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Abstract—We analyzed the dynamic behavior of the 

damping system with a two-mass damper pendulum. The 

equations of motion of nonlinear systems were built. 

AFC equation systems have been identified in the linear 

formulation. Proposed and implemented a new numerical 

method of determining the optimum parameters of 

optimal settings two-mass damper.  

 

Index Terms—Damping System, Two-Mass Damper 

Pendulum, Amplitude-Frequency Characteristic (AFC), 

Parameters Absorber Settings. 

 

I.  INTRODUCTION 

Currently, the decision of problems of vibration 

control and suppression forced vibrations of flexible 

high-rise buildings and other extended objects are 

relevant enough. This is due to two main reasons. On the 

one hand, abrupt changes in climatic conditions, 

observed in recent decades, leading to an increase in the 

average level of wind and sediment loads (snow, ice) on 

the flexible extended objects. On the other hand, an 

increase in height (or length) of extended flexible 

facilities while optimizing load-bearing capacity and to 

minimize their weight results in a loss of stability of 

periodic movements and the emergence of various kinds 

of uncontrolled bifurcations, which are the result of 

serious accidents at work. 

This applies in particular to the high-rise buildings, 

television towers, radio masts, chimneys [1–11], large-

power transmission lines [12–19], carrying trunks of 

wind power plants, cable-stayed bridges [20–24]. 

In order to reduce and stabilize the level of the forced 

oscillation amplitudes in the construction industry, power 

industry, transport, mechanical engineering and other 

industries use different dynamic dampers (TMD – tuned 

mass damper). The principle of operation of such devices 

is based on the change in the structure of the original 

mechanical system by introducing an additional so-called 

mass damper attached. As a result, the system is 

transformed into a new "carrier (body) - damper" 

dynamic system. The parameters of the connected (or 

working), the mass damper is selected in such a way that 

she made anti-phase oscillations of the object relative to 

the carrier. Such a movement of the working masses at 

the optimum damper setting its parameters leads to the 

suppression of forced oscillations of the carrier object, 

caused by an external dynamic perturbation. Therefore, 

reducing the maximum level of the amplitude of the 

forced oscillations carrying objects in such a case can be 

considered as effective suppression forced oscillations. 

The first who proposed analytical formulas for the 

optimum adjustment of TMD-absorbers in a linear 

formulation of the problem, was Den Hartog J.P. [13, 14]. 

These dampers were used and today are used in the 

practice of suppressing vibrations of TV towers, metal 

chimneys and other flexible high-rise buildings [2-4, 8, 

10, 11, 25, 26]. In comparison with other passive devices 

suppression forced oscillations TMD-absorbers can be 

installed on high-rise buildings without special technical 

and design problems. Technical details of various designs 

TMD-absorbers differ on ways to ensure the damping of 

vibrations of the working body, which they implemented 

[2, 3, 10, 11]. Methods for determining the optimum 

parameters of TMD-absorbers adjustment (i.e. the mass 

of the working of the absorber body, stiffening elements 

of its accession to the supporting entity and the level of 

damping vibrations of the working body of the absorber 

relative to the carrier of the object) in different 

productions for virtually all kinds of external influences 

are well established [2 - 5, 6, 10, 11, 27, 28, 32]. 

It is experimentally proved that the use of TMD-

absorbers significantly reduces the amplitude of the 

forced oscillations [3, 6, 10, 16, 20]. Rating TMD-

absorbers partly based on the simplicity of the formulas 
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used for the construction of these devices. 

At the end of this quick review the note of [7, 9, 20-22, 

25, 26] a number of Czech and Chinese scientists in the 

study of the dynamic behavior of vibration isolation 

systems with ball absorber forced oscillations of different 

nature (BVA–Ball Vibration Absorber). Effect 

suppression forced oscillations of the carrier object using 

BVA is rolling a heavy ball at the base of the spherical 

recess with a constant radius R , lined with a special 

material with a high coefficient of friction. The ball has a 

smaller radius r  than the radius R  of the spherical 

bearing recess, and represents a working absorber body 

with a relatively large mass. It is known [5, 9, 26] that the 

own frequency of the damper depends on the difference 

between these radii is determined by the formula 

1,4( )
D

g

R r
 


. However, the design of such dampers 

have a number of technical and dynamic shortcomings, 

among which we should highlight them nonisochronism, 

and as a consequence, the impossibility of their use at 

high amplitudes carrying objects. In addition, 

constructive setting such absorbers by changing the mass 

and radius of the ball, and is non-technological in 

circumstances where this mass of several tons. 

