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Abstract—Processing big graphs has become an 

increasingly essential activity in various fields like 

engineering, business intelligence and computer science. 

Social networks and search engines usually generate large 

graphs which demands sophisticated techniques for social 

network analysis and web structure mining. Latest trends 

in graph processing tend towards using Big Data 

platforms for parallel graph analytics. MapReduce has 

emerged as a Big Data based programming model for the 

processing of massively large datasets. Apache Giraph, 

an open source implementation of Google Pregel which is 

based on Bulk Synchronous Parallel Model (BSP) is used 

for graph analytics in social networks like Facebook. This 

proposed work is to investigate the algorithmic effects of 

the MapReduce and BSP model on graph problems. The 

triangle counting problem in graphs is considered as a 

benchmark and evaluations are made on the basis of time 

of computation on the same cluster, scalability in relation 

to graph and cluster size, resource utilization and the 

structure of the graph. 

 

Index Terms—Graph algorithm, big data, mapreduce,  

bulk synchronous parallel,  parallel programming. 

 

I.  INTRODUCTION 

Graphs are of great interest in modeling of complicated 

structures, such as circuits, protein structures, biological 

networks, social networks, chemical compounds, the Web, 

workflows, and XML documents. Graph mining has 

become an active and important subarea in data mining 

with the increasing demand on the analysis of large 

amounts of graph formatted structured data. For further 

developments in this area, users have to adopt an efficient 

platform to do their analytic jobs, and developers and 

system designers have to find a way to measure the 

performance and other non-functional aspects of interest. 

Many real world graphs like social networks and 

communication networks are so big that they require 

specialized methods for processing and analytics. For 

example Facebook and Google generate large graphs with 

which analytics may involve lot of both data and 

computation intensive tasks. Many of the graph structures 

involve multiple relationships between vertices which 

increases the complexity of system. The scalability of the 

algorithm with respect to graph size is another challenge 

to be considered. Big graphs challenge our conventional 

way of thinking on both computer architecture and 

algorithms as they are difficult to parallelize, dynamic in 

nature and most of the graph algorithms require very little 

computation per vertex.  

MapReduce[11]model developed at Google gained 

great attention from various business and scientific 

domains and has been established as a standard for the 

processing of large volumes of data which is now called 

as ‘Big Data’. The MapReduce model has been re-

implemented by Apache as an open source framework 

named Hadoop. Currently Hadoop can be used to perform 

analytic on petabytes of data using commodity hardware. 

However existing practices of MapReduce have 

significant drawbacks which will be described in detail in 

later part of this paper. Google developed a new 

programming model named Pregel which implements the 

Bulk Synchronous Model for parallel computing. Pregel 

[4] used message passing interface as communication 

primitive and distributed memory of the nodes in the 

cluster for graph storage. Apache Giraph, 

Hama ,GraphLab and Graphx are some open source 

implementations which support BSP model in which 

Hama is a pure BSP engine and Giraph , Graphlab and 

Graphx are specialized graph analytic engines. As many 

of the scientific and business domains demands analysis 

of big graphs, the choice of right platform for analyzing 

such graphs is important. Moreover as the graph 

structured data holds complex properties like power law 

distributions, the frameworks for analyzing large graphs 

are still evolving.  

The content of our work can be summarized as follows. 

The work is to compare how well the Big Data based 

parallel programming models are suited for analyzing 

large graphs. Both Big Data based parallel programming 

models, MapReduce and BSP have been implemented in 

Hadoop/Giraph environment and the result and feature 
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comparisons are presented in this paper. The graph 

triangle counting problem, which is widely used in social 

network analysis is considered as the benchmark problem 

for experiments. Both the approaches are tested with 

datasets of various domains. 

 

II.  RELATED WORK 

Three design patterns (In-Mapper Combining, Shimmy 

and Range Partitioning) that are broadly applicable to 

MapReduce graph algorithms[1] were developed to 

improve the efficiency of MapReduce based graph 

algorithms. A MapReduce algorithm for counting 

triangles[2] which is used to compute the clustering 

coefficients in a graph has been proposed. The work 

mainly discusses two methods, in which the first method 

MR-NodeIterator is a specialized algorithm designed 

explicitly for computing the triangles incident on every 

vertex. The second approach, MR-GraphPartition 

provides a MapReduce version of a general triangle 

counting algorithm. [3] has provided a formal definition 

of Bulk Synchronous Model of parallel computation. The 

Bulk Synchronous Parallel (BSP) was introduced as a 

bridging model for designing parallel algorithms. 

