
I.J. Intelligent Systems and Applications, 2017, 2, 49-57
Published Online February 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.02.07

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

A Review on Large Scale Graph Processing

Using Big Data Based Parallel Programming

Models

Anuraj Mohan
Assistant Professor, Dept of Computer Science & Engineering, NSS College of Engineering, Palakkad, India

E-mail: anurajmohan@gmail.com

Remya G
Assistant Professor, Dept of Computer Science & Engineering, NSS College of Engineering, Palakkad, India

E-mail: gremyanair@gmail.com

Abstract—Processing big graphs has become an

increasingly essential activity in various fields like

engineering, business intelligence and computer science.

Social networks and search engines usually generate large

graphs which demands sophisticated techniques for social

network analysis and web structure mining. Latest trends

in graph processing tend towards using Big Data

platforms for parallel graph analytics. MapReduce has

emerged as a Big Data based programming model for the

processing of massively large datasets. Apache Giraph,

an open source implementation of Google Pregel which is

based on Bulk Synchronous Parallel Model (BSP) is used

for graph analytics in social networks like Facebook. This

proposed work is to investigate the algorithmic effects of

the MapReduce and BSP model on graph problems. The

triangle counting problem in graphs is considered as a

benchmark and evaluations are made on the basis of time

of computation on the same cluster, scalability in relation

to graph and cluster size, resource utilization and the

structure of the graph.

Index Terms—Graph algorithm, big data, mapreduce,

bulk synchronous parallel, parallel programming.

I. INTRODUCTION

Graphs are of great interest in modeling of complicated

structures, such as circuits, protein structures, biological

networks, social networks, chemical compounds, the Web,

workflows, and XML documents. Graph mining has

become an active and important subarea in data mining

with the increasing demand on the analysis of large

amounts of graph formatted structured data. For further

developments in this area, users have to adopt an efficient

platform to do their analytic jobs, and developers and

system designers have to find a way to measure the

performance and other non-functional aspects of interest.

Many real world graphs like social networks and

communication networks are so big that they require

specialized methods for processing and analytics. For

example Facebook and Google generate large graphs with

which analytics may involve lot of both data and

computation intensive tasks. Many of the graph structures

involve multiple relationships between vertices which

increases the complexity of system. The scalability of the

algorithm with respect to graph size is another challenge

to be considered. Big graphs challenge our conventional

way of thinking on both computer architecture and

algorithms as they are difficult to parallelize, dynamic in

nature and most of the graph algorithms require very little

computation per vertex.

MapReduce[11]model developed at Google gained

great attention from various business and scientific

domains and has been established as a standard for the

processing of large volumes of data which is now called

as ‘Big Data’. The MapReduce model has been re-

implemented by Apache as an open source framework

named Hadoop. Currently Hadoop can be used to perform

analytic on petabytes of data using commodity hardware.

However existing practices of MapReduce have

significant drawbacks which will be described in detail in

later part of this paper. Google developed a new

programming model named Pregel which implements the

Bulk Synchronous Model for parallel computing. Pregel

[4] used message passing interface as communication

primitive and distributed memory of the nodes in the

cluster for graph storage. Apache Giraph,

Hama ,GraphLab and Graphx are some open source

implementations which support BSP model in which

Hama is a pure BSP engine and Giraph , Graphlab and

Graphx are specialized graph analytic engines. As many

of the scientific and business domains demands analysis

of big graphs, the choice of right platform for analyzing

such graphs is important. Moreover as the graph

structured data holds complex properties like power law

distributions, the frameworks for analyzing large graphs

are still evolving.

The content of our work can be summarized as follows.

The work is to compare how well the Big Data based

parallel programming models are suited for analyzing

large graphs. Both Big Data based parallel programming

models, MapReduce and BSP have been implemented in

Hadoop/Giraph environment and the result and feature

50 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

comparisons are presented in this paper. The graph

triangle counting problem, which is widely used in social

network analysis is considered as the benchmark problem

for experiments. Both the approaches are tested with

datasets of various domains.

