
I.J. Information Technology and Computer Science, 2009, 1, 1-7
Published Online October 2009 in MECS (http://www.mecs-press.org/)

A System Call Randomization Based Method for
Countering Code-Injection Attacks

Zhaohui Liang

School of information Renmin University of China
Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China)

lzh@ruc.edu.cn

Bin Liang
School of information Renmin University of China

Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China)
liangb@ruc.edu.cn

Lupin Li

School of information Renmin University of China
 li_lu_ping@sina.com

Abstract—Code-injection attacks pose serious threat to
today’s Internet. The existing code-injection attack defense
methods have some deficiencies on performance overhead
and effectiveness. To this end, we propose a method that
uses system called randomization to counter code injection
attacks based on instruction set randomization idea. System
calls must be used when an injected code would perform its
actions. By creating randomized system calls of the target
process, an attacker who does not know the key to the
randomization algorithm will inject code that isn’t
randomized like as the target process and is invalid for the
corresponding de-randomized module. The injected code
would fail to execute without calling system calls correctly.
Moreover, with extended complier, our method creates
source code randomization during its compiling and
implements binary executable files randomization by
feature matching. Our experiments on built prototype show
that our method can effectively counter variety code
injection attacks with low-overhead.

 Target Process Instruction

Randomization

shellcode

Virtual CPU

De-Randomization

Attacker

CPU
Figure 1. Instruction Set Randomization

Index Terms—information security, code-injection attack,
system call randomization

I. INTRODUCTION

Code injection attacks are to exploit software
vulnerabilities and inject malicious code into a target
program. The process control flow is modified in some
way that the injected code is finally executed. In general,
the term “shellcode” is used to refer to injected code.

Many techniques have been introduced to prevent code
injection attacks from various angles. The most notable
technique is Instruction Set Randomization (ISR) [1-5].
ISR randomizes instruction set for each process of target
system, performs de-randomization before executing on
CPU to recover the original instruction set and execute

correctly. An attacker does not know the key of the
randomization algorithm. The shellcode can’t be
randomized like the target program so that it is invalid for
that de-randomized process, causing a runtime error.
Code injection attack would fail to execute. ISR is
showed as figure 1.

Although ISR can effectively thwart code injection

attacks, it incurs enormous performance cost because of
its per-instruction de-randomization on a virtual
processor and lack of hardware support. Such a system
cannot be practically deployed. __

Manuscript received Marchl 14, 2009; revised June 22, 2009;
accepted September 27, 2009. Full instruction set randomization must cause the

performance to drop down quickly. To solve this problem,
from the level of the OS kernel, we simply randomize and

Copyright © 2009 MECS I.J. Information Technology and Computer Science, 2009, 1, 1-7

mailto:liangb@ruc.edu.cn

2 A System Call Randomization Based Method for Countering Code-Injection Attacks

de-randomize system call of the target program and
reduce the ISR overhead greatly. Moreover, using a
extended compiler, we perform source code
randomization during compiling and implement binary
executable files randomization by feature matching.

Target Process

Randomization

shellcode

De-Randomization

Attacker

System Call

System Call Xo

CPU

System Call Xn

Figure 2. System Call Randomization and De-randomization

In the rest of paper, we first present the defense
principle in Section 2. We then describe the
implementation in Section 3. We demonstrate
effectiveness and efficiency by experiments in Section 4.
We explain related work in Section 5. Finally, we
conclude in Section 6.

II. PRINCIPLE

The majority of injected code is machine instruction,
so we focus on machine instruction code injected attacks
in this paper. The characteristics of the shellcode need to
be noticed including (1) machine instruction complied, (2)
attacking target platform oriented, (3) short code and (4)
system call must be used. According to the architecture of
computer system, system calls are the only interfaces for
a program to access system resources. The program
would fail to execute without calling system calls
correctly. In essence, a shellcode would perform its
actions with system calls like a normal program. Each
system call has an index called system call number. OS
will call the implement functions according to this
number. System call number randomization on operating
system level will prevent shellcode from successful
execution. Our method can defeat a wide variety of code
injection attacks while incurring low performance penalty.

