called the interscale
it is defined as  

wher

2( )jB
vU l   energy function, 

1[ ( ) 1]j jB B
vU l lγα δ −− − −∑ ∑            (16) 

1
2

( )

( )j

B Bj j

B
v

v s s

l
γ ρ −∈ ∈

=

eα denotes the Markov parameter,
the interscale neighbour clique.  

1 )jB − denotes (sρ

 

 
 
Figure 4. Interscale neighbourhood and clique 

 

E.  MAP
The purpose of multiresolution image segmentation is 

of

 Estimate of Initial Label  

to assign a class label from the set  L  for each subband 
wavelet coefficient. Let l$  denote the optimum estimate 
for true but unknown label *l of wavelet coefficient, l$  
and *l are realization of MRF, which are formulated as 
Markov label field prior probability model. The observed 
subb d wavelet coefficientsan ω are formulated as a 
realization of GMM, which is formulated as feature field 
conditional probability model given the label field. 
According to MAP, the optimum criterion of label is 
formulated as  

arg max ( | , )
l L

l p l ω θ
∈

=$                                   (17) 

Where θ  is the model parame
Using Bayesian rule, equation

                       (18) 

 
label field and the likelihood prob
Submitting (6), (11) and (15) into (
eq

ter.  
 (17) is reformulated as  

arg max ( | , ) ( )
l L

l p l p lω θ
∈

=$        

From (18), we need to compute the prior probability of
ability of feature field. 
18), according to MAP 

uivalent to minimizing energy function, (18) can be 
expressed as  

1 2( | ) arg min[ ( | ) ( ) ( )]
l L

U l U l U l U lω ω
∈

= + +               (19) 

Where ( | )U l ω denotes the posterior energy function of 
label field.  

ting (6)
th roperty

as  

Submit , (13) and (16) into (19), according to 
e local p  of MRF, the posterior energy function 

is expressed 
2

( ) 2

1 ( )( | , ) [ln ]
2Bj

k k
v v k

k

U l lη
ω μω σ

σ
⎧ −⎪

( ), ( )v sτ η γ ρ∈ ∈

∝ + +⎨
⎪⎩

∑   

}[ ( ) 1] [ ( ) 1]v vl l l lτβ δ α δ− − + − −γ               (20) 
Some stochastic iterative optimization algorithm  such 

as simulated annealing and deterministic
adopted to get the global minimum of (
th

   
s

 relaxation are 
20), but finding 

e optimum labels of the posterior energy function 
requires a lot of compution time. In this paper, we adopt 
the iterative conditional modes (ICM) algorithm[19] to 
update the label of wavelet coefficient. Given the wavelet 
coefficient ω and the initial label of coarse scale wavelet 
coefficient, the ICM algorithm sequentially updates label 

( 1)t
vl
+  by minimizing the following formula  

( 1) ( )
( )arg min ( | , )

t t
v v vl U l lη ω
+

=$ .                   (21) 
here t denotes the numbet of iterations.W   

F.  EM Algorithm for Model Parameters
l arameters

 Estimation  
To imp ement image segmentation, the p θ  

in GMM have to be estimated, the procedure 
determining the unknown parameters is known as m

for 
odel 

fit

s concrete structure is problem 
de

ting, the objective of model fitting is to obtain the 
unbiased estimation of model parameters. However, 
because of the nonlinear relationship between the 
parameters of GMM and their pdfs in (4) and (6), it is 
impossible to derive an explicit expression for the 
maximum likelihood (ML) estimation of parameters. 
Many iterative algorithms have been employed to solve 
the problem, among which the EM algorithm[20] is the 
one most widely utilized.  