II. RELATED WORK

Three design patterns (In-Mapper Combining, Shimmy

and Range Partitioning) that are broadly applicable to

MapReduce graph algorithms[1] were developed to

improve the efficiency of MapReduce based graph

algorithms. A MapReduce algorithm for counting

triangles[2] which is used to compute the clustering

coefficients in a graph has been proposed. The work

mainly discusses two methods, in which the first method

MR-NodeIterator is a specialized algorithm designed

explicitly for computing the triangles incident on every

vertex. The second approach, MR-GraphPartition

provides a MapReduce version of a general triangle

counting algorithm. [3] has provided a formal definition

of Bulk Synchronous Model of parallel computation. The

Bulk Synchronous Parallel (BSP) was introduced as a

bridging model for designing parallel algorithms.

Researchers at Google[4] provided a description about

the graph analytic engine called Pregel developed at

Google. Pregel provides a fault-tolerant framework for

the execution of graph algorithms in parallel over many

machines. Algorithms discussed in this work are

PageRank, Semi Clustering and Bipartite Matching.

David and David [5] investigated the algorithmic effects

of the BSP model for graph algorithms and compared the

performance with open source software using GraphCT.

The work provides a description about the differences in

scalability between BSP and shared memory algorithms

and also finds that scalable performance can be obtained

with graph algorithms in BSP model on Cray XMT.

Giving importance to Apache Giraph and GraphLab,

Sherif[6] compared open source solutions for processing

large amounts of graph structured data. In this work the

author has pointed out the drawbacks of MapReduce in

graph processing and then explored platforms under

development to tackle the graph analytic challenge. The

work has also provided PageRank and Shortest Path

algorithm in both Giraph and GraphLab. Giraph[7] is a

distributed and scalable BSP cluster implementation,

which uses commodity hardware with abstraction on load

distribution and can support parallelism in a fault tolerant

way. Three parallel computing techniques, MapReduce,

map-side join and Bulk Synchronous Parallel models

were compared and tested[8] for two distinct graph

problems (single source shortest path and Collective

classification) and found that iterative graph processing

with the BSP implementation significantly outperforms

MapReduce.

III. PARALLEL PROGRAMMING MODELS

Parallel processing can be defined as the processing of

program instructions and data by dividing them across

various processors and storage systems respectively.

Different types of parallel processing systems involve

using bit level, instruction level, data level and task level

parallelism. A programming model which supports

writing programs whose instructions and data which can

be processed in parallel at different processors is called a

parallel programming model. The choice of a parallel

programming model depends upon whether the problem

we are dealing with is a computation intensive or data

intensive problem. As we have entered the era of Big

Data the need for using parallel processing systems for

analyzing and mining large volume of diverse and

complex data gained importance .As a result most of the

data scientists are interested in writing programs and

developing frameworks that can exploit data parallel

systems. Here our main focus is about programming on

data parallel systems which performs parallel processing

over data which are distributed across various computing

nodes. A comprehensive technical discussion of Big Data

based parallel processing platforms which can be used for

large graph processing is given in table1.This section

describes the general features and dissimilarities between

the two Big Data based programming models,

MapReduce and BSP with respect to graph processing.

An extended version of MapReduce called iterative

MapReduce[9] is not discussed in this section as it can

make only slight improvement while performing graph

processing.

A. MapReduce

MapReduce has its roots from functional programming

paradigm which is especially designed for distributed

computation over massively large datasets which

involves a lot of data intensive tasks. The main functions

of MapReduce is to queue up, split and parallelize a

computation over a cluster of machines in a fault tolerant

way. The platforms supports user defined

implementations of map and reduce functions. These

functions can be provided with partitions of data as input.