Source code
System Call Xo

ELF files

Extended GCC Processing Tools

Target Process

System Callr Xn

System Call Randomization

System Call Y

shellcode

User Space

Kernel Space

System Call De-Randomization

System Call

Target Process

System Call Number Xo

Lookup Table

Fail Execute Correctly

System Call Z

shellcode

Figure 3. The Prototype of Our System

In general, OS maintains a consistent and backward
compatible mapping between system call numbers and
their implement functions. First, the system call numbers
of target program are randomized. The original system
call number Xo is overwritten with a new value Xn,
calculated by the equation (1):

Xn = f (Xo , r) (1)

In equation (1), f is our randomization algorithm, r is
randomization factor. There is a system call dispatcher in
OS kernel which dispatches the function according to the
system call number. We customize the system call
dispatcher to perform de-randomization. The original
system call number is recovered using the equation (2):

Xo = f -1 (Xn , r) (2)

In equation (2) f -1 is our de-randomization algorithm.
The target program can execute correctly. Attackers do
not know that the target program has been randomized, in
the kernel space our de-randomization module transforms
the system call number in shellcode into another one
which can not be corresponding to the implement
function expected by the attacker. Finally the shellcode
fails to execute because of invalid parameters or
meaningless system call number. As shown in Figure 2..

Attackers may attempt to acquire the randomization
algorithm f and randomization factor r. The attempt is
also defeated. First, f and r are stored in the kernel space,
user-level program are unable to get them. Second, the f
and r on each machine may be different. Final, we

develop a dynamic scheme to enable configuration the f
and r in any time.

III. IMPLEMENTATION

We built a prototype on Linux platform, shown in
Figure 3.

The prototype system consists of randomization, de-
randomization, and preprocessing.

Copyright © 2009 MECS I.J. Information Technology and Computer Science, 2009, 1, 1-7

 A System Call Randomization Based Method for Countering Code-Injection Attacks 3

A. Randomization
On one hand, a program can call system calls directly

or via library functions indirectly. In this paper, the
randomization to source programs will be enforced
through extended GCC and GLIBC. On the other hand,
the randomization to the binary executable files without
source code is also implemented. As a consequence, our
system can provide full protection against code injection
attackers.

Figure 4. System call instruction node

Figure 5. System call number transformation1) Extended GCC

In this paper, GCC compiler is extended to randomize
source code. A program will be translated into RTL
format by GCC. The main structure of RTL format is a
two-way linked list which is composed by instruction
nodes. The instruction node “int $0x80” contains
information about system call requests, shown in Figure 4.

Figure 6. Modification of DO-CALL

Through feature matching, the extended GCC can

identify these instruction nodes. Randomization will be
done on these matched instruction nodes.

The information about system call numbers has two
kinds of modes. One is that the system call numbers is
contained in the instruction nodes directly. For example,
in the 6734 row of Figure 4, the system call number is
106 from the sentence “const_int 106”. For another one,
the system call number can’t be gotten from sentence
directly. For example, the system call number can’t be
found from the sentence “reg/f:SI 60”. It only tells us that
the system call number is placed in the 60th SI register.

To the former, GCC can read the system call number
directly, and then perform the randomization. The
transformed system call number will be used to construct
a const_int type rtx. This rtx replaces the old rtx
constructed by the original system call number. An
example is shown in Figure 5. In Figure 5 the old rtx is
u.fld[5].rtx–> u.fld[1].rtx.

To the latter, GCC will forward searches the two-way
linked list from the current node to find the register which
contains the system call number , search the instruction
node which performs the last assignment operation to this
register, and read the system call number, then follow the
same steps as the former.

2) Extended GLIBC

GLIBC is extended to randomize the system calls
which are encapsulated in function libraries. GLIBC
performs the system call mainly by means of two ways.
One is PESUDO, another is INTERNAL_SYSCALL.
The randomization module will be added into these two
ways respectively.

To the former, the core work is to modify the
definition of DO_CALL. In the file glibc-

2.3.6\sysdeps\unix\sysv\linux\i386\sysdep.h,

the definition of DO_CALL is modified as shown in
Figure 6.

In Figure 6, the original instruction “movl” is replaced

by the other three assembly instructions. The first one is
“pushl $SYS_ify(syscall_name)”, the system call number
is transferred as a parameter to the user-defined function.
The second one is “call change”. The function “change”
is defined by user and performs the randomization. The
third one is “addl $4,%esp” , it is to maintain the balance
of stack when the function call returns.

To the latter, the core work is to modify the definition
of INLINE_CALL. In the file libc-

2.3.6\sysdeps\unix\sysv\linux\i386\sysdep.h

the definition of INLINE_CALL is modified as
shown in Figure 7.

