
I.J. Intelligent Systems and Applications, 2017, 7, 70-88
Published Online July 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.07.08

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

A Practical Application of ARM Cortex-M3

Processor Core in Embedded System Engineering

Oluwole O. Oyetoke
The University of Leeds, Department of Electronic and Electrical Engineering, LS2 9JT, Leeds, United Kingdom

E-mail: oluwoleoyetoke@gmail.com

Abstract—Embedded Systems Engineering has grown in

recent years to become an integral part of our daily living

as it finds striking applications in various spheres of our

lives. These range from Manufacturing, Electronic Health,

Telecommunications, Construction and Robotics to

numerous other fields. Primarily, Embedded Systems are

usually a combination of selected electrical and electronic

components functioning together under the direct control

of a programmed controller. They serve fundamentally as

additional units incorporated within already existing

infrastructures with the sole aim of providing dedicated

services to the larger infrastructure. Many of the

controllers used operate on uniquely designed processor

cores, instruction sets, and architecture profiles. This

paper seeks to elucidate the application of the ARM

Cortext-M3 processor based NXP LPC 1768

Microcontroller unit in the design and development of a

Temperature Monitoring and Logging System. The

write-up starts off with an overview of the principal ARM

processor core families, architecture profiles, instruction

sets and subsequently, demonstrates its utilization in the

design of a Temperature Monitoring and Logging System.

The paper shows how the NXP LPC 1768

Microcontroller Unit successfully serves as the brain of

the temperature logger device through its standardized

interfacing with a TMP102 temperature sensor using the

Inter- Integrated Circuit (I2C) protocol. The

Microcontroller is programmed using Embedded C while

other unique functionalities of the ARM Cortex-M3 core

such as Interrupt Handling and System Tick Timer

efficiency are also explored.

Index Terms—ARM, Cortex-M, Processors, Embedded

System, Temperature Sensor, SPI, I2C, TMP102,

Embedded C.

I. INTRODUCTION

Over the past decades, the world of technology has

transitioned from the use of gigantic electronic centers to

micro programmable systems and chips which can be

embedded within other systems to make them more

effective and efficient [1]. These programmable systems

which are further integrated with other electrical

components form what we term the Embedded System.

These systems as their name implies are simply systems

functioning within other systems to make them more

effective, efficient and easy to use. They pose to be the

undeniable future of our technology world. Nowadays, at

the core of every significant technological piece lie

elements of embedded systems. These range from self-

controlled cars, intelligent building designs, automated

factory processes, aeronautic gears to smart grid energy

systems [2]. The programmable components of these

Embedded Systems include components such as

Microcontrollers and Field Programmable Gate Arrays

(FPGA). Most importantly, the Microcontrollers which

are single-chip computers, serve dedicatedly as the brain

of the systems which they are embedded into. They are

primarily used to execute simple and not so complex task

within systems. A close relative of these are the

microprocessors which are far more sophisticated and can

execute numerous operations, simultaneously (such as

you have in our modern day desktop computers). These

Microcontrollers are often time called embedded

controller because the Microcontroller itself and its

support circuits are most times built into or embedded in

the devices they control [1].

It is a fact that Embedded Systems control many

devices in common use today [3]. About 98% of all

microprocessors being manufactured are used in

Embedded Systems [4] which has led to the common

definition of Embedded Systems being computer systems

having dedicated functions within a larger mechanical or

electrical system, often with real-time computing

constraints [5][6].

This paper is broken down into two main parts. The

first part provides an overview of the ARM

Microprocessor Architecture and Instruction Set while

the other part highlights the design and development

process of an embedded Temperature Logging and

Monitoring System applicable for industrial temperature

monitoring, regulation and control, intelligent building

temperature monitor, automobile, aero-motive engine

temperature tracking and other similar temperature-

dependent applications. This paper ultimately helps

crystallize understanding of the ARM processor core

design peculiarities, electronic circuit design, PCB

production and embedded C programming.

The design process of the Temperature Logging and

Monitoring System is kick-started on EAGLE light

schematic and layout editor to generate the Printed

Circuit Board (PCB) model of the electrical and

electronic circuitry which is then transformed into a

physical board through the PCB etching/manufacturing

and soldering process. An Embedded C-program is

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 71

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

written using the ARMmbed developer site/online

workspace and loaded into the memory of embedded

microcontroller (LPC1768). With proper software coding,

this microcontroller is programmed to act as the brain of

the temperature logger device. The microcontroller

interfaces with the device’s Real Time Clock (CR2032), a

temperature sensor (TMP102) and other physically

attached buttons and switches. Data and inputs received

from these peripherals are processed, analyzed and

interpreted. The Microcontroller also helps to

appropriately display needed performance, temperature

and status information on the device’s graphical Liquid

Crystal Display (LCD).

II. REVIEW OF THE ARM MICROPROCESSOR

ARCHITECTURE PROFILES

ARM Holding, a multinational Original Design

Manufacturer (ODM) of semiconductor technologies and

software development tools designs and supports a wide

range of performance and capability points through its

wide range of processor cores which are broadly divided

into the Cortex-A, R and M families. Although ARM

neither manufactures nor sell CPU devices, it licenses its

designs to interested parties who manufacture silicon. For

better organization, ARM broadly categorizes its

processor architectures into various standardized profiles.

The Cortex-M family of processors are intended for

use in microcontroller units where cost is an important

factor while the Cortex-R provide high-performance

precise timing properties and predictable interrupt latency

such as is needed in automotive engine management

systems. On the other hand, for scalable high-

performance applications that require a platform

operating system, ARM provides the Cortex-A family

processors (A5, A7, A8, A9 and A15). These application

processors incorporate sophisticated memory

management capabilities and extended instruction set for

multimedia processing and security. The ARM Cortex-

A15 processors are said to be available in multicore

configurations thereby providing grounds for a huge

range of power and performance.

A. ARM Architecture Profiles

ARM’s shrewd approach in organizing its various

designs into architectural profiles makes way for single

common architectures to support a huge diversity in

performance. Various architectural profiles exist, the

most common of which are the ARM v7-A, v7-R, v6-M

and v7-M profiles used by various series of the Cortex

processors.

1. ARM v7-A (Application Profile)

• Supported by ARM Cortex A15 and A9

• Supports memory Management

• Supports Trust Zone

2. ARM v7-R (Real Time Profile)

• Supported by ARM Cortex R4 and R5 Cores

• Used in very deep embedded applications such as

in engine management systems

• Low latency and predictability

• Do not support virtual memory

3. ARM v7-M (Microcontroller Profile)

• Supported by ARM Cortex M0, M0+ and M3

• Low gate count entry point

• Low power consumption

• Targeted specifically for microcontroller

applications

• Fixed memory map which allows for much more

standardization

• Different exception handling model

B. ARM Dataset

ARM’s architecture can be categorized under the

Reduced Instruction Set Computer Architecture category,

having a very much simplified Instruction Sets working

under the basic load-store mechanism. Being a load store

architecture, only the load and store instructions can deal

directly with memory. Other instructions are not allowed

to modify memory directly. Most ARM cores run the 32-

bit ARM Instruction Set and/or the 16/32-bit Thumb

Instruction set. Simultaneously running this two sets on a

core helps improve performance and level the various

tradeoffs, as the ARM instruction set unlocks the full

performance potentials of the core, considering the fact

that the Arithmetic and Logic Unit (ALU) processes in

32-bit words and memory is manipulated in 32-bit units.

On the other hand, the Thumb Instruction Set provides

increased code density. Switching between the two

(interworking) is possible in some architectural profiles

such as the v7-A, however, the v7-M profiles only

support the Thumb/Thumb-2 Instruction Set.