Researchers at Google[4] provided a description about 

the graph analytic engine called Pregel developed at 

Google.  Pregel provides a fault-tolerant framework for 

the execution of graph algorithms in parallel over many 

machines. Algorithms discussed in this work are 

PageRank, Semi Clustering and Bipartite Matching. 

David and David [5] investigated the algorithmic effects 

of the BSP model for graph algorithms and compared the 

performance with open source software using GraphCT. 

The work provides a description about the differences in 

scalability between BSP and shared memory algorithms 

and also finds that scalable performance can be obtained 

with graph algorithms in BSP model on Cray XMT. 

Giving importance to Apache Giraph and GraphLab, 

Sherif[6] compared open source solutions for processing 

large amounts of graph structured data. In this work the 

author has pointed out the drawbacks of MapReduce in 

graph processing and then explored platforms under 

development to tackle the graph analytic challenge. The 

work has also provided PageRank and Shortest Path 

algorithm in both Giraph and GraphLab. Giraph[7] is a 

distributed and scalable BSP cluster implementation, 

which uses commodity hardware with abstraction on load 

distribution and can support parallelism in a fault tolerant 

way. Three parallel computing techniques, MapReduce, 

map-side join and Bulk Synchronous Parallel models 

were compared and tested[8] for two distinct graph 

problems (single source shortest path and Collective 

classification) and found that iterative graph processing 

with the BSP implementation significantly outperforms 

MapReduce. 

 

III.  PARALLEL  PROGRAMMING MODELS 

Parallel processing can be defined as the processing of 

program instructions and data by dividing them across 

various processors and storage systems respectively. 

Different types of parallel processing systems involve 

using bit level, instruction level, data level and task level 

parallelism. A programming model which supports 

writing programs whose instructions and data which can 

be processed in parallel at different processors is called a 

parallel programming model. The choice of a parallel 

programming model depends upon whether the problem 

we are dealing with is a computation intensive or data 

intensive problem. As we have entered the era of Big 

Data the need for using parallel processing systems for 

analyzing and mining large volume of diverse and 

complex data gained importance .As a result most of the 

data scientists are interested in writing programs and 

developing frameworks that can exploit data parallel 

systems. Here our main focus is about programming on 

data parallel systems which performs parallel processing 

over data which are distributed across various computing 

nodes. A comprehensive technical discussion of Big Data 

based parallel processing platforms which can be used for 

large graph processing is given in table1.This section 

describes the general features and dissimilarities between 

the two Big Data based programming models, 

MapReduce and BSP with respect to graph processing. 

An extended version of MapReduce called iterative 

MapReduce[9] is not discussed in this section as it can 

make only slight improvement while performing graph 

processing.  

A.  MapReduce 

MapReduce has its roots from functional programming 

paradigm which is especially designed for distributed 

computation over massively large datasets which 

involves a lot of data intensive tasks. The main functions 

of MapReduce is to queue up, split and parallelize a 

computation over a cluster of machines in a fault tolerant 

way. The platforms supports user defined 

implementations of map and reduce functions. These 

functions can be provided with partitions of data as input. 

It also support a system defined shuffle and sort phase 

and a combiner module for combining intermediate 

results from mappers. The map phase process the data on 

nodes in parallel and the reducer aggregates the results. 

MapReduce is well suited for problems with large 

number of independent computations which can run in 

parallel and by design it is tuned for reliability and not for 

efficiency. MapReduce is a well developed and tested 

concept and even if it is not originally developed to 

process graphs, we can adopt several design patterns like 

schimmy and range partitioning which can improve the 

efficiency of MapReduce based graph algorithms. 

Iterative graph algorithms can be implemented as a chain 

of MapReduce jobs where each job produces an 

intermediate solution. The general setting of MapReduce 

model for graph processing is represented in Fig. 1. The 

entire structure of the graph and other data should be 

transferred over the network of computing nodes from 

mapper to reducer during each iteration and should be 

reassigned at every job in the MapReduce chain. The 



 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models 51 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 2, 49-57 

intermediate result from each job makes the system disk 

expensive but it can be overcome by using an iterative 

MapReduce extension. We can store a portion of the 

graph structure information in every machine and can 

access reduce function with remote reads by using 

schimmy pattern but may affect the fault tolerance. 