This work is a continuation of research work [5, 28 – 

30], carried out in the framework of the studies the 

dynamic behavior of vibration isolation systems with 

dampers of various designs. It is considered a passive 

method of suppression of forced oscillations of extended 

flexible structures using a new pendulum absorber with 

two attached masses. Proposed in the pendulum absorber 

also can be classified as TMD – absorbers mentioned 

above. 

In addition, an important feature of these dampers is 

their compactness, reliability and ease of tuning (Fig. 1 

and Fig.2).  

 

II.  STATEMENT OF THE PROBLEM 

We consider the periodic motion damping system of 

rigid bodies "supporting body – the two–mass damper 

forced oscillations" by an external harmonic action 

0( ) sin( )F t F t . Fig.1 shows a general view of the 

considered damping system for modeling the dynamics 

of which takes into account the vertical movement of the 

absorber with the highest point of the altitude of the 

object with its deviation from the vertical.  

However, in this study accepted for consideration by 

the working circuit (Fig.2) modeling the dynamics of 

damping system with a two-mass damper, wherein said 

vertical displacement is not taken into account. This is 

because, according to regulatory documents [4, 10], in 

real systems, extended horizontal deviation of the top of 

the buildings must not exceed 1% of its height. Therefore, 

the vertical movement should not exceed 1% of the 

horizontal deflection top of high–rise buildings. For real 

structures 100 in height – the vertical movement of the 

upper points of 300 meters is 1 – 3 cm, which can be 

neglected. 

The supporting body in Fig. 2 simulates flexible 

structure or an extended object, and has a reduced mass 

0M . This is in a flexible extended object considered by 

the first (main) form with the natural frequency
0 . 

 

 

Fig.1. General view of the damping system with a two-mass absorber 

 

Fig.2. Working scheme simulation damping system with a two-mass 

absorber 

Two-mass dampener pendulum is a rigid weightless 

rod, at the opposite ends of which are mounted (with the 

possibility of free movement), two unequal lumped mass. 

This large mass M  is fixed to the lower end of the 

damper and less weight m – at the upper end ( M m ). 

This kind of two–mass pendulum AB  pivotally mounted 

on the carrier body weight 0M
 
at the point O. Shoulder 

length AO  is equal L  to the bottom of the pendulum, 

and the length of the upper part BO  of the shoulder – l . 

It is assumed that the shoulders AO  and BO  absolutely 

rigid and weightless. Setting the pendulum is done 

simply by changing the masses M  and m , as well as the 

lengths L  and l . The friction in the joint O is not taken 

into account.  

The absorption of the energy absorber is carried out by 

the forces of viscous resistance in the damper with 

viscous drag coefficient C .  

The movement of the carrier body is seen along the 

axis OX  of this movement and prevents the elastic 
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element with stiffness coefficient k  and viscous damper 

with viscous drag coefficient 
xC . Last introduced to take 

account of the damping due to internal friction forces in 

the materials of construction or extended vertical shaft of 

the flexible object. 

 

Purpose of paper – to create a mathematical model 

of the dynamic behavior of the studied damping system 

and analytical determination of the equation of its 

AFC in the linear formulation. 

 

III.  THE EQUATIONS OF MOTION DAMPING SYSTEM. 

DETERMINATION OF THE OWN FREQUENCY OF TWO-MASS 

PENDULUM DAMPER 

Formulate geometric relationships for the centers of 

masses M  and m  (Fig. 2). We choose as the 

independent generalized coordinates of the system 

following options:  – deflection rod damper angle from 

the vertical axis OZ , and 0x
 
– moving the center of 

mass 0M  (CM) of the supporting body along the axis 

OX .  