C. Processor Modes

Most ARM cores have 7 basic operating modes which

are either privileged or unprivileged modes. Each mode

has access to its own stack space and a different subset of

registers. For the Cortex-A and R cores, 6 of these modes

are privileged while one is unprivileged. The

unprivileged mode is used by the Operating System (OS)

for user tasks and processes. The table 1 below shows a

breakdown of the various available modes for the Cortex-

A and R families

Table 1. Cortex-A, R Processor Modes and Description

MODE DESCRIPTION

Supervisor

(SVC)
Entered on reset

FIQ
Entered when a high priority (fast) interrupt is

raised

IRQ
Entered when a normal priority interrupt is

raised

Abort Used to handle memory access violations

Undef Used to handle undefined instructions

System
Privileged mode using the same register as user

mode

User Most applications/OS tasks run in this mode

On the other hand, the Cortex-M processor modes are

72 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

different from those operated by the A and R families.

Cortex-Ms only have two modes as explained below

a) Thread Mode

This is an unprivileged mode used for application code.

When the system reset it starts reading code back from

the thread mode and then automatically switches to the

handler mode when an exception happens.

b) Handler Mode

This is a privileged mode used to handle exceptions.

D. ARM Register Set

It is important to note that as the cores switch between

different modes, the registers in action also switch, as

each of these modes

Fig.1. Cortex-A & R Cores Register set (Source: ARM GIC Tutorials)

The Cortex-M cores however have different register

sets from those operated by the A and R series.

Table 2. Table showing Cortex-M Core Register Set

Thread Mode Handler Mode

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

Stack Pointer

(SP)_Thread
Stack Pointer (SP)_Handler

Link Register (LR)

Program Counter (PC)

Program Status Register (xPSR)

The Cortex-M cores have 13 general purpose registers

(R0 – R12), 3 special usage registers (SP, LR and PC)

and 1 program status register (xPSR). The xPSR in the

Cortex-M core is similar in design/function to the PSR

used by the Cortex-A and R cores.

E. Exception and Interrupt Handling

The ARM processor cores are designed to handle

interrupts in a unique way. As we know, interrupts are

(sudden) events that cause interruptions in current

program flow for which the system has to immediately

deal with. They may be internal (e.g. memory

translation/protection faults), external (e.g. bus errors),

asynchronous (e.g. timer interrupts) or even synchronous

(e.g. SVC instructions). These interruptions are handled

by the processor as in the steps listed broadly below

a) Save Processor Status

This copies the content of the CPSR Register into the

SPSR of the incoming mode and also, the pointer to the

immediate instruction to return to is saved from the

Program Counter of the current mode into the Link

Register of the incoming mode.

b) Change Processor Status/Mode

The processor mode is then changed to interrupt mode,

thereby bringing in the register set of the called interrupt.

In some cases, depending on the interrupt execution

technique implemented, a vector table is used. At the

event of an interruption the processor uses the vector

table to work out where to find the exception handler, as

each entry in the vector table has an instruction that

branches to relevant handler code

c) The Handler is executed

d) The processor returns back to user/thread mode

To return back to thread mode, the CPSR is restored

from the copy saved in the SPSR and the PC is also

restored from the copy saved in the LR of the interrupt

mode just being exited.

III. THE ARM CORTEX-M3 CORE DISTINGUISHING

FEATURES

The NXP LPC 1768 Microcontroller used in the design

of the Temperature Monitoring and Logging System

explained in this paper makes use of the ARM Cortex-M3

core which runs on the ARM v7M architecture profile.

Notable characteristics of the M3 cores are their uses of

only the Thumb Instruction Set, support of System Tick

Timer and it’s Harvard memory architecture whereby the

buses which carry instructions are separate from the

busses that carry memory data. It is important to note that

the Cortex-Ms do not come in multicore configurations

but they support pipelining. Cortex M3s have 3 stage

pipelines.

The new Nested Vector Interrupt Controller (NVIC)

System of the ARM Cortex-M3 provides the processor

with outstanding interrupt handling abilities. In its

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 73

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

standard implementation, it supplies a Non-Maskable

Interrupt (NMI) and 32 general purpose interrupts with 8

levels of pre-emption priority. It can be configured to

anywhere between 1 and 240 physical interrupts with up

to 256 levels of priority through simple synthesis choices.

The Cortex-M3 processor uses a re-locatable vector

table that contains the address of the function to be

executed for a particular interrupt handler. On accepting

an interrupt, the processor fetches the address from the

vector table through the instruction bus interface. The

vector table is located at address zero at reset but can be

relocated by programming a control register.

The NVIC supports nesting (stacking) of interrupts,

allowing an interrupt to be serviced earlier by exerting

higher priority. It also supports dynamic reprioritization

of interrupts and priority levels can be changed by

software during run time. Interrupts that are being

serviced are blocked from further activation until the

interrupt service routine is completed, so their priority

can be changed without risk of accidental re-entry.

In the case of back-to-back interrupts, traditional

systems would repeat the complete state save and restore

cycle twice, resulting in higher latency. The Cortex-M3

processor simplifies moving between active and pending

interrupts by implementing tail-chaining technology in

the NVIC hardware. Tail-chaining achieves much lower

latency by replacing serial stack pop and push actions that

normally take over 30 clock cycles with a simple 6 cycle

instruction fetch. The processor state is automatically

saved on interrupt entry, and restored on interrupt exit, in

fewer cycles than a software implementation,

significantly enhancing performance in sub-100MHz

systems. As there could be cases where an interrupt of

higher priority could also occur during the stacking (Push)

or state restore (Pop) stages of the interrupt being

serviced. In traditional ARM7 based systems, these stages

need to complete before the pending interrupt can take

over. The Cortex-M3 NVIC on the other hand provides

deterministic response to these possibilities with support

for late arrival and pre-emption

Fig.2. Cortex-M3 Processor (Source: www.embeddedinsight.com)

Cortex-M3 processors unlike legacy cores which allow

on the fly changing of endianness, only have fixed

endianness and only support the Thumb Instruction Set.

Cortex-M3s do not come in multicore configurations but

however support optional Memory protection unit.

ARM Cortex- M3 cores are used in NXP LPC 13000,

17000, 18000 series Microcontrollers. The Temperature

logger design elucidated in this paper makes use of the

NXP LPC 1768 Microcontroller.

IV. TEMPERATURE MONITORING AND LOGGING SYSTEM

HARDWARE DETAILS

The Temperature logger circuit is draw using the

EAGLE Schematic Editor, an intuitive tool which allows

users to create an easy-to-read representation of

electronic designs. This schematic is then transitioned

into the full PCB layout using EAGLE’s powerful, easy-

to-use PCB layout editor. Fig. 7 below shows the

schematics of the Temperature Logger Device. The major

hardware components used include the following

• ARM Microcontroller Development Board

• Temperature Sensor (TMP102)

• LCD Screen (Nokia 5110)

• AA Batteries

• Real Time Clock (CR 2032)

• Push Buttons

• 2 Way Switch

A. Hardware Component Breakdown

1) ARM Microcontroller Development Board

The mbed development boards are a series of ARM

Microcontroller Development Boards designed for rapid

prototyping. The mbed NXP LPC1768 which is used in

this design and development is primarily a board of

peripherals fused together with the ARM Cortex-M

LPC1768 Microcontroller. One good advantage of this

board is the presence of a built-in USB flash programmer

which makes it easy to upload code binaries into the

onboard Microcontroller flash memory. It is widely used,

due to its adaptability for designing and prototyping all

sorts of devices, especially those including Ethernet, USB,

and the flexibility of lots of its peripheral interfaces and

FLASH memory. It is packaged as a small Dual Inline

Package (DIP) which makes it usable on PCB design. Fig.

3 below show the real life representation of the

ARMmbed development board.

The LPC1768 is an ARM Cortex-M3 based

Microcontroller for embedded applications featuring a

high level of integration and low power consumption. It

represents the next generation core that offers system

enhancements such as enhanced debug features and a

higher level of support block integration [7]. The

LPC1768 has found application in varying industrial

fields, motor control, medical and lighting systems. The

peripheral complement of the LPC1768 includes up to

512 kB of flash memory, 64 kB of data memory, SPI,

I2C-bus interfaces, input, outputs, 8-channel 12-bit ADC,

10-bit DAC, motor control PWM and many others. For

this design and development, this Microcontroller on the

74 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

ARMmbed development board is programmed using C

on the ARMmbed developer site which is them further

compiled into binary and then uploaded onto the device

local memory through the USB bootloader.