It also support a system defined shuffle and sort phase

and a combiner module for combining intermediate

results from mappers. The map phase process the data on

nodes in parallel and the reducer aggregates the results.

MapReduce is well suited for problems with large

number of independent computations which can run in

parallel and by design it is tuned for reliability and not for

efficiency. MapReduce is a well developed and tested

concept and even if it is not originally developed to

process graphs, we can adopt several design patterns like

schimmy and range partitioning which can improve the

efficiency of MapReduce based graph algorithms.

Iterative graph algorithms can be implemented as a chain

of MapReduce jobs where each job produces an

intermediate solution. The general setting of MapReduce

model for graph processing is represented in Fig. 1. The

entire structure of the graph and other data should be

transferred over the network of computing nodes from

mapper to reducer during each iteration and should be

reassigned at every job in the MapReduce chain. The

 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models 51

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

intermediate result from each job makes the system disk

expensive but it can be overcome by using an iterative

MapReduce extension. We can store a portion of the

graph structure information in every machine and can

access reduce function with remote reads by using

schimmy pattern but may affect the fault tolerance.

Table 1. Summary of Big Data Processing Platforms

Platform Features

Hadoop
Open source, De-facto for batch processing, Based on MapReduce programming, Not well
suited for computation intensive jobs due to I/O overhead.

Yarn
Next generation hadoop, Resource and job manager for hadoop. Uses the mapreduce execution

engine and can support other execution engines also.

Giraph
Open source, In-memory system for synchronous graph specific computations, Based on BSP

programming model, Uses the Pregel vertex centric architecture

Twister Open source, In-memory system which implements the iterative mapreduce concept.

GraphLab
Open source, Supports asynchronous graph specific computations, Based on BSP programming

model

Azure
Microsoft’s Cloud computing platform , Can support both data intensive and computation

intensive tasks

Spark
Open Source, Multi-stage in memory system, Based on resilient distributed datasets, Good
performance over iterative and machine learning algorithms.

Graphx
Distributed graph processing framework on the top of spark. Support data parallel and graph

parallel computations, Implements the Pregel BSP API.

Neo4j Database for graph storage and analytics.

Fig.1. MapReduce Model in Graph Processing

B. Bulk Synchronous Parallel (BSP)

BSP is a parallel computing model proposed by

Valiant in which a parallel computation process is

defined as series of global supersteps. Each superstep

involves a concurrent computation phase which is done in

parallel by all processors, a global communication phase

in which processors exchange data and a synchronization

phase at the end of every superstep. Google developed a

fault tolerant and distributed computing framework for

parallel graph processing called Pregel by gaining

inspirations from the BSP model. Later many open source

tools were developed by following Pregel framework.

The BSP model for parallel processing is showed in Fig.

2.

Fig.2. A BSP Superstep

A BSP computation consists of a series of iterations,

called supersteps. During a superstep, the system calls a

user-defined function at each vertex, in parallel. The

function reads messages sent to vertex in superstep S – 1

and send messages to other vertices that will be received

at superstep S +1. Within each superstep, the vertex

executes compute function in parallel, each executing the

same user-defined function that defines the

implementation of a given algorithm. A vertex can update

its state or that of its outgoing edges, receive messages

sent to it in the previous superstep and can send messages

to other vertices .The BSP programming model for graph

processing is shown in Fig. 3. As the graph structure is

kept static on the nodes which perform computation, BSP

has only less overhead for data transfers. Moreover main

memory based computation in BSP is faster than disk

based mechanisms used in MapReduce. If the whole

structure of the graph cannot be fit into the main memory

of the workers, swapping with disk techniques can be

implemented. The features of the two models with respect

to graph processing can be summarized in table 2.