To have a center of mass M : 

 

0 sinMx x L                              (1) 

 

cosMz L                                (2) 

 

To have a center of mass m : 

 

0 sinmx x l                                (3) 

 

cosmz l                                   (4) 

 

In the construction of the differential equations of 

motion of damping system using Lagrange formalism 

[31]. We write the expression for the kinetic energy of 

the system: 

 
2

2 2 2 20 0
0[( cos ) sin

2 2

M x m
T x l l          + 

+
2 2 2 2

0[( cos ) sin ]
2

M
x L L                 (5) 

 

After some transformations we obtain: 

 
2

2 2 20 0
0 0[ 2 cos ]

2 2

M x m
T x x l l         

2 2 2
0 0[ 2 cos ]

2

M
x x L L                    (6) 

 

We form the expression for the sum of the elementary 

works on the corresponding virtual movements of the 

masses of the mechanical system in the independent 

generalized coordinates:  

0 0 0[ ( ) ( )] sinA F t kx Cx x MLg        

sinmgl C                              (7) 

 

The equation of the second kind Lagrange in the 

general form: 

 

i
i i

d T T
Q

dt q q

  
  

  
,  1,i n                   (8) 

 

We find the generalized forces iQ
 
- the right of the 

Lagrange equations. For this purpose, we rewrite 

equation (7) in the general form: 

 

0xA Q x Q                             (9) 

  

Comparing the expressions (7) and (9), define the 

generalized forces iQ : 

 

0 0( ) ( )x xQ F t kx C x                        (10) 

 

( ) sinQ ml ML g C                      (11) 

 

Substituting the expression (6), (10), (11) in the 

formula (8). As a result, we obtain the differential 

equations of motion of damping system: 

 

0 0 0 0( )M M m x Cx kx      
2

0( )( sin cos ) sin( )ML ml F t       ,       (12) 

 
2 2

0( ) ( ) cosML ml C ML ml x        

( )sin 0g ML ml                            (13) 

 

After some transformations we can write the final 

system of equations: 

 
2

0 0 0 0 0(1 ) 2 xx n x x        

2
0( sin cos ) sin( )p F t       ,             (14) 

 

0 cos 2 sin ,x q n g                        (15) 

 

where 
0

M

M
  ; 

0

0

m

M
  ; 0

0

0

F
F

M
 ; 

0

2 x

x

C
n

M
 ; 

2

0

0

k

M
  ; ML ml   ; 

0

p
M


 ; 2 2ML ml   ; 

q





; 2
C

n


 


. We assume that 0  . 

If you do not take into account the damping in the two-

mass damper ( 0C  ) and consider supporting body as a 

still ( 0 ( ) 0x t  ), then the system of equations (14) - (15) 

is converted into a single differential equation of motion 

of a pendulum with a fixed point O of suspension 

relative to the fixed bearing body. This equation has the 
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form: 

 

sin 0
g

q
   .                           (16) 

 

From equation (16) define the frequency of small 

natural oscillations of two-mass damper: 

 

2 2В

ML ml
g

ML ml






 .                      (17) 

 

From (17) it follows that the frequency of small natural 

oscillations of the two-mass pendulum absorber is 

frequency of small natural oscillations of a mathematical 

pendulum with an equivalent length of suspension: 

 
2 2 2 2

E

ML ml L l
L

ML ml L l





 
 

 
,                 (18) 

 

where 
m

M
  . 

As expected, when 0m   the formula (17) becomes 

the well-known formula for the frequency of small 

natural oscillations of mathematical pendulum on the 

suspension length 
EL L : 

 

B

E

g

L
  . 

 

From (17) it also follows that the correct functioning 

of the damper can only be provided: 0ML ml  . This 

formula thus establishes that the regulation of the 

frequency of natural oscillations of two-mass pendulum 

absorber is possible by changing the three main damper 

settings (as opposed, for example, absorbers of other 

structures):
 

, ,l L  . It provides a broader and more 

flexible customization options absorbers such an 

arrangement to the desired natural frequency of the 

supporting body, as well as significantly expand the 

range of operating frequencies (0,2 to 12 /rad s ) of two-

mass dampers while maintaining their compactness. 