Fig.3. ARMmbed NXP LPC1768 (Source: developer.mbed.org [9])

2) Temperature Sensor (TMP 102)

The TMP102 break-out board digital temperature

sensor is used for this design and development. It uses

Inter-Integrated Circuit (I2C) Serial-to-Parallel Interface

(SPI) communication protocol as a communication

mechanism with the Microcontroller. With its nominal

12-bit resolution it to be able to measure temperature

changes as small as 0.0625 °C.

Fig.4. Temperature Sensor (TMP102)

Fig.5. Temperature Sensor Typical Connection (TMP102)

The TMP102 device is two-wire, System Management

Bus (SMBus) and I2C interface-compatible. When it is

configured to the 13-bit data format mode (Extended

Mode), it can measure temperatures ranging from –55°C

to 150°C. Considering the fact that the TMP102 is acting

as a slave in this application, its address is determined by

where the Pin 4 (ADD0) is connected to. The various

address of the TMP102 based on the Pin 4 connection are

highlighted in table 3 below.

Table 3. Table Showing Varying TMP102 Addresses Based On ADD0

Pin Connection

ADD0 Connection

TMP 102

Address in

Binary

TMP 102 Address

in Hexadecimal

GND 1001000 0x48

V+ 1001001 0x49

SDA 1001010 0x4A

SCL 1001011 0x4B

3) Liquid Crystal Display (Nokia 5110)

A liquid-crystal display (LCD) is a flat-panel display

that uses the light-modulating properties of liquid crystals.

Liquid crystals do not emit light directly [8]. These

LCDs are made with either passive matrix or an active

matrix display grid. The passive matrix LCDs have grids

of conductors with pixels located at each intersection in

the grid. Current is sent across two conductors on the grid

(row and column) to control the light for selected pixels.

However, active matrix makes use of transistors, thereby

requiring less current to control the luminance of a pixel.

The Nokia 5110 LCD used in this design and

development represents typical active matrix graphic

LCD (Thin Film Transistor technology). Its pixels can be

manipulated to draw graphics, rather than just regular

texts at a low power consumption rate and at a better

response rate. The Nokia 511o LCD used has the capacity

to store 48 by 84 pixels in total.

The Nokia 5110 Graphical LCD package has 2 parallel

8-Pin headers above and below it. As you may be able to

tell by the faint traces connecting them, each pin on one

header is connected to the parallel pin on the other side.

Here are the eight unique pins along with an overview of

their purpose.

Table 4. Table showing the Pins of the Nokia 5110 LCD and their

functions

PIN

NUMBER

PIN

LABEL

PIN

FUNCTION
NOTES

1 VCC
Positive

power supply

Supply range is between 2.7V

and 3.3V

2 GND Ground

3 SCE Chip select

Active low. The enable pin

allows data to be clocked in. It

is typically active low

4 RST Reset

This signal will reset the

device and must be applied to

properly initialize the chip.

The signal is active LOW

5 D/C Mode select

The input to select between

command/address mode (low)

and data mode (high).

6 DN(MOSI) Serial data in Input for the data line

7 SCLK Serial clock
Input for the clock signal: 0.0

to 4.0 Mbits/s.

8 LED

LED

backlight

supply

Acceptable voltage is between

2.7 to 3.3 V.

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 75

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

Fig.6. Nokia 5110 Graphical LCD (Bottom and Top View)

4) Real Time Clock (RTC)

A real-time clock (RTC) is an ultra low power back-up

battery computer clock that is used to keeps track of the

current time in most embedded computer devices. This

frees the main system from routine time counting and

makes it available for more time-critical tasks. RTCs

typically make use of 32.768 kHz crystals to create clock

signals which can be accurately interpreted into time

frames in seconds. The frequency 32768 Hz is commonly

used because it is a power of 2 (2^15) and users can

precisely get 1-second interval counts from it by making

use of a 15 stage binary counter. It is important to note

that RTC uses UNIX time which describes time by

counting the number of seconds that have elapsed since

1st January, 1970. The alternative source of power for the

RTC helps to keep it running even while the primary

source of power is off or unavailable. This alternate

source of power is normally a lithium battery. In this

design and development, the RTC is accessed by the

Microcontroller through serial communication.

5) Two-Way Switch

The two-way switch is used in this design and

development to switch ON and OFF the logging

operation of the temperature logger. When switched ON,

the device automatically logs the temperature reading into

‘LOGGER.csv’ file created in the local memory of the

ARMmbed. These Two-Way switches are also called

Single Pole Double Throw (SPDT) switches. This is

because they have three terminals: one common pin and

two pins which vie for connection to the common.

Change in position of the switch creates corresponding

changes to the state of the Microcontroller pin connected

to it. By monitoring this microcontroller pin state,

changes can be triggered regarding the logging operations.

6) Push Button

These kinds of switches are used to controls the open-

ness or closed-ness of an electric circuit by limiting the

flow of current momentarily or permanently. The

momentary push button switches are used in design.

These switches maintain their state continually and only

toggle states when they are currently pressed.

Interestingly and for ease of interactions, these switches

have click feedback when pressed.

In this design and development, the Temperature

Logger interacts with 2 push buttons (A & B) used to

switch the display mode between the graph plotter, text

display and also to switch ON and OFF the LCD display

in order to conserve power. This is made possible through

and Interrupt Service Routine initialized on the MCU pin

connected to these buttons.

7) AA Batteries

These are 1.3 to 1.5 V external sources of power used

by the circuit to power up the ARMmbed and the other

electrical and electronic components present.

B. Schematic and PCB

Fig. 7, 8 and 9 below show the schematic

representation of the Temperature Logger and its PCB

translation. It can be seen from the schematic that the

TMP102 sensor’s SDA and SCL pins are connected to

the Microcontroller’s I2C SDA and SCL pins

respectively. The Nokia 5110 LCD uses the Serial

Peripheral Interface (SPI).

Fig.7. Schematic of the Temperature Logger Circuit

Fig.8. Temperature Logger PCB Layout (Top View)

76 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

Fig.9. Temperature Logger PCB Layout (Bottom View)

V. TEMPERATURE MONITORING AND LOGGING SYSTEM

SOFTWARE DETAILS

The online compiler available on the ARMmbed

Operating System (OS) developer site is used to program

the onboard MCU. This online workspace allows

embedded C code to be written and compiled into their

binary versions instantaneously. The ARMmbed

development board (NX LPC1768) is designed in such a

way that these generated binaries can be immediately

loaded into the Microcontroller memory through the

onboard USB.

Considering the fact that the ARMmbed NX LPC1786

is designed with an onboard mini-USB port, when the

development board is connected to the computer through

this port, the generated binary file from the online

compiler can be copied and pasted into the file system

and then when the reset button on the development board

is pressed, the ARMmbed restarts operation and selects

the binary file in its file system with the most recent date

of creation

Fig.10. Block Diagram Showing the Mbed Programing Process

The Temperature Logger has 4 components which

require programming/configuration in one way or the

other. These programmable components include

• Nokia Graphical LCD (N5110)

• Temperature Logger TMP102

• Real Time Clock

• LPC NX1768 Microcontroller

The Microcontroller which is the brain of the whole

system is programmed to initialize and configure the

temperature sensor (TMP102) at start up, receive periodic

temperature updates from the sensor and displays this

temperature reading either in numeric format or in

temperature-vs-time graph plot on the connected

graphical LCD screen (Nokia 5110 LCD).

Fig.11. Block Diagram of Temperature Logger Key Component Interaction

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 77

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

The Microcontroller is also programmed to initialize

and configures the Real Time Clock which in turn returns

the current time reading every second to the

Microcontroller. The Microcontroller then passes this

value for display on the graphical LCD screen.