52 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

Table 2. Features of both approaches in graph processing

 Feature MapReduce(MR) BSP

1 Nature of the job
Job with map and reduce

functions
Map only job

2 Basic unit of processing
An iteration made up of two

MapReduce jobs
A superstep

3 Graph vertex allocation
At each iteration before

map
Only once, at the beginning

4
Work allocation among

machines
Repeated at every iteration Fixed at the beginning

5
Set of nodes processed on

single machine
Changed before every map Fixed at the beginning

6
Data about vertex and its

neighbors

Transferred before each

map

Transferred once before

entire processing

7 Memory in use HDFS and distributed cache Distributed main memory

Fig.3. BSP programming model for graph processing

IV. BENCHMARK ALGORITHM-TRIANGLE COUNTING

The clustering coefficient of a node in a graph is an

important centrality measure which is used in social

network analysis can be reduced to the problem of

counting triangles. Most of the complex real world

networks generate big graphs with millions of vertices

and edges in which triangle counting becomes a very

computationally intensive task. The basic node iterator

algorithm for triangle counting can be performed in two

iterations and the MapReduce implementation of node

iterator can be done as a chain of two MapReduce jobs.

We have selected triangle counting as a benchmark in

order to show that along with the iterative nature, there

are many other factors which affect the parallelization of

graph algorithms.

A. Triangle Counting in MapReduce

The MapReduce algorithm used in our experiments is

adopted from [2].The algorithm performs triangle

counting using a chain of two MapReduce jobs. The first

MR job finds the possible paths of length two by

processing every node in parallel. The second MR job

checks whether there exists a closing edge that completes

the triangle and if exists then emits that a triangle is found.

The mapper of MRjob1 implements logic to avoid

counting triangles more than once and the reducer

generates length two paths. The mapper of MRjob2 reads

both the input graph and the output from MRjob1 and

emits accordingly with a differentiator. The reducer of

MRjob2 checks for the closing edge and emits the

triangle incident at a vertex. The degree of the vertices

can be pre computed and can be used to insist that

counting should be done by the nodes which have lesser

degree. This may slightly improve the logic but will

require one more MapReduce phase and therefore will

not make much improvement in execution time.

B. Triangle counting in BSP

The communication and memory overhead of the BSP

based triangle counting algorithm in the current

literature[5] is very high due to large number of message

generation and transfers which will affect the BSP

execution. We propose an enhanced algorithm which uses

the vertex degree information to reduce the

communication cost due to message transfers and thereby

gains an improved performance. The entire processing

 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models 53

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

can be done using 4 supersteps. In superstep 0 the label of

every vertex is updated with the degree of the vertex.In

superstep 1 every vertex will forward its label to its

adjacent vertices whose degree is either greater than the

sender or if the degrees are equal then to the vertices with

greater value for the unique identifier. This constraint

ensures that a triangle needs to be counted only once and

that the majority of the work needs to be done by lower

degree vertices. In superstep 2, each vertex will forward

the message it received to its adjacent vertices again by

following the ordering rule. In superstep 3, each vertex

checks whether the identifier mentioned in the message is

present in its adjacency list and if present the message

will be forwarded to the corresponding vertex. In

superstep 4 each vertex counts the number of messages

received which will give the number of triangles incident

at that vertex.

Algorithm 1 MapReduce algorithm for triangle counting

MRJob1:

1: function map(vertex id a,vertex id b)

2: if(a<b)

3: emit(a,b)

4: end function

5: function reduce(vertex id a, vertex set A :

AϵAdj(a))

6: for(m,n) where m,nϵ A do

7: emit(a,(m,n))

9 end for

8: end function

 MRJob2:

1: function map(Object I,Object K)

2: if I of type a and K of type (m,n)

3: emit((m,n),a)

4: if I of type (m,n) and K of type $

5: emit((m,n),$)

6: end function

7: function reduce(Object I :Iϵ(m,n), Object M: MϵVU

{$})

8: If $ϵM then

9: for mϵV ᴖM do

10: emit(m,1)

11: end for

12: end if

13: end function

Algorithm 2 BSP based algorithm for triangle counting

Superstep 0

1: function compute(vertex v)