The classicla EM algorithm is a general ML estimation 
algorithm, it has a well-known basic structure for dealing 
with the incomplete data, it

pendent. Here, the determination of wavelet coefficient 
label is formulated as an incomplete data processing 
problem. The observed wavelet coefficient ω is 
considered as the incomplete data characterized by 
likelihood ( | )p ω θ , let the label l denote unobservabel or 
missing data, let the couple ( , )lω denote the complete 
data characterized by the joint likelihood function 

( , | )p lω θ , where θ  is parameter to be estimated. The ML 
estimation of θ  is determined by the following formula  

$ arg max log ( , | )p l
θ

θ ω θ=                          (22) 

EM algorith  starts with assigning initial values to the m
parameter θ , it then iteratively al
expectation step (E-step) and maximization step (M-step) 

ternates between the 
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for approximating the ML estimation of parameter θ . It 
can be expressed as follows:  

E-step: computing the log-likelihood function 
conditional expectation of the complete data z , given the 
observed wavelet coefficient ω and the curr ara ter ent p me

( )tθ  ML estimation  
( ) ( )( | ) [ln ( , | ) | , ]t t

lE p lθ θ ω θ ω θΦ =                  (23) 
Where [ ]lE � denotes the ma he expectation of random 

able l , which is 
t

vari described by the con
mi a gi

e

ditional pdf of 
s.  ssing dat ven the wavelet coefficient

M-step: th  parameter θ  is reestimated by maximizing  
( 1) ( )arg max ( | )t t

θ
θ θ θ+ = Φ                          (24) 

Where t denotes the number of iterations.  
From (24), we can get ML estim

equation (23) indicates that the M  
pa itializa n, 
co

ation of parameter, 
L estimation of

rameter is seriously dependent on in tio
nsequently, clssicial EM algorithm usually obtains the 

local maxima. Besides, because EM algorithm is a 
general framework, we must integrate concerte 
application issue into the general framework for obtaining 
the optimum estimation of parameter. To improve the 
performance of parameter estimation, we introduce 
histogram of image as constraint conditions of EM 
algorithm.   

In order to impose constraints, we introduce a hidden 
variable z , let { [ , 1,2, , ], 1,2, , }p plz z z l L p P= = = =L L , 
where pl

to the thl region, P denotes the number of grey levels. 
The improved EM algorithm computes the co onal 
expectation of the complete data ( , )z

z denotes s the probability of grey level p bel ng

ndi

o

ti
ω as follow

( ) ( )( | ) ( | , ) ln ( , | )t t

z
p z p z dzθ θ ω θ ω θΦ = •∫            (25) 

From (25), we do not have any pr or knowledge about 
missing variable z , in order to c ute the cond

s  

i
omp

expectation of co plete data, we must obtai
pr

itional 
n the prior m

obability of missing data z  via maximum entropy 
principle. The maximizing entropy of prior probability of 
missing data z  is defined as  

( | , ) ln | , )
z

H p z p z dzω θ ωθ= − •∫                   (26) 
Under the constraint  

( | , )p z dzω θ

(

1
z

=∫              
ates the constraint must conf  to 
on.  

According to Lagrangian theo
to

dz           (28) 

                    (27) 
Equation (27) indic

the normalising condit
orm

  

rem, the optimization is 
 maximize the following objective function  

( )( | )tE Hθ θ= Φ + Γ + ( ( | , ) 1)p zλ ω θ −∫z
Where Γ and λ  are Lagrange multipliers.  
By maximizing (28) with respect to the prior 

probability ( | , )p z ω θ , we have  

3

( ) [ ( , | )]p z p z
Q
1 ω θ=                          (29) 

Where Q rmalising f

Γ

3  is the no unction that satisfies  
z

w  
to th p g 

algorithm, during the cooling proc
gl ri

3 [ ( , | )]
z

Q p z dω θ Γ= ∫                           (30) 
In (29), e introduce a parameter Γ , which is similar

e tem erature parameter of simulated annealin

ess, we can get the 
obal optima. The improved EM algo thm is formulated 

as:  
E-step: the conditional expectation of complete data 

( , )zω  is  
( ) [ ( , | )]( | ) ln ( , | )

[ ( , | )]z
z

p z
p z

p zω θtθ θ ω θΦ = •       (31) 

M- e parameter 

ω θ Γ∑∑
step: th

Γ

θ  is reestimated by maximizing 
(31).  