The Temperature Logger devices also have 2 switches

(1 & 2) and 2 push buttons (A & B) which are used for

power supply, temperature logging trigger, LCD screen

standby/wake and plot vs view mode switching.

It is important to note that the communication protocol

which is known as I2C (Inter-Integrated Circuit) is used

for communication between some of the peripheral

devices and the Microcontroller. This include the

temperature sensor and the microcontroller. The block

diagram shown if Fig. 11 below explains how each of

these devices is programmed to interact with each other.

A. Microcontroller-to-Temperature Sensor Interaction

In this design and development, the Microcontroller

communicates with the temperature sensor (TMP102)

using a serial communication protocol called I2C (Inter-

Integrated Circuit). The I2C bus was designed by Philips

in the early 1980s to allow easy communication between

components which reside on the same circuit board [10].

The original communication speed was defined with a

maximum of 100 kbits per second, however, for

applications which require faster communication, there

exist the ‘fastmode’ which allows up to 400 kbits

operations per second and also the faster ‘highspeed’

mode which accommodates about 3.4 Megabits

operations per second. I2C requires just two wires,

connected to the devices Serial Clock (SCL) and Serial

Data (SDA) lines. Simplicity and flexibility are key

characteristics that make this bus attractive to many

applications and it remains one of the most widely used

communication protocol. I2C basically functions on the

master-slave configuration i.e., in most cases, 1 device

acts as the master which then communicates with one or

more other slaves by specifying their addresses.

Fig.12. I2C Slave-Master Configuration

Each I2C slave has a 7-bit address, which makes a

master able to communicate with up to 127 slave devices

on one I2C configuration. Address ‘0x00’ is usually

reserved for broadcast to all connected devices. The

master is always the device that drives the SCL clock line.

It is important to note that the slaves are the devices that

respond to the master and cannot initiate a transfer over

the I2C bus. Only a master can do that.

The transfer operation is initiated by the master by

issuing a start sequence on the I2C bus. For I2C, the start

and stop sequences are special in that they are the only

places where the SDA (data line) is allowed to change

while the SCL (clock line) is high. In fact, the start

operation is triggered when the SDA changes state to low

while the SCL is high while the stop command is

triggered when the SDA changes state to high while the

SCL is high. When data is being transferred, SDA must

remain stable and not change whilst SCL is high. These

start and stop sequences mark the beginning and end of a

transaction with the slave device.

Fig.13. I2C Start and Stop Transaction Trigger

Data is transferred in sequences of 8 bits. For every 8

bits transferred, the device receiving the data sends back

an acknowledge bit, so there are actually 9 SCL clock

pulses to transfer each 8-bit byte of data. If the receiving

device sends back a low acknowledgment (ACK) bit,

then it has received the data and is ready to accept

another byte. If it sends back a high ACK then it is

indicating it cannot accept any further data and the master

should terminate the transfer by sending a stop sequence

[11].

Fig.14. Timing Diagram for Sending 1 Byte Over I2C

1. Step by Step Analysis of the I2C Protocol Operation

a) Algorithm (I2C Write Operation)

At first, the master sends out a start sequence which

keeps all the slave devices connected to the master

through the bus on alert. The master follows this up by

sending over the address of the specific slave it intends to

communicate with. The slave that matches this address

will continue with the transaction while the others will

ignore the rest of this transaction and wait for the next

start sequence. After these successful match between the

master and the slave, the master is required to send out

the internal location or register address inside the slave

that it wishes to interact with

1) Send a start sequence

2) Send the I2C address of the slave with the R/W

bit set to low

78 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

3) Send the internal register address

4) Send the data byte

5) [Optionally, send any further data bytes]

6) Send the stop sequence.

b) Algorithm (I2C Read Operation)

Reading from the slave is a bit different. a read of the

slave starts off by writing to it. The start sequence is sent

with the R/W bit of the address set to low. This is then

followed by the address of the internal register that would

be written to. Since this is a read operation, another start

sequence i.e. restart is sent, this time with the read bit set

to high. This can then be followed by as many read

operations needed which can later be terminated with the

stop sequence.

1) Send a start sequence

2) Send I2C address of the slave with the R/W bit

low

3) Send Internal register’s address

4) Send a start sequence again (repeated start)

5) Send I2C address of the slave with the R/W bit

high

6) Read as many data bytes from the slave device as

needed

7) Send the stop sequence.

2. Initializing and Configuring the TMP102

The address of the TMP102 is dependent on the

connection of its ‘ADD0’ pin. Table 5 below shows the

various possible addresses of the TMP102 with respect to

its ‘ADD0’ pin connection.

Table 5. Table showing Possible TMP102 Addresses

S/N
ADD0

Connection

TMP102

Address

TMP102 Read

Address (Binary)

TMP102 Read

Address (Hex)

TMP102 Write

Address (Binary)

TMP102 Write

Address (Hex)

1 Ground 1001000 10010001 0x91 10010000 0x90

2 V+ 1001001 10010011 0x93 10010010 0x92

3 SDA 1001010 10010101 0x95 10010100 0x94

4 SCL 1001011 10010111 0x97 10010110 0x96

The TMP 102 has 4 internal registers which take on

different functions. These registers include:

1) Temperature Register

2) Configuration Register

3) TLOW Register

4) HIGH Register

5) Pointer Register

Fig.15. TMP102 Internal Registers (Source: TMP102 Data Sheet [12])

a) Pointer Register

This is an 8-bit register used to determine what data

register must respond to a read or write command. It uses

the two least-significant bits (LSBs) to determine this.

Table 6 and 7 below elaborates on how this register is

structured.

Table 6. Table depicting Pointer Register memory

P7 P6 P5 P4 P3 P2 P1 P0

0 0 0 0 0 0
Reg. pointer

bits

Table 7. Pointer Register Location Pointer Based on Inputs

P1 P0 Register Pointed to

0 0 Temperature Register (Read Only)

0 1 Configuration Register (Read/Write)

1 0 TLOW Register (Read/Write)

1 1 THIGH Register (Read/Write)

b) Configuration Register

The Configuration Register is a 16-bit read/write

register used to store bits that control the operational

modes of the temperature sensor. Read/write operations

are performed MSB first [12].

Table 8. TMP102 Configuration Register Memory Space

BY

TE 1

Position D7 D6 D5 D4 D3 D2 D1 D0

Label OS R1 R0 F1 F0 POL TM SD

Content 0 1 1 0 0 0 0 0

BY

TE 2

Position D7 D6 D5 D4 D3 D2 D1 D0

Label CR1 CR0 AL EM 0 0 0 0

Content 1 0 1 0 0 0 0 0

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 79

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

The contents 0b01100000 and 0b10100000 of the

configuration register in Table 8 above is the normal reset

value. However, for this design and development,

0b01111000 and 0b01100000 are used for Byte 1 and 2

respectively, so as to satisfy some of the performance

requirement of the device such as less frequent

temperature conversion. The sections below explain the

importance of each of the registry space present in the

TMP102 Configuration Register memory

Shutdown Mode (SD): The configuration register

memory position with the label (SD) is used to toggle

between continuous temperature conversion state and a

non-continuous mode whereby all device circuitry is shut

down when the current conversion is complete. For this

design and development, SD is set to 0, thereby

maintaining a continuous conversion method.

Thermostat Mode (TM): The configuration register

memory position with the label (TM) is used to toggle

between Comparator (TM = 0) and Interrupt Mode

(TM=1). For this design and development, TM is set to 0.

Polarity (POL): The configuration register memory

position with the label (POL) is used to set the polarity of

the alert pin. If POL=1, ALERT pin becomes active high

and vice versa. For this design and development, POL is

set to 0

Fault Que (F1/F0): The configuration register memory

position with the label (F1 and F0) are used to

programme the number of fault occurrence required

before an alert is triggered. Faults usually happen when

the measured temperature exceeds the user-defined limits

in THIGH or TLOW Registers. For this design and

development, F1 and F0 are set to – 1 and 1 respectively

Table 9. Various Configuration for TMP102 Configuration Register

Fault Settings

F1 F0
No. of Faults to

Trigger Alert

0 0 1

0 1 2

1 0 4

1 1 6

Converter Resolution (R1/R0): The configuration

register memory position with the label R1 and R0 are

used to set the conversion resolution of the device. For

this design and development, R1 and R0 are set to 1 and 1

respectively. This gives the device a 12-bit resolution.