Table 1. Summary of Big Data Processing Platforms 

Platform Features 

Hadoop 
Open source, De-facto for batch processing, Based on MapReduce programming, Not well 
suited for computation intensive jobs due to I/O overhead. 

Yarn 
Next generation hadoop, Resource and job manager for hadoop. Uses the mapreduce execution 

engine and can support other execution engines also. 

Giraph 
Open source, In-memory system for synchronous graph specific computations, Based on BSP 

programming model, Uses the Pregel vertex centric architecture 

Twister Open source, In-memory system which implements the iterative mapreduce concept. 

GraphLab 
Open source, Supports asynchronous graph specific computations, Based on BSP programming 

model 

Azure 
Microsoft’s Cloud computing platform , Can support  both data intensive and computation 

intensive tasks 

Spark 
Open Source, Multi-stage in memory system, Based on resilient distributed datasets, Good 
performance over iterative and machine learning algorithms. 

Graphx 
Distributed graph processing framework on the top of spark. Support data parallel and graph 

parallel computations, Implements the Pregel BSP API. 

Neo4j Database for graph storage and analytics. 

 

 

Fig.1. MapReduce Model in Graph Processing 

B.  Bulk Synchronous Parallel (BSP) 

BSP is a parallel computing model proposed by 

Valiant in which a parallel computation process is 

defined as series of global supersteps. Each superstep 

involves a concurrent computation phase which is done in 

parallel by all processors, a global communication phase 

in which processors exchange data and a synchronization 

phase at the end of every superstep. Google developed a 

fault tolerant and distributed computing framework for 

parallel graph processing called Pregel by gaining 

inspirations from the BSP model. Later many open source 

tools were developed by following Pregel framework. 

The BSP model for parallel processing is showed in Fig. 

2. 

 

 

Fig.2. A BSP Superstep 

A BSP computation consists of a series of iterations, 

called supersteps. During a superstep, the system calls a 

user-defined function at each vertex, in parallel. The 

function reads messages sent to vertex in superstep S – 1 

and send messages to other vertices that will be received 

at superstep S +1. Within each superstep, the vertex 

executes compute function in parallel, each executing the 

same user-defined function that defines the 

implementation of a given algorithm. A vertex can update 

its state or that of its outgoing edges, receive messages 

sent to it in the previous superstep and can send messages 

to other vertices .The BSP programming model for graph 

processing is shown in Fig. 3. As the graph structure is 

kept static on the nodes which perform computation, BSP 

has only less overhead for data transfers. Moreover main 

memory based computation in BSP is faster than disk 

based mechanisms used in MapReduce. If the whole 

structure of the graph cannot be fit into the main memory 

of the workers, swapping with disk techniques can be 

implemented. The features of the two models with respect 

to graph processing can be summarized in table 2. 
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Table 2. Features of both approaches in graph processing 

 Feature MapReduce(MR) BSP 

1 Nature of the job 
Job with map and reduce 

functions 
Map only job 

2 Basic unit of processing 
An iteration made up of two 

MapReduce jobs 
A superstep 

3 Graph vertex allocation 
At each iteration before 

map 
Only once, at the beginning 

4 
Work allocation among 

machines 
Repeated at every iteration Fixed at the beginning 

5 
Set of nodes processed on 

single machine 
Changed before every map Fixed at the beginning 

6 
Data about vertex and its 

neighbors 

Transferred before each 

map 

Transferred once before 

entire processing 

7 Memory in use HDFS and distributed cache Distributed main memory 

 

 

Fig.3. BSP programming model for graph processing 

 

IV.  BENCHMARK ALGORITHM-TRIANGLE COUNTING 

The clustering coefficient of a node in a graph is an 

important centrality measure which is used in social 

network analysis can be reduced to the problem of 

counting triangles. Most of the complex real world 

networks generate big graphs with millions of vertices 

and edges in which triangle counting becomes a very 

computationally intensive task. The basic node iterator 

algorithm for triangle counting can be performed in two 

iterations and the MapReduce implementation of node 

iterator can be done as a chain of two MapReduce jobs. 

We have selected triangle counting as a benchmark in 

order to show that along with the iterative nature, there 

are many other factors which affect the parallelization of 

graph algorithms. 