 
S

According to (21), we obtain the initial labels of 
wa he 
initial cluster centers etermined. In order 
to

 membership. Let 

Ⅲ. FUZZY CLUSTERING ALGORITHM WITH SPATIAL 
CON TRAINTS  

velet coefficients from coarse to fine scale, then t
of regions are d

 overcome the standard FCM algorithm without 
considering wavelet domain spatial-frequency property 
shortcomings[21], we incorporate intrascale local spatial 
clustering property and interscale frequency persistence 
property into FCM objective function. The improved 
FCM objective function is optimized by Lagrange 
multipliers, we can obtain a new image segmentation 
algorithm by iteratively updating clustering centers and 
degree of membership. Taking advantage of maximizing 
degree of membership criterion, the final segmentation 
results of original image are obtained.  

A.  Standard FCM Algorithm  
The FCM algorithm assigns each wavelet coefficient to 

a region label by using fuzzy degree of
{ , 1,2, , }js

j Jω ω= = L , {js
ω ω= 1 2, , , }

j

j j j
M

s s s
ω ωL , js

ω ω∈ , 
denote the j th scale wavelet coefficiens to be partitioned 
into K classes, and the grey value { , 1,2, , }js

c c j J= = L , 

s
{jc =  1 2, , , }j j j

Kc c cL , 
s s s js

c c∈ , denote a set of t n 
cluster cent rs. In order to achieve optimum clustering, 
the formulation of the FCM optimi e 

ized i ws  

he regio
e

zation model to b
minim s defined as follo

2,

1
( , ) ( )j j j

j

K
i l m i l

m s s s
li s

J u c u cω
=∈

= −∑∑                   (32) 

with the following constraints  
,

1
1j

L
i l
s

l
u

=

=∑ , ,0 1j
i l
s

u≤ ≤                               (33) 

where ,
j

i l
s

u  denotes the degree of membership of 
wavelet c efficient o j

i
s

ω  i cluster, j
ln the thl
s

c  is the thl  
class center, •  represents the E and
is 

uclidean distance, m  
a fuzzifizer that controls the resulting partition, 
[1, )m∈ ∞ .  

B.  The Intras le FCM Objective Function  
In standard FCM algorithm, the degree of membership 

den

ca

is depen t solely on the distance between the wavelet 
r in wavelet coefficient and each individual cluster cente

domain, and disregards the spatial property of wavelet 
coefficients. According to the spatial clustering property 
of intrascale wavelet coefficients, the local neighboring 

Copyright © 2009 MECS                                                                 I.J. Information Technology and Computer Science, 2009, 1, 49-57 



                    Multiresolution Fuzzy C-Means Clustering Using Markov Random Field for Image Segmentation 55

wavelet coefficients usually possess similar features, the 
probability that they belong to the same region is great. In 
order to capture the spatial clustering property, the intra- 
scale FCM objective function is defined as  

2
,

( ), ( )
1( )

1( , ) ( )i j i j
j js si

js

K
i l m i l

N m s N s
li NR

J u c u c
Nω ω

ω

ω
=∈

= −∑ ∑      (34) 

where ( )i
js

N ω  
round

stands for the set of neighboring wavelet 
coefficients a j

i
s

ω , RN stands for the size of w
an ther 

orate the local spatial clustering property 
 shows that 

wa

indow, 
d the o parameters are of the same meaning as 

those in (32).  

C.  The Interscale FCM Objective Function  
Wavelet transform has spatial-frequency property, in 

(34), we incorp
into the FCM objective function, Fig.2(b)

velet coefficient has the interscale similar frequency 
persistence property, the label of child in fine scale is 
similar to that of its parent’s neighbors in coarse scale. In 
order to capture frequency persistence property, the 
interscale FCM objective function is defined as  

1
1

2

,( ), ( )
1( )

( , ) ( )i i j
j js si

js

L
m i l

i lm s
li

J u c u c
ρ ω ρ ω

ρ ω

ω
−

− =∈

= −∑ ∑        (35) 

Where i denotes the set of neighbors o1( )js
ρ ω −  f 1j

i
s

ω −  in 
the ( 1j − )th  scale, 1j

i
s

ω −  is the immediate parent of j
i
s

ω  in 
the thj  sc

1( )i
js

i
ρ ω −

denotes the neighboring w let 

coefficients of 1j
i

ale, ω ave

s
ω − the ( 1)thj in −  scale, and the er 

para ers are o ame meaning as those in (32).  