The 12-bit resolution allows the tmp102 to be able to

detect and represent temperature changes as minute as

0.0625 oC

One Shot: The configuration register memory position

with the label (OS) is used to achieve a ‘do it when I need

it’ kind of temperature conversion approach. When the

device is in Shutdown Mode, writing a 1 to the OS bit

starts a single temperature conversion. During the

conversion, the OS bit reads '0'. The device returns to the

shutdown state at the completion of the single [12]. For

this design and development, OS is set to –

Extended Mode (EM): The configuration register

memory position with the label (EM) is used to determine

the data format that will be used by the temperature

register TLOW and THIGH registers. When EM=0

(Normal mode), these registers make use of the 12-bit

data format. However, when EM=1 (Extended mode), the

13-bit data format is used for this design and

development, EM is set to 0.

Alert (AL): The configuration register memory position

with the label AL is used to provide information on the

comparator and interrupt mode status. For this design and

development, AL is set to 1

Conversion Rate (CR): The configuration register

memory position with the label CR1 and CR0 are used to

set the number of times in a second, the TMP102 should

carry our temperature reading/conversion. Table 9 below

explains various contents combination in this register

location and their effects. For this design and

development, CR1 and CR0 are set to 0 and 1

respectively.

Table 10. Various CR1 and CR0 combinations and their effects

CR1 CR0
Conversion

Rate (Hz)

No of Conversions

Per Second

0 0 0.25 (Every 4 Seconds)

0 1 1 1

1 0 4 4

1 1 8 8

c) Temperature Register

This is a 12/13 bit read-only register used to store

current temperature conversion value. When the EM

position of the configuration register is set to 1, this

register switches to the 13-bit mode. This can be switched

back to the 12-bit mode by changing the EM bit to 0. For

this design and development, the 12-bit data format is

used. The register slot normally contains 2 bytes of data,

however, only the first 12/13 represent the current

temperature reading. With the 12-bit temperature data

format, temperatures ranging from -55 oC to +128 oC can

be read. Also, for the 13-bit temperature data format,

temperatures ranging from -55 oC to +150 oC can be read.

Table 11 below shows the various binary values for

different temperature conversions. Note that the negative

temperature readings are derived by performing the twos

compliment of their corresponding positive value.

Table 11. 12-bit Data Format Temperature Conversion Values

Temperature

in Decimals

(oC)

Temperature in

Binary

Temperature in

Hex

128 0111 1111 1111 7FF

100 0110 0100 0000 640

25 0001 1001 0000 190

.

.

.

.

.

.

.

.

.

-25 1110 0111 0000 E70

-55 1100 1001 0000 C90

Performing the Twos compliment

The twos compliment is performed by inverting the

80 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

original binary values and adding 1 to the answer. For

example, to derive -25:

 +25 = 000110010000 in binary.

 When inverted, it becomes 111001101111.

 Adding a one to the inverted answer will translate

to 111001110000

Converting the Temperature Reading to Decimal

The Byte 1 of the temperature register represents the

most significant sets of bits and in this design, only the

last for bits of the byte one and the first 4 bits of the byte

0 are read. In order to do this, bit shifting is carried out.

Considering the fact that when bits are shifted in a binary

array, they fall off when they get to the edges, therefore

transformation.

The integer value of the resulting binary value as above

is then multiplied by the temperature resolution which is

0.0625 in this case, to obtain the actual decimal value of

the temperature. Function ‘readTemperature()’ of the

controller code in Appendix A is used to perform the

temperature reading operation

d) High and Low Limit Registers (THIGH & TLOW)

The temperature limits are stored in the T(LOW) and

T(HIGH) registers in the same format as the temperature

result, and their values are compared to the temperature

result on every conversion. The outcome of the

comparison drives the behaviour of the ALERT pin,

which operates as a comparator output or an interrupt,

and is set by the TM bit in the configuration register [12].

3. Implementing A Ticker for the Temperature Read

Operation

In order to make sure that the temperature reading

function (‘readTemperature()’) only operates once every

60 seconds, a ticker is utilized. The Ticker interface is

used to setup a recurring interrupt to repeatedly call a

function at a specified rate. Any number of Ticker objects

can be created, allowing multiple outstanding interrupts

at the same time [13]. To implement the ticker, a ticker

object is first of all created and then in the main method,

the temperature reader function is then attached to the

ticker object. Lines 72 and 368 of the controller code in

Appendix A gives full details of this process

B. Microcontroller-to-Graphical LCD Interaction

The graphical LCD used in this design is the Nokia

5110 LCD. This is used in complement with a

customized library developed by Craig. C. Evans (the

University of Leeds Electronic and Electrical Engineering

Lecturer). The open source library present on the

ARMmbed developer site provides functions which help

in displaying text on the LCD as well as manipulating the

LCD’s 48 by 84 available pixel spots in drawing graphs.

The LCD is initially initialized and subsequently, its

display is changed in accordance with the current display

mode specification (view/write mode or plot mode).

C. Microcontroller-to-Real Time Clock Interaction

The real time clock is initially configured with the use

of a virtual serial terminal on a PC. The Universal

Asynchronous Receiver/Transmitter (UART) controller is

the key component of the serial communications between

a device and a computer or between devices in general. It

changes incoming parallel information from within the

Microcontroller or Computer to serial data which can be

sent on a communication line [14]. The periodic reading

of the time and update of the LCD is achieved by

attaching the ‘updateLCDtime’ function to the

‘timeInterval’ ticker object which is initialized to

interrupt every 1 second.

D. Microcontroller-to-Switch & Push Button Interaction

Switch 1, button A and B are connected to pin 18, 16

and 17 of the MCU respectively. In order to provide

override capability and make sure a process interrupt

happens whenever the buttons connected to this pins are

pushed, Interrupts are set on PIN 16 and 17 by creating

objects of the Input Interrupt Class. These interrupt

objects are now assigned specific functions which must

be fired whenever these interrupts are triggered. the

function used to place the LCD on standby/wake mode is

attached to the interrupt on pin 17 while the function used

to switch the display between ‘view/write mode’ and

‘plot mode’ is attached to the interrupt on pin 16. Switch

1 is used to toggle ON and OFF the logging operation.

E. Code Analysis

1. Class Diagram

In software engineering, a class diagram is a type of

static structure diagram that describes the structure of a

system by showing the system's classes, their attributes,

operations (or methods), and the relationships among

objects [15]. Class diagrams can also be used for data

modelling [16].

main.cpp

-rxString[16] : char

-setTimeFlag : int

-setLogFlag :int

-setPlotFlag : int

-LCDStanbyFlag=0 : int

-temperatureValue = 0 : float

-tempValueDispBuffer[14] : char

-timeValueDispBuffer[30] : char

-dateValueDispBuffer[30] : char

-datetimeValueDispBuffer[30] : char

-local("local") : LocalFileSystem

-ErrorBuzzer(code : int): void

-initializeTMP102(): void

-main(): int

-plot(): void

-readTemperature(): void

-serialISR(): void

-setTime(): void

-standbyFunction(): void

- trigerViewChange(): void

- updateLCDTime(): void

-writeDataToFile(data : int): void

Fig.16. Class Diagram of the C Programme Running on the

Microcontroller

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 81

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

2. Code Flow

The flow chart in Fig. 17 below depicts the flow of

instructions and operation carried out by the ARMmbed

Microcontroller. It depicts the code flow of the main

function in the main.cpp file.