A.  Triangle Counting in MapReduce 

The MapReduce algorithm used in our experiments is 

adopted from [2].The algorithm performs triangle 

counting using a chain of two MapReduce jobs. The first 

MR job finds the possible paths of length two by 

processing every node in parallel. The second MR job 

checks whether there exists a closing edge that completes 

the triangle and if exists then emits that a triangle is found. 

The mapper of MRjob1 implements logic to avoid 

counting triangles more than once and the reducer 

generates length two paths. The mapper of MRjob2 reads 

both the input graph and the output from MRjob1 and 

emits accordingly with a differentiator. The reducer of 

MRjob2 checks for the closing edge and emits the 

triangle incident at a vertex. The degree of the vertices 

can be pre computed and can be used to insist that 

counting should be done by the nodes which have lesser 

degree. This may slightly improve the logic but will 

require one more MapReduce phase and therefore will 

not make much improvement in execution time.  

B.  Triangle counting in BSP 

The communication and memory overhead of the BSP 

based triangle counting algorithm in the current 

literature[5] is very high due to large number of message 

generation and transfers which will affect the BSP 

execution. We propose an enhanced algorithm which uses 

the vertex degree information to reduce the 

communication cost due to message transfers and thereby 

gains an improved performance. The entire processing 
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can be done using 4 supersteps. In superstep 0 the label of 

every vertex is updated with the degree of the vertex.In 

superstep 1 every vertex will forward its label to its 

adjacent vertices whose degree is either greater than the 

sender or if the degrees are equal then to the vertices with 

greater value for the unique identifier. This constraint 

ensures that a triangle needs to be counted only once and 

that the majority of the work needs to be done by lower 

degree vertices. In superstep 2, each vertex will forward 

the message it received to its adjacent vertices again by 

following the ordering rule. In superstep 3, each vertex 

checks whether the identifier mentioned in the message is 

present in its adjacency list and if present the message 

will be forwarded to the corresponding vertex. In 

superstep 4 each vertex counts the number of messages 

received which will give the number of triangles incident 

at that vertex. 

Algorithm 1 MapReduce algorithm for triangle counting 

MRJob1: 

1: function map(vertex id a,vertex id b) 

2:      if(a<b) 

3:         emit(a,b) 

4: end function 

5: function reduce(vertex id a, vertex set A : 

AϵAdj(a)) 

6:      for(m,n) where m,nϵ A do 

7:         emit(a,(m,n)) 

9       end for 

8: end function 

 MRJob2: 

1: function map(Object I,Object K) 

2:      if I of type a and K of type (m,n) 

3:         emit((m,n),a) 

4:      if I of type (m,n) and K of type $ 

5:         emit((m,n),$) 

6: end function 

7: function reduce(Object I :Iϵ(m,n), Object M:    MϵVU 

{$}) 

8:      If $ϵM then 

9:         for mϵV ᴖM do 

10:            emit(m,1) 

11:         end for 

12:      end if 

13: end function 

Algorithm 2 BSP based algorithm for triangle counting 

Superstep 0 

1:   function compute(vertex v) 

2:    order(v)0 

3:      for all u in adjlist(v) 

4:         order(v)order(v) +1 

5:      end for 

6:    label(v)order(v) 

7:    votetohalt() 

     8:   end function 

    Superstep 1 

1:   function compute(vertex v) 

2:      for all u in adjlist(v) 

3:       If(label(v)<label(u)||(label(v)=label(u) && iden(v)<iden(u)) 

4:           sendmessage(adjlist(v), [iden(v),label(v)]) 

5:         end if 

6:      end for 

7:    votetohalt() 

      8:   end function 

Superstep 2 

1:   function compute(vertex v, message[m1,m2..mk ; k<|v|]) 

2:      for all m in message 

3:         for all u in adjlist(v) 

4:            if(label(m)<label(v)<label(u))||((label(m)=label(v)<=label(u))&&(iden(m)<iden(v)<iden(u)) 

5:               sendmessage(adjlist(v),[iden(m)]) 

6:            end if 

7:         end for 

8:      end for 

9:    votetohalt() 

10:   end function 

Superstep 3 

1: function compute(vertex v, message[m1,m2..mk; k<|v|]) 

2:      for all m in message 

3:         V t iden(m) 

4:            if V t is in adjlist(v) 

5:             sendmessage(V t,[iden(m)]) 