D.  Local Statisti  Fuzzy D  Membership  
The degree of membership in standard FCM algorit

only depends on the distance between wavelet coeffic

oth
met f the s

cal egree of
hm 
ient 

e the 
in
and cluster center. In this paper, we incorporat

terscale persistence and intrascale clustering property of 
wavelet coefficient into the standard FCM objective 
function, consequently, the degree of membership of new 
FCM algorithm must change accordingly. According to 
the spatial-frequency feature of wavelet transform, the 
intrascale clustering and interscale persistence property of 
wavelet coefficients is incorporated into the degree of 
membership, which is defined as  

*
[ ( )]

( ) ( )j j i j
js

i i i
s s N s

u u p
ρ ω

ω=                              (36) 

Under the following constraint 
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wav
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ielet co
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ω , the intrascale spatial and 
interscale frequency statistical information 
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where, ( )δ � is sample function, 
( )

( ) ( |j
n i
j js s

n
i n ns

N

)A l l p l
ω ω

δ ω
∈

= −∑ ,  

1 1( )n i
j js s

( ) ( |j
n

i n ns
)B l l p lδ ω−

ω ρ ω− −∈

= ∑  .  

E.  Improved FCM Objective Function  
The standard FCM algorithm in (32) does not impose 

any spatial-frequency constrain on objective function, 
which can lead to forming small undesirable regions. The 
objective functions in (34) and (35) take into account the 
intrascale clustering and interscale persistence property of 
wavelet coefficiet, respectively. Submitting (36) into (32), 
(34) and (35), the modified FCM objective function in 
wavelet domain can be written as  

* * * * *
1 2( ), ( ),

( , ) ( , ) ( , ) ( , )i i
j js s

M m N m m
J U C J u c J u c J u c

ω ρ ω
λ λ= + +   (39) 

Where the parameter 1λ  is a weight that controls the 
intrascale spatial context information, 2λ  controls the 
interscale persistence information.  

F.  Optimization Improved FCM Objective Function  
The segmentation algorithm is formulated as 

minimizing (39) under condition (37), the optimization of 
(39) will be solved by using Lagrange multiplier 
technique  

* * * * *
1 2( ), ( ),

( , ) ( , ) ( , ) ( , )i i
j js s

M m N m m
J U C J u c J u c J u c

ω ρ ω
λ λ= + +  

*( , )
3

1
(1 )j

K
i l

s
l

uλ
=

+ −∑                         (40) 

The derivative of (40) with respective to  and *( , )
j
i l

s
u j

l
s

c  
respectively. The modified fuzzy c-means objective 
function of * ( , )MJ U C  can be minimized iteratively by 
updating membership degree and clustering centroids 
equation respectively  
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                                                                                      (41) 
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j i i
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i i i

k i s N
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i

u
c

u

ω ρ ω
ω λω λ ω
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−
=

=

+ +
=
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∑

∑
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         (42) 

After obtaining the modified FCM clustering algorithm, 
each pixel will be associated with a membership degree 
for each region. By assigning each pixel to the region 
with the highest membership value, the segmentation 
result of the image can be obtained.  

Ⅳ. OVERVIEW OF THE PROPOSED ALGORITHM  

The complete procedures from the optimum label 
establishment to the final modified FCM segmentation 
algorithm can be stated as follows  
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A. Determining the label of wavelet coefficients 
procedure  

(1). Feature extraction: performing J  level wavelet 
decomposition of the input image.  

(2). Estimating GMM parameters by improved EM 
algorithm.  

(3). According to Bayesian rule, calculating the label 
of wavelet coefficient using (21).  