Fig.17. The Flowchart Showing the Flow of the C Programme Running on the ARMmbed Microcontroller

3. Function Break Down

Overall, there are 11 functions working hand in hand

with the main function. These functions are as identified

in the class diagram in section 3.5.1. The sections below

explain the operation of each of these functions

a) Error Indicator Function [ErrorBuzzer(code : int):

void]

This function is used to trigger on the ARMmbed

LEDs whenever an error occurs. Based on the

combination of blinking LEDs, the occurring error can be

82 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

deciphered. This is because the method receives an

integer value between 0 and 15 which represents the error

label. The combination of four LEDs that make up this

number are/is then lit up.

Fig.18. The Flowchart Explaining the Flow of Operation of the

‘ErrorBuzzer’ Function

b) Temperature Sensor Initializer Function

[initializeTMP102(): void]

Fig.19. The Flowchart Explaining the Flow of Operation of the

‘initializeTMP102’ Function

This function is used to initialize the TMP102 sensor.

Primarily to set its bus speed and configure its

configuration register to make its operation suitable for

the desired need and stated specifications. Fig. 19 below

represents the flow of operation of the function.

c) Plotter Function [plot(): void]

This function is used to plot the temperature reading

against time, momentarily on the graphical LCD

Fig.20. The Flowchart Explaining the Flow of Operation of the ‘plot’

Function

d) Temperature Reader Function [readTemperature():

void]

This function is used to read the instantaneous

temperature value present in the TMP102 temperature

register.

Fig.21. The Flowchart Explaining the Flow of Operation of the

‘readTemperature’ Function

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 83

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

e) Serial Link Interrupt Service Routine [serialISR():

void]

This function is used to capture streams of data on the

serial interface whenever a PC serial connection is

discovered.

f) Set Time Function [setTime(): void]

This function is used to set the Real Time Clock (RTC)

via the serial connection.

g) Standby Function [standbyFunction(): void]

This function is attached to an interrupt and triggered

at the press of push-button B. When triggered, it checks

the ‘LCDStanbyFlag’ to determine if to switch OFF the

LCD or switch it ON. When this function is triggered, if

the current LCDStandbyFlag==0, the LCD is switched

OFF, LCDStandbyFlag==1 and subsequent push of the

button will do vice versa.

Fig.22. The Flowchart Explaining the Flow of Operation of the

‘standbyFunction’ Function

h) View Change Function [trigerViewChange(): void]

This function is used to trigger view change on the

LCD, between the writing value mode to the value plotter

mode. The function first of all checks the ‘setPlotFlag’ to

determine the current mode. If the current value of the

‘setPlotFlag’ is 0, the view on the LCD is immediately

changed to the plot view and ‘setPlotFlag’ is set to 1. If

‘setPlotFlag’ is 1, a reverse operation is performed. If the

plot mode is activated, the function also draws the x and

y-axis lines before the temperature plots begin to take

place.

Fig.23. The Flowchart Explaining the Flow of Operation of the

‘triggerViewChange’ Function

i) Update LCD Time Function [updateLCDTime(): void]

This function is attached to the ‘timeIntervalReader’

ticker which triggers the function to run every second.

The function gets the current UNIX time value from the

RTC clock, then formats it into a string for display and

then displays the time, if the current view mode is the

‘write mode’. Time updates are not shown on the ‘plot

mode’, so as to maximize screen capacity. The flow chart

shown in Fig. 28 below explains the flow of operation of

this function.

j) Write Data To Local File System

[writeDataToFile(data : int): void]

This function is attached to the ‘fileWriteInterval’

ticker object which triggers a write to local file system

operation once every 60 seconds, as long as logging is

switched ON using the switch B. The function is

structured to trigger the ARMmbed’s LEDs to flash

during write operations. It switches on the 4 LEDs,

checks that logging is switched on, opens the local file

system, formats the current temperature reading and time

update into a single string which is comma delimited,

writes the string into the local file system, closes the file

and then switches OFF the LEDs, thereby producing a

brief flashing effect.

84 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

VI. RESULT AND TESTING

For improved user-friendly interactivity, the LEDs on

the ARMmbed are programmed to flash during the ‘write

to file system’ operation and by shifting the Switch 1

accordingly, the user can toggle ON/OFF the logging

operation. The logging status is normally shown on the

row 6 of the LCD screen while in the write/view mode.

Through the use of a the ARMmbed’s ticker

functionality, the Temperature Logging and Monitoring

device is successfully designed and programmed to

update temperature readings and log them every 60

seconds. One ticker object is used to update time every

second while the other is used to update the temperature

reading every 60 seconds. At the 60th second, the logger

object triggers the temperature logging function which

then formats the current time and temperature reading

appropriately (e.g. ‘09:06 7/8/14 , 27.54’) and logs them

into the created .csv file in the file system.

By pressing the push button A, the user can switch

from the write/view mode to the plot mode where by the

graphical plot of the cumulative temperature reading

against time is displayed as can be seen in Fig. 26.

Fig.24. Labeled Snapshot of Temperature Logger on Write/View Mode,

Logging OFF

Fig.25. Snapshot of Temperature Logger on Write/View Mode,

Logging ON

To conserve energy usage, push button B is used to

place the LCD screen on standby. This standby will

persist, even while the logging operation continues.

Although the Temperature Logger can be powered

through the ARMmbed’s USB port, the circuit is also

connected to back-up batteries which can power the

circuitry directly. Switch 2 is used in this case to switch

this power ON and OFF

Fig.26. Snapshot of Temperature Logger on Plot Mode 1

Fig.27. Snapshot of Temperature Logger (Top Side View)

The Temperature Logger is switched on and allowed to

take temperature reading for about 62 minutes. Table 12

below shows the content of the ‘LOGGER.CSV’ file.

This file can be copied and its content (time and

temperature reading) is plotted against each other. Fig. 28

below depicts the temperature profile for the 62 minutes

of running.

Table 12. The Content of the .CSV File Containing the Logged Values

in the Temperature Logger Local File System

TIMESTAMP TEMPERATURE (OC)

12/06/2016 04:16:10 22.62

12/06/2016 04:17:10 22.75

12/06/2016 04:18:10 22.62

12/06/2016 04:19:10 23.88

12/06/2016 04:20:10 23.25

12/06/2016 04:21:10 22.61

12/06/2016 04:22:10 22.50

12/06/2016 04:23:10 22.31

12/06/2016 04:24:10 22.25

12/06/2016 04:25:10 22.06

12/06/2016 04:26:10 22.31

12/06/2016 04:27:10 21.68

12/06/2016 04:28:10 22.00

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 85

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

12/06/2016 04:29:10 21.88

12/06/2016 04:30:10 21.81

12/06/2016 04:31:10 21.75

12/06/2016 04:32:10 21.62

12/06/2016 04:33:10 21.75

12/06/2016 04:34:10 21.94

12/06/2016 04:35:10 22.06

12/06/2016 04:36:10 22.19

12/06/2016 04:37:10 22.38

12/06/2016 04:38:10 22.56

12/06/2016 04:39:10 22.62

12/06/2016 04:40:10 22.69

12/06/2016 04:41:10 22.81

12/06/2016 04:42:10 22.94

12/06/2016 04:43:10 23.00

12/06/2016 04:44:10 23.06

12/06/2016 04:45:10 23.12

12/06/2016 04:46:10 23.19

12/06/2016 04:47:10 23.31

12/06/2016 04:48:10 23.31

12/06/2016 04:49:10 23.44

12/06/2016 04:50:10 23.50

12/06/2016 04:51:10 23.56

12/06/2016 04:52:10 23.69

12/06/2016 04:53:10 23.75

12/06/2016 04:54:10 23.75

12/06/2016 04:55:10 23.81

12/06/2016 04:56:10 23.81

12/06/2016 04:57:10 23.94

12/06/2016 04:58:10 24.00

12/06/2016 04:59:10 24.06

12/06/2016 05:00:10 24.06

12/06/2016 05:01:10 24.12

12/06/2016 05:02:10 24.19

12/06/2016 05:03:10 24.19

12/06/2016 05:04:10 24.31

12/06/2016 05:05:10 24.31

12/06/2016 05:06:10 24.31

12/06/2016 05:07:10 24.44

12/06/2016 05:08:10 24.44

12/06/2016 05:09:10 24.50

12/06/2016 05:10:10 24.56

12/06/2016 05:11:10 24.56

12/06/2016 05:12:10 24.62

12/06/2016 05:13:10 24.62

12/06/2016 05:14:10 24.62

12/06/2016 05:15:10 24.69

12/06/2016 05:16:10 24.75

12/06/2016 05:17:10 24.81

12/06/2016 05:18:10 24.81

Fig.28. Graph Showing the Temperature Profile Based on Logged Temperature Stored On the Logger Local File System

VII. CONCLUSION

Embedded Systems are indeed the future of our

technology-oriented world. Details from this report show

clearly the chemistry involved when hardware and

software fuse together to bring about innovative solutions

which interestingly have numerous applications in

varying spheres of life.