2: order(v)0

3: for all u in adjlist(v)

4: order(v)order(v) +1

5: end for

6: label(v)order(v)

7: votetohalt()

 8: end function

 Superstep 1

1: function compute(vertex v)

2: for all u in adjlist(v)

3: If(label(v)<label(u)||(label(v)=label(u) && iden(v)<iden(u))

4: sendmessage(adjlist(v), [iden(v),label(v)])

5: end if

6: end for

7: votetohalt()

 8: end function

Superstep 2

1: function compute(vertex v, message[m1,m2..mk ; k<|v|])

2: for all m in message

3: for all u in adjlist(v)

4: if(label(m)<label(v)<label(u))||((label(m)=label(v)<=label(u))&&(iden(m)<iden(v)<iden(u))

5: sendmessage(adjlist(v),[iden(m)])

6: end if

7: end for

8: end for

9: votetohalt()

10: end function

Superstep 3

1: function compute(vertex v, message[m1,m2..mk; k<|v|])

2: for all m in message

3: V t iden(m)

4: if V t is in adjlist(v)

5: sendmessage(V t,[iden(m)])

6: end if

7: end for

8: votetohalt()

9: end function

 Superstep 4

1: function compute(vertex v,

message[m1,m2..mk;k<|v|])

2: tricount(v)0

3: for all m in message

4: tricount(v)tricount(v)+1

5: end for

6: label(v)tricount(v)

7: votetohalt()

8: end function

54 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

V. EXPERIMENTAL ENVIRONMENT

The fixed infrastructure used for performance

measurements is a cluster of 8 homogeneous computing

nodes of dell power edge sc1425 machines with Intel

exon processor and 4 GB memory on every node .The

multinode cluster is set up in redhat Linux with Hadoop

version 1.0.3 and Giraph version 1.1.0 as working

platforms. Hadoop version 1.0.3 and Giraph version 1.1.0

are used for MapReduce and BSP implementations

respectively. Giraph assumes a master-slave architecture

in which the vertices are partitioned and assigned to

workers by the master while workers execute the vertices

and communicate with each other. Giraph uses Apache

Zookeeper for synchronization and Hadoop for launching

BSP workers within mappers. Real graphs from

SNAP[10]dataset collection and synthetic graphs

generated using graph generators are used for the

experiments. We also performed several MapReduce

passes to preprocess the graph data. The real datasets

from various domains used in the experiments are ca-

GrQc, Enron-email, com-DBLP and roadNet-CA.The

description of the datasets used are given in table 3.

Table 3. Dataset Description

 ca-GrQc email-Enron com-DBLP roadNet-CA

Domain Collaboration network
communication

network
collaboration network Road network

No. of Nodes 5242 36692 317,080 1,965,206

No. of Edges 14,496 1,83831 1,049,866 2,766,607

Undirected(y/n) Y Y Y Y

No. of Triangles 48,260 7,27044 2,224,385 12,0676

ca-GrQC (General Relativity and Quantum Cosmology)

collaboration network is taken from SNAP data collection

which contains scientific collaborations between papers

submitted to General Relativity and Quantum Cosmology

category in the e-print arXiv. Enron-email is a

communication network which contains email

communication within a dataset of half million emails

and is made public by the Federal Energy Regulatory

Commission. The DBLP is a computer science

bibliography which contains a comprehensive list of

research papers in computer science. The network is build

such that two authors are connected if they publish at

least one paper together. RoadNet-CA is a road network

of California in which intersections and endpoints are

represented by nodes and the roads connecting these

intersections or road endpoints are represented by

undirected edges.

VI. EXPERIMENTAL RESULTS

A. Time of computation with respect to same cluster

Both MapReduce and BSP models were examined by

implementing triangle counting algorithm using a fixed

cluster of 8 machines. The results obtained from the

experiments are shown in Fig. 4.It has noted that BSP can

outperform MapReduce to a great extend for all the

datasets used in the experiments.