Copyright © 2009 MECS I.J. Information Technology and Computer Science, 2009, 1, 1-7

4 A System Call Randomization Based Method for Countering Code-Injection Attacks

Figure 7. Modification of INLINE_CALL

In Figure 7, the variable “newid” is added to receive

the returned value of the randomization function
“change”. The input restriction of inline assembly is
modified, the immediate number __NR_##name can be
replaced by the variable “newid”.

3) Binary executable files

The Executable and Linking Format (ELF) is a
standard file format on many different platforms. The
system call number can be located and rewritten by the
system call instructions, so the first step is to find the
system call instructions in ELF files.

We have statistics for system call number transmission
instruction shown in table I

The statistics results illuminate that more than 98
percent system call number can be recognized by the

instruction “mov x,eax”. The system call request can be
identified by the instruction “int 0x80”

In addition, some parts of the data segment in ELF
files contain the same assignment operations. However,
they mainly appear in the extra segment of ELF files. We
can jump over the extra segment and only deal with the
code segment.

So the system call number can be obtained by feature
matching and randomized by user-defined algorithm.

B. De-randomization
A kernel module based on the Loadable Kernel

Module (LKM) is design to intercept system call requests,
de-randomize the system call number before the system
call invoked in the kernel and store the original system
call handler in the memory. If the current process is the
target process which the user wants to protect, the kernel
de-randomizes the system call number using the method
provided by the user, and then invokes the corresponding
system call handler. Otherwise, the original system call
handler will be invoked. Only the system call number in
the target process will be de-randomized.

During the de-randomization, the parameters
transmission can be handled by modification of function
pointers in general,. But some extraordinary system calls
need be processed specially, such as sys_clone(struct
pt_regs regs). The inline assembly language is introduced
to transfer parameters as follows.

orig_sys[0]=orig_syscall[syscall_num];

asm("movl %ebp,%esp\n\t";

"popl %ebp\n\t";

"jmp *(orig_sys)");

The first sentence is to obtain the address of the system

call table; the second sentence and the third sentence are
to recover the values of EBP and ESP register, so that the
stack pointer goes back to the state before loading de-
randomization module. Final, the corresponding system
call function is called by the instruction “jmp”. The
experiment shows that this method is effectively.

C. Preprocessing
Reducing the performance overhead is the main target

of this paper. The preprocessing is employed to carry out
many tasks in randomization and de-randomization.

Given randomization algorithm f and randomization
factor r, we proposed an algorithm to obtain reserve
function f-1, using equation (1) and equation (2) the
system can calculate the randomized system call numbers
for all original system call numbers. A table can be built
to maintain the mapping between the randomized system
call numbers and the original system call numbers. The
de-randomization of system call numbers can be
accomplished quickly by looking-up the table. We also
proposed an algorithm to keep the randomized system
call numbers within the range, because most operating
systems can only support limited system call numbers.

TABLE I
STATISTICS FOR SYSTEM CALL NUMBER TRANSMISSION INSTRUCTION

Transmission
system call

number

Number of system calls in Binary Executable File
File A
(53)

File B
(58)

File C
(67)

Using
“mov x,eax” 52 57 67

Not using
“ mov x,eax” 1 1 0

Ratio of using
“mov x,eax”

to all
98.11% 98.28% 100%

We employed the writing-reading trigger mechanism
of procfs (process file system). That is, when there is a
writing operation on a procfs file, a reading operation is
triggered. By this means, most of the de-randomization
work can be preprocessed.

Besides, the target program which is protected by our
system can be configured. Usually, the security system is
determined by the vulnerable area. In this paper, an
interface is designed for users to select the program
which need to be protected

Copyright © 2009 MECS I.J. Information Technology and Computer Science, 2009, 1, 1-7

 A System Call Randomization Based Method for Countering Code-Injection Attacks 5

IV. EXPERIMENT

Our prototype system is named as CIAS. It is
evaluated from two aspects.

A. Effectiveness
Some real code injection attacks are utilized to

demonstrate that CIAS can effectively thwart a wide
variety of code injection attacks. For example, one is that
the shellcode invokes the system call ‘execve (“/bin/sh”)’,
attackers can start a shell and execute any system
command. Another is that the shellcode invokes the
system call ‘root’ directly to restart the computer. CIAS
can defeat these attacks successfully.