With the help of the ARMmbed developer site, the

ARM NXP LPC 1768 Microcontroller is programmed to

carry out dedicated and specific tasks, even as it serves its

place as just one out of the many other components on the

Printed Circuit Board. The Microcontroller efficiently

interacts with the TMP102 to retrieve current temperature

readings, format these readings for appropriate display on

the graphical LCD. The Microcontroller also interacts

every second with the RTC to retrieve current time

update which is then converted from their UNIX

representation to strings suitable for display. These time

and current temperature readings are not only displayed

86 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

on the LCD, but are also logged into a CSV file on the

local file system of the ARMmbed development board.

The logging operation can be switched ON/OFF while

the LCD standby mode can also be triggered by an

interrupt. In addition, for better view and perspective, the

display mode can be switched from written text to a plot

mode whereby the temperature reading is plotted over the

current time period

Considering the fact that the Internet of Things (IoT)

has become a part of our everyday life, this design can be

expanded by including web interactivity. The wide range

of possible applications of embedded controllers makes it

no surprise that they are now present in millions of

devices around the globe. Recent research showed that

the typical new-model vehicle comes with over 100

million lines of code [17] and these numbers remain ever

increasing. The utilization of the ARM Cortex-M3

processor core in the development of the Temperature

Monitoring and Logging System shows a succinct

application of embedded controllers and ultimately

provides a full cycle hands on experience of the processes

involved in engineering embedded systems/devices,

especially using ARM processor-based microcontrollers

APPENDIX A– EMBEDDED C CODE EXCERPT

//INTRODUCTION
/*‐‐
Author: Oluwole O. Oyetoke
SUMMARY: This code is written to run on the ARMmbed
LPC1768 board. It is developed to configure the
board which is connected to a TMP102 to constantly
measure temperature, update the display every minute
and also plot these values over time on the LCD
‐‐*/

//HEADER INCLUSION & DEFINITIONS
//‐‐
#include "mbed.h" //mbed header file inclusion
#include "N5110.h" //Nokia LCD Screen header file
inclusion
#include <math.h>
//Define slave address for different conditions
//ADD0 of TMP102 is connected to ground... address
will be Ob1001000 = 0x48
#define slaveAddress 0x48
#define slaveWriteAddress 0x90
#define slaveReadAddress 0x91

/*Define needed register addresses
‐‐‐|
|BIT FUNCTION| P7 | P6 | P5 | P4 | P3 | P2 | P1 | P0
| BYTE 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0
|‐‐-‐|
P1 P0 REGISTER
0 0 TEMPERATURE REGISTER (Read Only)
0 1 CONFIGURATION REGISTER (Read/Write)
1 0 TLOW REGISTER (Read/Write)
1 1 THIGH REGISTER (Read/Write)
*/
#define tempRegAddress 0x00 //0b00000000
#define configRegAddress 0x01; //0b00000001
#define tlowRegAddress 0x02; //0b00000010
#define thighRegAddress 0x03; //0b00000011
//‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐-‐‐‐‐‐‐‐‐‐‐‐

//PIN CONNECTION SET‐UP
//‐‐‐
//Set pin connection to LCD

N5110 lcd(p7,p8,p9,p10,p11,p13,p21);

//Set pin connection for the TMP102
I2C tmp102(p28, p27); //p28‐SDA, p27‐SCL

//Set pins for error display leds
BusOut myleds(LED1, LED2, LED3, LED4);

//Set pins for USB connectivity
Serial pc(USBTX,USBRX); //Usually (p9,p10) for
external devices

//Set logging control pin
DigitalIn loggerSwitch(p18);
DigitalIn plotterModeButton(p16);
DigitalIn standbyButton(p17);

//Set interrupt on pin 16 and 17
InterruptIn plotterInterrupt(p16);
InterruptIn standbyInterrupt(p17);
//‐‐‐

//DEFINE NEEDED OBJECTS
//‐‐‐
Ticker tempIntervalReader, timeIntervalReader,
fileWriteInterval;
//‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐---‐‐‐‐‐‐‐‐‐

//FUNCTION TO UPDATE LCD WITH NEW TIME READING
//‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐----------------
void updateLCDTime(){
time_t seconds = time(NULL); // Get current time
// Format time into a string (time and date)
strftime(timeValueDispBuffer, 30 , " %X",
localtime(&seconds));
strftime(dateValueDispBuffer, 30 , " %x",
localtime(&seconds));
strftime(datetimeValueDispBuffer,30 , "%x %X",
localtime(&seconds));
// print time on LCD
if((setPlotFlag==0)){
lcd.printString(dateValueDispBuffer,0,2); // Print
on LCD
lcd.printString(timeValueDispBuffer,0,3); // Print
on LCD
}
}
//‐‐‐-

//SERIAL LINK INTERRUPT SERVICE ROUTINE
//‐‐‐-
void serialISR() {
// when a serial interrupt occurs, read rx string
into buffer
pc.gets(rxString,16);
// set flag
setTimeFlag = 1;
}
//‐‐‐-

// FUNCTION USED TO INITIATE LED FLASHING WHEN AN
ERROR OCCURS
//‐‐
void ErrorBuzzer(int code)
{
while(1) { //hang in infinite loop flashing error
code
myleds = 0; //LEDs OFF
wait(0.25); //Wait for 1/4th of a second
myleds = code; //LEDs ON
wait(0.25); //Wait for 1/4th of a second
}

 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering 87

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

//‐‐

//FUNCTION USED TO SET‐UP TMP102 CONFIGURATION
REGISTER AS DESIRED
//‐‐‐
void initializeTMP102(){
//Set bus speed to 400kHz
tmp102.frequency(400000);
int acknowledgement = 1; //Initialized to false

/*
Configure the 16 bits register structure of the
configuration register
‐‐‐-
|BIT FUNCTION| OS | R1 | R0 | F1 | F0 | POL|TM| SD |
| BYTE 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0| 0 |
|‐‐|
|BIT FUNCTION| CR1 | CR0 | AL | EM | 0 | 0 | 0 | 0 |
| BYTE 2 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
‐‐‐-
BIT FUNTION EXPLANTION
OS (ONE‐SHOT): 0 ‐‐> not in use
R1, R2 (RESOLUTION): 1, 1 ‐‐> Sets the temperature
register to 12 bits
F1, F0 (FALUT QUE): 1,1 ‐‐> 6 consecutive faults
before alert is triggered
POL (POLARITY): 0 ‐‐> Alert pin will be active low
TM (THERMOSTAT MODE): 0 ‐‐> Comparator mode
activated
SD (SHUTDOWN MODE): 0 ‐‐> Continuous conversion. No
intermittent shutdown
CR1, CR0 (CONV. RES.): 0, 1 ‐‐> 1Hz, 1 conversion
per second
AL (ALERT): 1 ‐‐> Read only + only takes the
opposite vaue of POL
EM (EXTENDED MODE): 0 ‐‐> Normal Mode. Sets
TREG,THIGH,TLOW reg. to 12 bts
*/

char byteOne = 0x70; //0b01111000
char byteTwo = 0x60; //0b01100000
//Initiate contact with slave, specify desired
register and the data to write.
//Package contains address and the data to write
char configPackage[3];
configPackage[0] = configRegAddress;
configPackage[1] = byteOne;
configPackage[2] = byteTwo;
acknowledgement = tmp102.write(slaveWriteAddress,
configPackage, 3);
if(acknowledgement==1){ //I2C always returns 0 for
successful operation
ErrorBuzzer(1); //Error Message
}
}
//‐‐‐-