Fig.4. Execution time on 8 node cluster

B. Scalability with respect to graph size

Experiments were conducted to measure the scalability

of the platforms using datasets with varying number of

edges and by keeping fixed cluster size. Fig.5 shows the

experimental results from triangle counting

implementation. The execution time increases with the

number of edges in both the platforms, but BSP shows a

less rate of growth compared to MapReduce. Similar

results were obtained by varying the number of vertices

of the graph.

http://snap.stanford.edu/data/com-DBLP.html
http://snap.stanford.edu/data/roadNet-CA.html
http://snap.stanford.edu/data/roadNet-CA.html

 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models 55

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

Fig.5. Scalability with respect to number of edges

We also observed that if we increase the size of the

graph such that either the graph size or the total messages

generated during the algorithm implementation cannot be

stored or processed in the main memory of the cluster, the

BSP system will crash but MapReduce can continue its

work due to the disk storage mechanisms used. But this

problem in BSP can be overcome by either increasing

cluster size or by using spilling to disk technique which is

supported in latest version of Giraph (version 1.1.0) and

will slightly increase the execution time.

C. Scalability with respect to Cluster size

The effect of cluster size in the performance is also

compared by varying the number of nodes in the cluster.

The results are shown in Fig. 6.a-6.d. For smaller datasets

like ca-GrQc and email-Enron, it is observed that the

execution time converges at a cluster size 4 beyond which

advantage of parallel computing will be nullified by the

overhead due to network communication. Clearly BSP

outperformed MapReduce to a great extent in this section.

For roadNet-CA and com-DBLP datasets we used out-of-

core message option in Giraph to avoid crashes in BSP

and it is observed that the execution time decreases with

the increase in cluster size, but the difference from the

MapReduce execution time is reduced. With out-of-core

graph/message option, Giraph will keep limited number

of vertices/messages in the main memory with remaining

on the local disk and swapping is done when needed.

6 a.

6 b.

6 c.

6 d.

Fig.6. Scalability with respect to number of nodes in the cluster for
datasets a) ca-GrQc b) email-Enron c) com-DBLP d) roadNet

D. Performance with respect to Structure of the graph

Fig.7. Scalability with respect to graph structure

We generated synthetic random graphs with fixed

number of nodes and edges but with varying degree

distributions and analyzed the performance of the

platforms against the structural properties of the graph.

http://snap.stanford.edu/data/roadNet-CA.html

56 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

The results from the experiments are shown in Fig. 7.It is

observed that the execution time decreases in both the

platforms with the decrease in skewness. This shows that

the skewed degree distribution property of scale free

graphs is not well handled by both the platforms.

E. System Resource Usage

BSP approach requires more memory than MapReduce

as the system is designed for in-memory computations. In

MapReduce the CPU utilization is high during mapper

execution compared to shuffle /sort and reducer

executions. In BSP the synchronization phase between

the supersteps is the least computationally intensive task.

Another important observation is that the skewed degree

distribution of the graph will increase the memory

utilization and CPU usage in both the platforms. In

MapReduce, it is caused due to the fact that 80% of the

map and reduce tasks will be completed quickly

compared to 20% of the rest of the tasks. In BSP, the

synchronization phase between supersteps causes some

nodes in the graph to wait for a few nodes with higher

degree which makes the same result.

F. Communication Overhead

In general, the communication overhead for BSP will

be less when compared to MapReduce. But the overall

network overhead is found high in BSP for triangle

counting as the algorithm involves lot of message

transfers but it actually depends upon the algorithm

design. In MapReduce, network traffic is observed high

at the beginning of each iteration. The allocation strategy

of data at different disk blocks in the distributed file

system is also a factor which affects the communication

overhead in both the systems.