B. Efficiency
The physical test platform is Linux 2.4.20-8 with

2.40GHz Intel Pentium IV processor, 256M RAM and
GCC 3.2.2. There are three experiments as following:

First, we measured some single system call such as
getpid, sethostname and open. In comparison with, we
tested the add . The results are shown in Table II

Table II indicates that the performance of add is not
affected by CAIS. The reason is that there is no system
call in add. The overhead of getpid is the largest one
which is 13.19 percent. It is because the increase in
runtime caused by CAIS is constant for each system call.
getpid is a lightweight system call, its runtime is less, so
that its overhead is obvious. Even so, the 13.19 percent
overhead is still accepted from the view of getpid . open
is a complex system call , its runtime is longer, its
overhead is lower.

Second, we measured some commands which contain
several system calls such as tar, gzip, cp and GCC
commands. The results are shown in Table III.

 By comparison with Table II, Table III shows that the
overhead of commands is much low. The reason is that a

command is more complicated than a system call.
Besides system calls, a command also contains some
time-consuming operations. It may explains that loading
CIAS has a little of influence on the performance of
applications.

Third, we used UnixBench (Version 4.0.1) to measure
the system performance before and after loaded CIAS.
The results are shown in Table IV.

Table IV shows that the majority of test items don’t
decrease obviously except “System Call Overhead” and
“Process Creation” which have a few decrease of 2.72%
and 2.43% respectively. The reason is that the both items
contain many system calls. However, according the
FINAL SCORE, the total performance only decreases
0.74%.

All of these demonstrate that CIAS is high
performance.

V. RELATED WORK

There are two main randomization techniques
proposed: one is ISR [1-5], another is Address Space
Layout Randomization (ASLR) [6-9]. ISR creates a
randomized instruction set for each process so that
instructions in shellcode fail to execute correctly even
though attackers have already hijacked the control flow
of the vulnerable process. ASLR, instead, randomizes the
memory address layout of a running process (including
library, heap, stack, and relative distances between data
and code) so that it is hard for attackers to locate injected
shellcode or existing program code, preventing attackers
from hijacking the control flow. Though ISR is a
powerful technique, it incurs more performance penalty,
because it requires the introduction of an emulator and
the binary transformation of applications. ASLR has been
deployed by many operating systems such as Linux
kernel 2.6 and Windows Vista. However, ASLR suffers
from a number attacks. Michal Bucko from HACKPL
Security Lab [10] pointed out that some attack techniques
such as Heap Spraying could bypass ASLR. RandSys [11]
implemented randomization on system call level and used
DES algorithm to encrypt important data. But lack of
stability is the most serious disadvantage as the result of
its modification of the kernel code of Linux. StackGuard
[12,13] encrypts control information in a stack by XOR-
ing it with a random number. But it is not easy to use
since the kernel of Linux need to be recompiled and the
performance overhead is very high. According to Monica
Chew [14], the cost of StackGuard is up to 30%. Monica
Chew [15] proposed several methods of mitigating buffer
overflows by introducing randomness into the
implementation of system software. One of their methods
changes the mapping between system call IDs and system
call handlers by mixing up the system call table using
random numbers. This is achieved by recompilation of
the kernel and binary rewriting of applications to fit them
to the new kernel. In their method, one mapping is shared
by all processes and does not change except when the
kernel is recompiled. Yoshihiro Oyama [15] enhanced the
system performance and usability by using kernel
modules. He encrypted system call arguments with XOR

TABLE III
OVERHEAD ON SINGLE SYSTEM CALL

 tar gzip cp gcc

Time without CIAS
(sec) 1.61 8.57 0.58 11.48

Time with CIAS (sec) 1.67 8.60 0.62 11.51

Overhead 3.73% 0.35% 6.90% 0.26%

TABLE II
OVERHEAD ON SINGLE SYSTEM CALL

 add getpid sethostname open

Time without
CIAS (μ sec) 0.00255 0.470 0.516 1.879

Time with CIAS
(μ sec) 0.00255 0.532 0.579 1.984

Overhead 0.00% 13.19% 12.21% 5.59
%

Copyright © 2009 MECS I.J. Information Technology and Computer Science, 2009, 1, 1-7

6 A System Call Randomization Based Method for Countering Code-Injection Attacks

operation and random numbers which are not security. In
additional, his approach can’t deal with some situations

such as system calls directly appeared in source code and
in binary executable files without source code.