//Temperature Reader Function
//‐‐‐
void readTemperature(){
int acknowledgement=1; //Initialized to 1
char tempRegisterData[2];
int temperature = 0;
//Inititate contact with slave by trying to write to
its temp register
//Temp register is a read only register, so it will
not happen
acknowledgement =
tmp102.write(slaveWriteAddress,tempRegAddress,1);
if(acknowledgement==1){ //I2C always returns 0 for
successful operation
ErrorBuzzer(2); //Error Message
}
//Try to read from temperature register

acknowledgement =
tmp102.read(slaveReadAddress,tempRegisterData,2);
if(acknowledgement==1){ //I2C always returns 0 for
successful operation
ErrorBuzzer(3); //Error Message
}
temperature = (tempRegisterData[0] << 4) |
(tempRegisterData[1] >> 4);
temperatureValue = temperature*0.0625;
if(setPlotFlag==1){
plot();
}
//return temperature*0.0625;
//float tmp =
(float((tempRegisterData[0]<<8)|tempRegisterData[1])
/ 256.0);
}
//‐‐‐

Complete code and circuit design files can be retrieved

from the repositories listed belo

Mbed Developer Repository:
https://developer.mbed.org/users/el16ooo/code/TemperatureLogger/

GitHub:

https://github.com/OluwoleOyetoke/ARMmbed-Temperature-Logger

ACKNOWLEDGMENT

I wish to acknowledge knowledge gained from the

University of Leeds Electronic and Electrical Engineering

Faculty, especially Dr. Craig Evans (the Nokia N5110

library developer), Dr. Chris Trayner and David Moore.

REFERENCES

[1] Oluwole O. Oyetoke and Adedayo Adedapo, 'A

Microcontroller Based Embedded System Design for

Device Automation and Control in Intelligent Buildings',

International Journal of Research (IJR), Volume 2, Issue

12, pp1, December 2015. [Online]. Available:

http://internationaljournalofresearch.org. [Accessed 1st

January, 2017].

[2] Oluwole O. Oyetoke and Adedayo Adedapo,’ Embedded

Systems Engineering, the Future of Our Technology

World; A Look Into the Design of Optimized Energy

Metering Devices’, International Journal of Recent

Engineering Science (IJRES). volume18, pp1 December

2015. [Online]. Available: http://jetir.org. [Accessed 1st

January, 2017].

[3] Michael Barr; Anthony J. Massa (2006). "Introduction".

Programming embedded systems: with C and GNU

development tools. O'Reilly. pp. 1–2. ISBN 978-0-596-

00983-0.

[4] Barr, Michael (1 August 2009). "Real men program in C".

Embedded Systems Design. TechInsights (United

Business Media). p. 2. Retrieved 2009-12-23.

[5] Michael Barr. "Embedded Systems Glossary". Neutrino

Technical Library. Retrieved 2007-04-21.

[6] Heath, Steve (2003). Embedded systems design. EDN

series for design engineers (2 ed.). Newnes. p. 2. ISBN

978-0-7506-5546-0. An embedded system is a

microprocessor based system that is built to control a

function or a range of functions.

[7] LPC1768/66/65/64 datasheet, 11th February, 2009, 32-bit

ARM Cortex-M3 microcontroller.

[8] Merriam-Webster Dictionary. (1st January, 1973). LCD

[Online]. Available: https://www.merriam-

webster.com/dictionary/LCD. [Acceded: 20th December,

2016.

https://developer.mbed.org/users/el16ooo/code/TemperatureLogger/
https://github.com/OluwoleOyetoke/ARMmbed-Temperature-Logger

88 A Practical Application of ARM Cortex-M3 Processor Core in Embedded System Engineering

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 7, 70-88

[9] Tim Wilmshurst and Rob Toulson. (2013, October 26th).

ARM design on the mbed Integrated Development

Environment - Part 1: the basics [Online]. Available:

http://www.embedded.com/design/programming-

languages-and-tools/4423344/ARM-design-on-the-mbed-

Integrated-Development-Environment---Part-1--the-

basics . [Accessed: 27th December, 2016]

[10] I2C Bus website, (2006, December 31st). I2C – What’s

That? [Online]. Available: http://www.i2c-bus.org/i2c-

bus/. [Accessed 28th December, 2016].

[11] Robot Electronics. (2016). Using the I2C buss [Online].

Available: http://www.robot-electronics.co.uk/i2c-tutorial.

[Accessed: 29th December, 2016].

[12] Texas Instruments, (2015 August). TMP102 Low-Power

Digital Temperature Sensor with SMBus and Two-Wire

Serial Interface in SOT563 [Online]. Available:

http://www.ti.com.cn/cn/lit/ds/symlink/tmp102.pdf.

[Accessed: 29th December, 2016].

[13] ARMmbed Handbook. (2016). Ticker [Online]. Available:

https://developer.mbed.org/handbook/Ticker. [Accessed:

29th December, 2016].

[14] Oluwole O. Oyetoke and Adedayo Adedapo, 'The Design

and Development of a Computer Controlled Embedded

Energy Management System’, Journal of Emerging

Technologies and Innovative Research (JETIR), Volume

3, Issue 1, pp1, January 2016. [Online]. Available:

http://jetir.org. [Accessed 1st January, 2017].

[15] Wikipedia. (2016, December 1st). Class Diagram [Online].

Available: https://en.wikipedia.org/wiki/Class_diagram.

[Accessed: 30th December, 2016].

[16] Sparks, Geoffrey. "Database Modelling in UML".

Retrieved 8 September 2011.

[17] David Zax MIT Technology Review, (2012, December

3rd). Many Cars Have a Hundred Million Lines of Code

[Online]. Available:

http://www.technologyreview.com/view/508231/many-

cars-havea-hundred-million-lines-of-code/. [Accessed:

2nd January, 2017]

Authors’ Profiles

Oluwole O. Oyetoke is a citizen of Nigeria,

who studied Information and

Communication Engineering (B. Eng., First

Class Honours, 2014) from the department

of Electrical and Information Engineering,

Covenant University, Ota, Nigeria and is

currently on postgraduate studies in

Embedded Systems Engineering at the

University of Leeds, United Kingdom (2016/2017). He is a core

Java and Embedded C programmer with vast experience

through engagement in various enterprise level projects. He is

also a certified IT Service Management Professional (ITIL

Foundation).

He has worked on various community development projects

including the development of an open-source school

management system which is currently used in various schools

across Africa, USA and parts of South Asia. Also, in May 2015,

he developed an Open-Source Computer-Based Testing System

to serve as a practice platform for prospective Unified Tertiary

Matriculation Examination (UTME) candidates in Nigeria.

Most recently, he worked on the design of a Computer

Controlled Embedded Energy Management System aimed at

regulating energy usage in African homes through a dynamic

and automated load shedding mechanisms.

Mr. Oyetoke is a student member of NSE (Nigerian Society

of Engineers) and has published findings in over 7 learned

journals. He has bagged various awards over the course of his

career till date. These includes the Covenant University Award

of Academic Excellence (2014), Procter and Gamble ‘Power of

You’ award, an award for being one of the most strategic

employees in the first quarter of the 2014/2015 Fiscal Year in

Nigeria, the British American Tobacco Bronze Medallion

Award (2016), and the prestigious British Government’s

Foreign and Commonwealth Office’s Chevening Scholarship

Award in August 2016.

How to cite this paper: Oluwole O. Oyetoke, "A Practical

Application of ARM Cortex-M3 Processor Core in Embedded

System Engineering", International Journal of Intelligent

Systems and Applications(IJISA), Vol.9, No.7, pp.70-88, 2017.

DOI: 10.5815/ijisa.2017.07.08