(4). Given the label of wavelet coefficient, we can get 
the conditional probability . Submitting 

 into (38), we can calculate the wavelet 
coefficient spatially statistical information of .  

( |j
i

ns
p lω )

( | )j
i

ns
p lω

( )i
js

N
p

ρ ω

B. The modified FCM segmentation algorithm 
procedure  

(1). According to the results of the j-th scale wavelet 
coefficient label estimation, setting the number of clusters, 
initializing the fuzzy membership function , 

.  

(0)
,

j
k lu

(0)
, [0,1]j

k lu ∈

(2). Computing membership functions using (41).  
(3). Calculating the fuzzy cluster centers using (42).  
(4). if * ( 1) * ( )

, ,k i k iu uτ τ ε+ − ≤  stop; otherwise go to step 
B(2). Here, τ  represents the number of iterations.  

Ⅴ. SIMULATION RESULTS  

We have tested the proposed algorithm via two 
different images, one is real MRI image, another is a 
peppers image with noise. In order to evaluate the 
performance of image segmentation, we compare our 
simulation results with that of the other segmentation 
algorithms, standard FCM algorithm and FGMM-MRF 
model based on single resolution.  

Fig.5 shows the segmentation results by applying three 
different algorithms to MRI image. Fig.5(b) shows the 
segmentation results using standard FCM algorithm, it 
produces a lot of isolated regions, because standard FCM 
algorithm does not take into account the spatial context 
information of pixels. Fig.5(c) shows the result using 
FGMM-MRF algorithm, the segmentation result is better 
than that of FCM algorithm, because the FGMM-MRF 
algorithm captures the local pixel interactions by MRF 
prior probability. However, it still produces a few isolated 
tissues, because the feature model is dependent on single 
resolution pixels of space domain, which is very difficult 
to describle the nonstationary property of image. Fig.5(d) 
shows the segmentation results using the proposed 
algorithm, the result is better than the others, such as 
producing few isolated issues, the accuracy of classifying 
different tissues and edge location.  

Fig.6 shows the segmentation results by applying three 
different algorithms to peppers image with noise. Fig.6(b) 
shows that FCM algorithm is sensitive to noise, the 
regions are misclassified seriously. Fig.6(c) shows that 
FGMM-MRF algorithm based on space domain is still 
sensitive to noise, and produces a lot of isolated regions. 
Fig.6(d) shows that the proposed algorithm based on 
wavelet domain is insensitive to noise, the segmentation 

result is encouraging, such as reliable edge location and 
the accuracy of differentiating different regions.  

 

  
 
(a)  MRI image                                (b) FCM segmentation 

 

  
 
(c) FGMM-MRF                          (d) the proposed method 

Figure 5. Comparison of segmentation results on MRI 
 

   
 

(a)  MRI image                               (b) FCM segmentation 
 

   
 
(c) FGMM-MRF                            (d) the proposed method 

Figure 6. Comparison of segmentation results on peppers image 

Ⅵ. CONCLUSION  
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In this paper, a new multiresolution technique for 
image segmentation based on wavelet domain spatial-
frequency MRF and modified FCM algorithm with inter- 
scale and intrascale context constraints is proposed. The 
multiresolution image segmentation algorithm contains 
the determination of initial label of wavelet coefficient 
from coarse to fine scale and image segmentation steps. 
At the determination of initial label stage, the statistical 
distribution of feature field in wavelet domain is captured 
by GMM, the interscale and intrascale label field prior 
probability models are characterized by MRF, taking 
advantage of Bayesian rule, the initial label of wavelet 
coefficient from coarse to fine scale is determined. At the 
image segmentation stage, a modified FCM objective 
function is established, it incorporates intrascale 
clustering and interscale persistence properties into the 
standard FCM objective function, optimizing the new 
objective function, an iterative image segmentation 
algorithm is obtained. Experimental results show that the 
proposed algorithm is more efficient than standard FCM 
and FGMM-MRF algorithm, such as being insusceptible 
to noise, reliable edge location and the accuracy of 
differentiating different regions.   
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