TABLE IV
UNIXBENCH RESULTS

Unload CIAS

TEST BASELINE RESULT INDEX

Arithmetic Test
(type = double) 29820.0 529258.9 177.5

Dhrystone 2
using register

variables
116700.0 3472143.9 297.5

Execl
Throughput 43.0 3241.4 753.8

File Copy 1024
bufsize 2000
maxblocks

3960.0 207819.0 524.8

File Copy 256
bufsize 500
maxblocks

1655.0 82188.0 496.6

File Copy 4096
bufsize 8000
maxblocks

5800.0 278457.0 480.1

Pipe Throughput 12440.0 668401.1 537.3

Process Creation 126.0 10498.9 833.2

Shell Scripts
(8 concurrent) 6.0 101.0 168.3

System Call
Overhead 15000.0 384542.1 256.4

FINAL SCORE 396.6

Loaded CIAS

TEST BASELINE RESULT INDEX

Arithmetic Test
(type = double) 29820.0 529350.7 177.5

Dhrystone 2
using register

variables
116700.0 3472105.8 297.5

Execl
Throughput 43.0 3270.3 760.5

File Copy 1024
bufsize 2000
maxblocks

3960.0 206669.0 521.9

File Copy 256
bufsize 500
maxblocks

1655.0 82612.0 499.2

File Copy 4096
bufsize 8000
maxblocks

5800.0 277449.0 478.4

Pipe Throughput 12440.0 650828.4 523.2

Process Creation 126.0 10249.1 813.4

Shell Scripts
(8 concurrent) 6.0 101.0 168.3

System Call
Overhead 15000.0 374340.5 249.6

FINAL SCORE 393.7

VI. CONCLUSION

We described our randomization scheme on the level
of OS kernel to counter code injection attacks. We
randomize only the system call numbers rather than the
entire instruction set, hence effectively solve the
performance problem of ISR. We have also developed
some techniques to enhance the system performance.
Firstly, the preprocessing is introduced. A majority of
tasks of the randomization and de-randomization were
pre-processed when the system started to run. The table
was built to store the mapping between the original
system call numbers and the randomized ones. The de-
randomization can be accomplished quickly by looking-
up the table. So that the performance cost of our system is
very low. Secondly, the target program is configurable by
users. The security of a system is usually determined by
the vulnerable area which should be protected firstly. In
our system, users can configure the target program
according to their own demand. It is more flexible during
deploying the system and reduces the system overhead
greatly. Thirdly, a complete protecting tool set is
achieved, which can provide full protection against code
injection attacks. We implement source code
randomization by extended GCC and GLIBC and binary
executable files randomization by matching the system
call instructions in the ELF files. Finally, a dynamic
randomization policy is employed. Traditional
randomization policy is static, such as random numbers
and encryption algorithms (AES, XOR) which are
restricted in security and robustness. The dynamic
randomization policy isn’t dependent on the random
numbers and the encryption algorithms and is
configurable by users. So that it is more secure from
attack.

The experiments show that our prototype system can
effectively thwart a great deal of code injection attacks
with low overhead.

ACKNOWLEDGMENT

The authors wish to thank Wenchang Shi, Wei Chen,
Qingqing Kang, and Yingqin Gu. This work was
supported by the National Natural Science Foundation of
China under Grant No.60703102 and No.60873213; the
Beijing Science Foundation under Grant No.4082018; the
National 863 High-tech Program of China under Grant
No.2007AA01Z414.

REFERENCE

[1] Elena Gabriela Barrantes, David H. Ackley,Stephanie
Forrest, Trek S. Palmer, Darko Stefanovi′c, and Dino Dai
Zovi. Randomized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks. In Proceedings of the 10th
ACM Conference on Computer and Communications

Copyright © 2009 MECS I.J. Information Technology and Computer Science, 2009, 1, 1-7

 A System Call Randomization Based Method for Countering Code-Injection Attacks 7

Copyright © 2009 MECS I.J. Information Technology and Computer Science, 2009, 1, 1-7

i
 research

ch interests include information security
and static analysis.

ion technology in 2009 from Renmin
University of China.

Security (CCS 2003), P. 281–289, Washington DC, Oct.
2003.

[2] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis
Prevelakis. Countering Code-Injection Attacks With
Instruction-Set Randomization. In Proceedings of the 10th
ACM Conference on Computerand Communications
Security (CCS 2003), P.272–280, Washington DC, Oct.
2003.

[3] Elena Gabriela Barrantes, David H. Ackley, Stephanie
Forrest, Darko Stefanovic, and Dino Dai Zovi,
“Randomized Instruction Set Emulation to Disrupt Binary
Code Injection Attacks,” ACM Transactions on
Information and System Security, 2005.