G. Granularity in Computations

In parallel computing granularity refers to the fraction

of computation cost to the communication cost. The

programming model of BSP supports fine grained

parallelism as the computation at every vertex is very less

and the synchronization between supersteps require

frequent communications. MapReduce tend to lean more

towards coarse grained parallelism as every map and

reduce operations are performed on a collection of

vertices which involves more computations at every unit

of work.

H. Coding Complexity and System Cost

Both MapReduce and BSP algorithms are written in

Java using the programming primitives of Hadoop

MapReduce execution engine and Giraph BSP engine

respectively. A complexity comparison of algorithms

used is not included in this work as both systems

involves use of both memory and disk and a proper

complexity analysis in terms of asymptotic bounds is not

possible in this case. Only open source tools, commodity

hardware and freely available datasets are used for the

experiments with both the models. So both models can be

considered as cost effective with respect to data analysis.

VII. DISCUSSION

From experiments conducted using datasets of various

domains, it is observed that BSP can outperform

MapReduce in graph processing. The in-memory

computation is the main factor behind the improved

performance of BSP over MapReduce. Even if the cluster

memory is not sufficient for graph storage and processing,

modern BSP systems can provide spilling to disk

mechanism which even can give better performance than

MapReduce. The resource utilization by both the

platforms is influenced by the design of the parallel graph

algorithms and also by the structure of the graph. Both

the platforms are not well suited for handling graphs with

skewed degree distributions, which demands efficient

graph partitioning techniques for load distribution and

balancing to be implemented within the framework.

VIII. CONCLUSION AND FUTURE WORK

As the size of the real world graphs becomes very large,

the need of using parallel algorithms for graph processing

has attracted researchers. This works aims at conducting a

performance and feature comparison of the parallel

computing based Big Data platforms, MapReduce and

BSP on graph processing by considering triangle

counting as a benchmark problem for study. Experiments

with graph datasets of various domains showed that BSP

can be a better platform for graph analytics if the cluster

is equipped with enough physical memory for graph

storage and operations. Latest versions of BSP systems

support spilling to disk techniques which can handle

memory constraints. BSP can also provide a more natural

way of programming with graphs than MapReduce. The

structure of the graph remains to be an interesting

challenge for both the platforms and can be a good area

of research.

The work can be enhanced by including an iterative

MapReduce model into the current comparison and also

by adding more graph algorithms as benchmarks. A

comparison of BSP frameworks, Giraph, GraphLab and

Graphx can be another interesting research direction.

Parallel algorithm design and implementation for scalable

social network analysis using BSP models can also be

considered for work in future.

REFERENCES

[1] Jim, L. and Michael, S. (2010), ‘ Design Patterns for

Efficient Graph Algorithms in MapReduce’ Proceedings

of the Eighth Workshop on Mining and Learning with

Graphs, MLG 2010, New York, USA, pp. 78-85.

[2] Siddharth, S. and Sergei, V. (2011), ‘Counting Triangles

and the Curse of the Last Reducer’. Proceedings of the

20th International Conference on World Wide Web, New

York, USA, pp. 607-614

[3] Valiant, L.G. (1990) ‘A bridging model for parallel

computation’, Communications of the ACM, vol. 33, no. 8,

pp. 103–111.

[4] Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C.,

Horn, I., Leiser, N. and Czajkowski, G. (2010), ‘Pregel: a

system for large-scale graph processing’. Proceedings of

 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models 57

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 2, 49-57

the 2010 International Conference on Management of

Data, SIGMOD ’10, New York, USA, pp. 135-146

[5] David, E. and David, A. E. (2013), ‘Investigating Graph

Algorithms in the BSP Model on the Cray XMT’.

Proceedings of the IEEE 27th International Symposium

on Parallel & Distributed Processing Workshops and

PhD Forum, Cambridge, MA, pp. 1638-1645.