6:             end if 

7:       end for 

8:    votetohalt() 

9: end function 

 Superstep 4 

1: function compute(vertex v, 

message[m1,m2..mk;k<|v|]) 

2:    tricount(v)0 

3:      for all m in message 

4:         tricount(v)tricount(v)+1 

5:      end for 

6:    label(v)tricount(v) 

7:    votetohalt() 

8: end function 
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V.  EXPERIMENTAL ENVIRONMENT 

The fixed infrastructure used for performance 

measurements is a cluster of 8 homogeneous computing 

nodes of dell power edge sc1425 machines with Intel 

exon processor and 4 GB memory on every node .The 

multinode cluster is set up in redhat Linux with Hadoop 

version 1.0.3 and Giraph version 1.1.0 as working 

platforms. Hadoop version 1.0.3 and Giraph version 1.1.0 

are used for MapReduce and BSP implementations 

respectively. Giraph assumes a master-slave architecture 

in which the vertices are partitioned and assigned to 

workers by the master while workers execute the vertices 

and communicate with each other. Giraph uses Apache 

Zookeeper for synchronization and Hadoop for launching 

BSP workers within mappers. Real graphs from 

SNAP[10]dataset collection and synthetic graphs 

generated using graph generators are used for the 

experiments. We also performed several MapReduce 

passes to preprocess the graph data. The real datasets 

from various domains used in the experiments are ca-

GrQc, Enron-email, com-DBLP and roadNet-CA.The 

description of the datasets used are given in table 3. 

Table 3. Dataset Description 

 ca-GrQc email-Enron com-DBLP roadNet-CA 

Domain Collaboration network 
communication 

network 
collaboration network Road network 

No. of Nodes 5242 36692 317,080 1,965,206 

No. of Edges 14,496 1,83831 1,049,866 2,766,607 

Undirected(y/n) Y Y Y Y 

No. of Triangles 48,260 7,27044 2,224,385 12,0676 

 

ca-GrQC (General Relativity and Quantum Cosmology) 

collaboration network is taken from SNAP data collection 

which contains scientific collaborations between  papers 

submitted to General Relativity and Quantum Cosmology 

category in the e-print arXiv. Enron-email is a 

communication network which contains email 

communication within a dataset of half million emails 

and is made public by the Federal Energy Regulatory 

Commission. The DBLP is a computer science 

bibliography which contains a comprehensive list of 

research papers in computer science. The network is build 

such that two authors are connected if they publish at 

least one paper together. RoadNet-CA is a road network 

of California in which intersections and endpoints are 

represented by nodes and the roads connecting these 

intersections or road endpoints are represented by 

undirected edges. 

 

VI.  EXPERIMENTAL RESULTS 

A.  Time of computation with respect to same cluster 

Both MapReduce and BSP models were examined by 

implementing triangle counting algorithm using a fixed 

cluster of 8 machines. The results obtained from the 

experiments are shown in Fig. 4.It has noted that BSP can 

outperform MapReduce to a great extend for all the 

datasets used in the experiments. 

 

 

Fig.4. Execution time on 8 node cluster 

B.  Scalability with respect to graph size 

Experiments were conducted to measure the scalability 

of the platforms using datasets with varying number of 

edges and by keeping fixed cluster size. Fig.5 shows the 

experimental results from triangle counting 

implementation. The execution time increases with the 

number of edges in both the platforms, but BSP shows a 

less rate of growth compared to MapReduce. Similar 

results were obtained by varying the number of vertices 

of the graph.  

http://snap.stanford.edu/data/com-DBLP.html
http://snap.stanford.edu/data/roadNet-CA.html
http://snap.stanford.edu/data/roadNet-CA.html


 A Review on Large Scale Graph Processing Using Big Data Based Parallel Programming Models 55 

Copyright © 2017 MECS                                                             I.J. Intelligent Systems and Applications, 2017, 2, 49-57 

 

Fig.5. Scalability with respect to number of edges 

We also observed that if we increase the size of the 

graph such that either the graph size or the total messages 

generated during the algorithm implementation cannot be 

stored or processed in the main memory of the cluster, the 

BSP system will crash but MapReduce can continue its 

work due to the disk storage mechanisms used. But this 

problem in BSP can be overcome by either increasing 

cluster size or by using spilling to disk technique which is 

supported in latest version of Giraph (version 1.1.0) and 

will slightly increase the execution time. 