 

IV.  DETERMINING THE AFC OF A DYNAMIC SYSTEM IN 

LINEAR FORMULATION OF THE PROBLEM 

We consider small steady-state oscillations of the 

studied system. This is explained by the fact that, in 

accordance with the regulations [4, 10], the maximum 

deviation of the top of high-rise buildings from the 

vertical must not exceed 1% of its height. The above 

regulatory limit also entails appropriate restrictions on 

the value of the maximum angular deviations two-mass 

damper pendulum from the vertical. Marked limitation 

for single-mass pendulum absorbers are determined in 

such a range of angles 0,10   (angle 
 
measured in 

radians). We will also be guided by this inequality. 

In addition, the study of the problem in the linear 

formulation of independent interest, since it provides an 

opportunity to identify the main features of dynamic 

performance and dynamic behavior of the considered 

damping systems are already known methods. 

Given the smallness of the parameter  , we linearize 

the system equations (1) - (2): 

 
2

0 0 0 0 0 0(1 ) 2 sin( )xx n x x p F t          ,    (19) 

 

0 2x q n g     .                          (20) 

 

To derive the equations AFC investigated damping 

system of any of the known approaches can be used in 

the linear formulation [4, 14, 32]. 

Omitting the intermediate transformations, we write 

the final expressions for the amplitude  A 
 
of the 

carrier body and angle  B   of deviation from the 

vertical a working body of absorber: 

 

 
   

0

2 2
1 2

F
A 

 


 
                    

(21) 

 

 
 

   

0 0

2 2
1 2

F
B




 




 
 ,                  (22) 

  

where   

 

 
   

2 4

0 22 22

B

A n q g




 

 
   

   

;  

 

   1 02 2xn n p       ; 

 

       2 2 2
2 0 0 01 p q g              

 
. 

 

V.  NUMERICAL ANALYSIS 

Qualitative and quantitative analysis of the received 

frequency response (21) damping system was carried out 

on the basis of numerical methods. The main task of the 

numerical experiment was to determine these frequency 

parameters , , ,m M l L
 
of a two-mass pendulum absorber, 

in which the frequency response graph system would 

have a symmetrical shape with equal values of maximum 

amplitudes at two frequencies 1  and 2 , one of which 

corresponds to the supporting body, and the other - 

dampers [5, 11, 14, 20, 30]. Physically, this means that 

the energy of forced oscillations for each cycle is divided 

equally between the supporting body and an absorber, 

which leads to a decrease in the amplitude of the level of 

forced oscillations of the carrier body. The optimal 
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parameters of the proposed absorber were installed using 

numerical-graphical method described in studies of the 

dynamics of roller dampers (BVA) [5, 30]. 

The next step after the establishment of such a 

symmetrical shape is carried out to minimize the 

frequency response magnitude of the amplitude of the 

carrier body by choosing the optimal value n  [5, 30]. If 

the two-mass system frequency response graphs are 

asymmetric shape, this means that the settings are not 

optimal absorber selected. 

For the numerical experiments on frequency 

0 1,5 /рад с 
 
were chosen following parameters 

absorber: 2L м ; 1,5l м ; 0,05  ; 0 0,03  ; 

0,45 /n м с  . Additionally, parameters the supporting 

body have been chosen 10,03xn с  and 0 0,003F g  

in accordance with the regulatory requirements [4, 10]. 

Fig.3 shows a graph for the frequency response of the 

carrier body consisting damping system with the above 

parameters. The maximum amplitude of the carrier body 

in this case is 0,122A m . 

 

1.2 1.3 1.4 1.5 1.6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

A ( )

  

Fig.3. Frequency response ( )A   (in meters), built for the damping 

system with the following parameters: 0 1,5 /rad s  ; 2L m ;

1,5l m ; 0,05  ; 0 0,03  ; 0,45 /n m s  ;

10,03xn s ; 0 0,003F g  

Fig. 4 shows a graph of the frequency response of the 

absorber axis angular deviation from vertical (in radians). 

Its characteristic feature is that part of it which has a 

horizontal platform with a maximum deviation from the 

vertical axis of the damper. This feature also indicates the 

optimality of the absorber tuning parameters. 

The marked numerical experiment, the problem of 

determining the optimum value of the coefficient n  is 

of independent interest. Fig. 5 shows how the maximum 

amplitude A  of the carrier body, depending on the 

change in value of the coefficient n
 
for fixed values of 

the remaining parameters. 