[4] Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd,
and Angelos D. Keromytis, “Building a Reactive Immune
System for Software Services,” In Proceedings of the
USENIX Annual Technical Conference, P.149 - 161,
Anaheim, CA, April 2005.

[5] Noritaka Osawa. A Smart Virtual Machine for
Heterogeneous Distributed Environments: PivotVM.
Transactions on Information Processing Society of Japan,
40(6):2543–2552, June 1999.

[6] PaX Team: PaX address space layout randomization
(ASLR). http://pax.grsecurity.net/docs/aslr.txt.

[7] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar.
Address Obfuscation: An Ef_cient Approach to Combat a
Broad Range of Memory Error Exploits. Proceedings of
the 12th USENIX Security Symposium, Washington, DC,
USA, August 2003.

[8] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney.
Ef_cient Techniques for Comprehensive Protection from
Memory Error Exploits. Proceedings of the 14th USENIX
Security Symposium 2005 , Baltimore, August 2005.

[9] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer.
Transparent Runtime Randomization for Security. In Proc.
of 22nd Symposium on Reliable and Distributed Systems
(SRDS) , Florence, Italy, October 2003.

[10] Michal Bucko, Exploitation for Phun and Profit, HACKPL
Security Lab

[11] Xuxian Jiang, Helen J.Wang et al, RandSys:Thwarting
Code Injection Attacks with System Service Interface
Randomization, Reliable Distributed Systems, page 209-
218, 2007

[12] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and
Qian Zhang. StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks. In
Proceedings of the 7th USENIX Security Symposium,
pages 63–78, San Antonio, January 1998.

[13] Perry Wagle and Crispin Cowan. StackGuard:Simple Stack
Smash Protection for GCC. In Proceedings of the GCC
Developers Summit, pages 243–255, Ottawa, Canada,
May 2003.

[14] Perry Wagle and Crispin Cowan. StackGuard: Simple
Stack Smash Protection for GCC. In Proceedings of the
GCC Developers Summit, P.243–255, Ottawa, Canada,
May 2003.

[15] Monica Chew and Dawn Song. Mitigating Buffer
Overflows by Operating System Randomization.Technical

Report CMU-CS-02-197, Carnegie Mellon University,
December 2002.

[16] Yoshihiro Oyama, Akinori Yonezawa, Prevention of Code-
Injection Attacks by Encrypting System Call Arguments,
Technical Report TR06-01,The Univ. of Tokyo,2006

Zhaohui Liang was born in P.R. China in
1968, earned B.S. degree in the field of
communication engineering in 1989 and M.S.
degree in the field of pattern recognition and
artificial intelligence in 1992 from Huazhong
University of Science and Technology, Wuhan
city, P.R.China, earned Ph.D. in the field of

network communication in 2005 from Beijing University of
Posts and Telecommunications, Beijing , P.R. China.

She is now a LECTURER at the school of information,
Renmin University of China (RUC). Before joining RUC, she
was a research engineer at Institute of Automation, Chinese
Academy of Science for 6 years. Recently she has published 14
research papers and 2 books in the area of Computer Science
and Communication.

At the present time, she takes part in many research projects
in the area of information security supported by National
Natural Science Foundation of China under Grant No.60703102
and No.60873213; the Beijing Science Foundation under Grant
No.4082018; the National 863 High-tech Program of China
under Grant No.2007AA01Z414 respectively. Her current
research interests include information security and wireless
communication.

Dr. Zhaohui Liang is a member of China Computer
Federation.

Bin Liang was born in P.R. China in 1973,
earned B.S. degree in the field of computational
mathematic and application software, earned
Ph.D. in the field of computer science in 2004
from Institute of Software, Chinese Academy
of Science (ISCAS). He is now an
ASSOCIATE PROFESSOR

at the school of information, Renmin University of China
(RUC). Before jo ning RUC in 2006, he did
postdoctoral
in the department of computer science at Tsinghua
University, aim at host security and software security analysis.
His current resear

Luping Li was born in P.R.China in 1986,
earned B.S. degree in the field of computer
applicat

	I. Introduction
	II. Principle
	III. Implementation
	A. Randomization
	B. De-randomization
	C. Preprocessing
	IV. Experiment

	A. Effectiveness
	B. Efficiency
	V. Related Work
	VI. Conclusion
	Acknowledgment
	Reference