[6] Sherif, S. (2013), ‘Processing large scale graph `data. A

guide to current technology’. IBM Developer Works

[Online].

http://www.ibm.com/developerworks/opensource/library/

os-giraph/index.html (Accessed 15 November 2015)

[7] Apache Giraph Project. [Online] http://giraph.apache.org/

(Accessed 21 September 2015.

[8] Thomasz, K., Przemyslaw, K. and Wojciech, I. (2014),

‘Parallel processing of large graphs’. Future Generation

Computer Systems, Vol 32, pp. 324–337.

[9] Zhang, Y., Gao, Q., Gao, L. and Wang, C. (2012)

‘iMapReduce: A Distributed Computing Framework for

Iterative Computation’. Journal of Grid Computing, Vol

10, No 1, pp. 47-68.

[10] SNAP.[Online]htps://snap.stanford.edu/data/(Accessed 18

March 2015)

[11] Jeffrey, D. and Sanjay, G. (2004), ‘MapReduce:Simplified

data processing on large Clusters’.Proceedings of the

Sixth Symposium of Operating Systems Design and

Implementation(OSDI 2004), CA, USA, pp. 137-150

[12] Jonathan, C.H. (2009) ‘Graph twiddling in a mapreduce

world’. Computing in Science &Engineering, Vol 11, No

4, pp. 29 –41

[13] Kang, U., Tsourakakis, C.E. and Faloutsos, C.

(2010)PEGASUS:mining peta-scale graphs’.Knowledge

and Information Systems, Vol 27, No 2, pp. 303-325.

[14] Louise, Q., Paul, W. and David, H. (2012), ‘Using Pregel-

like Large Scale Graph Processing Frameworks for Social

Network Analysis’. Proceedings of the IEEE/ACM

International Conference on Advances in Social Networks

Analysis and Mining, Istanbul, Turkey, pp. 457-463

[15] Rahman, Muhammad Mahbubur. "Mining social data to

extract intellectual knowledge."International Journal of

Intelligent Systems and Applications(IJISA), vol.4, no.10,

pp.15-24, 2012

[16] Thomas, S.(2007) Algorithmic Aspects of Triangle-Based

Network Analysis. PhD thesis, Computer Science,

University of Karlsruhe, Germany.

[17] Apache Hadoop Project.[Online]

http://hadoop.apache.org/(Accessed 11 June 2015)

[18] Apache Hama Project. [Online]

http://hama.apache.org/(Accessed24June2015)

[19] Apache Spark Project. [Online]

http://spark.apache.org/graphx (Accessed 02 August 2015)

[20] Facebook.[Online] http://code.facebook.com/posts

(Accessed 18 December 2015) GraphLab. [Online]

[21] http://graphlab.org/(Accessed 21 July 2015)

Authors’ Profiles

Anuraj Mohan obtained his B.Tech

degree in Computer Science and

Engineering from Cochin University of

Science and Technology, Kerala, India

and his Master Degree from PSG college

of Technology, Coimbatore, India. He has

10 years of experience as Assistant

Professor at NSS College of Engineering,

Palakkad, India and has published various papers in

international journals and conferences. His areas of interest

include theoretical computer science, social network analysis,

distributed computing, machine learning and big data analytics.

Remya G graduated her B.Tech degree in

Computer Science and Engineering from

Mahatma Gandhi University, Kerala, India

and her Master Degree from Anna

University, Chennai, India. She has 3 years

of experience as Assistant Professor from

various engineering institutions and is

currently working at NSS college of

engineering, Palakkad. She has published various papers in

international journals and conferences. Her areas of interest

include data mining, evolutionary computing and big data

analytics.

How to cite this paper: Anuraj Mohan, Remya G,"A Review

on Large Scale Graph Processing Using Big Data Based Parallel

Programming Models", International Journal of Intelligent

Systems and Applications(IJISA), Vol.9, No.2, pp.49-57, 2017.

DOI: 10.5815/ijisa.2017.02.07