The graph shows an interesting fact – the function 

 A A n
 
has a pronounced local minimum at the point 

0,45 /n m s  , which is equal to 0,122A m . 

 

1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

B ( )


 

Fig.4. Frequency response ( )B   for the angular deviation (in radians) 

from the vertical axis of the absorber for the system with the same 

parameters. 

0 0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

A

n
 

Fig.5. Schedule of the maximum amplitude  A A n  (in meters) 

carrying body depending on the value of the coefficient n  for the 

system with the same parameters. 

This behavior  A A n
 
makes it possible to function 

with an appropriate change in the coefficient n
 
to 

determine the minimum value of the amplitude of the 

forced oscillations for a given set of parameters specific 

damping system.  

The graph in Fig.5 also reflects the following feature 

of the studied system: a gradual increase in the ratio leads 

to an increase in the amplitude of the forced oscillations 

of the supporting body after reaching its minimum value 

it. Previously, the existence of a local minimum, but in a 

system with dry friction, was marked by one of the 

authors in [5]. Physically, it means that the absorber 

meets the ever-increasing resistance of the viscous 
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damper and high values of the coefficient is practically 

held him without producing relative oscillation 

movements (i.e. absorber "overdamped"). In this case, 

the two-mass damper pendulum does not work properly, 

and its two working masses and only create additional 

dynamic impact on the carrying shaft of the protected 

object. 

For comparison, Fig.6 shows a plot of the frequency 

response  A 
 
of the mechanical system without an 

absorber. In this case, the maximum amplitude of the 

carrier body equal to the value max 0,312A m  and 

attained at a frequency max 1,5 /rad s  .  This 

maximum amplitude is approximately 2.56 times higher 

than when using the absorber 0,122A m . 

 

1.2 1.3 1.4 1.5 1.6
0

0.1

0.2

0.3

0.4

A ( )


 

Fig.6. Schedule AFC (in meters) of the studied mechanical system 

without damper 

 

VI.  CONCLUSIONS 

The paper presents the dynamic equations of motion 

for a new damping system "supporting body – the two-

mass damper pendulum". On the basis of the equations of 

motion are derived and analyzed the frequency response 

of the equation in the linear formulation. The proposed 

method of determining the AFC of the equation to 

optimize the selection of regulatory parameters when 

setting up a two-mass pendulum absorber on the desired 

mode of vibration protection of flexible elongated objects. 

The main criterion of such a regime – line maximum 

values of the amplitudes of the carrier body the 

requirements of existing regulations. Numerical 

experiment conducted on the basis of the AFC of the 

equation obtained in this study showed that the proposed 

damping system forced oscillations is effective. This 

system allows several times to reduce the amplitude of 

forced oscillations of the carrying bodies. This effect is 

achieved due to special setting damper settings on the 

corresponding frequency of own oscillations of the 

carrier body. 

For this two-mass damper tuning frequency should be 

performed using the optimal choice of its four main 

parameters: ,m
 

,M
 

,l
 

L . Their selection should be 

implemented in such a way that the frequency response 

graph damping system would have a symmetrical shape 

with equal values of maximum amplitudes and two 

frequencies, one of which corresponds to the supporting 

body, and the other – absorbers. Physically, this means 

that the energy of forced oscillations for each full cycle is 

divided equally between the supporting body and an 

absorber, which can significantly reduce the level of 

amplitude of forced oscillations of the carrier body. 

The paper also highlighted another interesting feature 

of the system under study: the function  A A n
 
has a 

pronounced local minimum, which enables you to set the 

level of the damper viscous damping forced vibrations. 

Results of the study process, the system of vibration 

protection in the linear formulation allow a sufficient 

degree of accuracy to estimate and predict its basic 

dynamic performance. 

Development of the method for determining the 

frequency response damping system and optimal settings 

for dual-mass damper problem in nonlinear statement is a 

separate urgent problem to be posed and solved in future 

studies. 

Results of the study may be of interest of experts in the 

field of dynamics and strength of machines and 

mechanisms, theoretical mechanics, vibration protection 

of high-rise buildings and power lines, as well as 

recommended for developers and designers of new 

dampers. 
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