C.  Scalability with respect to Cluster size 

The effect of cluster size in the performance is also 

compared by varying the number of nodes in the cluster. 

The results are shown in Fig. 6.a-6.d. For smaller datasets 

like ca-GrQc and email-Enron, it is observed that the 

execution time converges at a cluster size 4 beyond which 

advantage of parallel computing will be nullified by the 

overhead due to network communication. Clearly BSP 

outperformed MapReduce to a great extent in this section. 

For roadNet-CA and com-DBLP datasets we used out-of-

core message option in Giraph to avoid crashes in BSP 

and it is observed that the execution time decreases with 

the increase in cluster size, but the difference from the 

MapReduce execution time is reduced. With out-of-core 

graph/message option, Giraph will keep limited number 

of vertices/messages in the main memory with remaining 

on the local disk and swapping is done when needed. 

 

 
6 a. 

 

 
6 b. 

 
6 c. 

 
6 d. 

Fig.6. Scalability with respect to number of nodes in the cluster for 
datasets a) ca-GrQc b) email-Enron c) com-DBLP d) roadNet 

D.  Performance with respect to Structure of the graph 

 

Fig.7. Scalability with respect to graph structure 

We generated synthetic random graphs with fixed 

number of nodes and edges but with varying degree 

distributions and analyzed the performance of the 

platforms against the structural properties of the graph. 

http://snap.stanford.edu/data/roadNet-CA.html
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The results from the experiments are shown in Fig. 7.It is 

observed that the execution time decreases in both the 

platforms with the decrease in skewness. This shows that 

the skewed degree distribution property of scale free 

graphs is not well handled by both the platforms. 

E.  System Resource Usage 

BSP approach requires more memory than MapReduce 

as the system is designed for in-memory computations. In 

MapReduce the CPU utilization is high during mapper 

execution compared to shuffle /sort and reducer 

executions. In BSP the synchronization phase between 

the supersteps is the least computationally intensive task. 

Another important observation is that the skewed degree 

distribution of the graph will increase the memory 

utilization and CPU usage in both the platforms. In 

MapReduce, it is caused due to the fact that 80% of the 

map and reduce tasks will be completed quickly 

compared to 20% of the rest of the tasks. In BSP, the 

synchronization phase between supersteps causes some 

nodes in the graph to wait for a few nodes with higher 

degree which makes the same result. 

F.   Communication Overhead 

In general, the communication overhead for BSP will 

be less when compared to MapReduce. But the overall 

network overhead is found high in BSP for triangle 

counting as the algorithm involves lot of message 

transfers but it actually depends upon the algorithm 

design. In MapReduce, network traffic is observed high 

at the beginning of each iteration. The allocation strategy 

of data at different disk blocks in the distributed file 

system is also a factor which affects the communication 

overhead in both the systems. 

G.  Granularity in Computations 

In parallel computing granularity refers to the fraction 

of computation cost to the communication cost. The 

programming model of BSP supports fine grained 

parallelism as the computation at every vertex is very less 

and the synchronization between supersteps require 

frequent communications. MapReduce tend to lean more 

towards coarse grained parallelism as every map and 

reduce operations are performed on a collection of 

vertices which involves more computations at every unit 

of work. 

H.  Coding Complexity and System Cost 

Both MapReduce and BSP algorithms are written in 

Java using the programming primitives of Hadoop 

MapReduce execution engine and Giraph BSP engine 

respectively. A complexity comparison of algorithms 

used is not included in this work as both  systems 

involves  use of both memory and disk and a proper 

complexity analysis in terms of asymptotic bounds is not 

possible in this case. Only open source tools, commodity 

hardware and freely available datasets are used for the 

experiments with both the models. So both models can be 

considered as cost effective with respect to data analysis. 

 

VII.  DISCUSSION 

From experiments conducted using datasets of various 

domains, it is observed that BSP can outperform 

MapReduce in graph processing. The in-memory 

computation is the main factor behind the improved 

performance of BSP over MapReduce. Even if the cluster 

memory is not sufficient for graph storage and processing, 

modern BSP systems can provide spilling to disk 

mechanism which even can give better performance than 

MapReduce. The resource utilization by both the 

platforms is influenced by the design of the parallel graph 

algorithms and also by the structure of the graph. Both 

the platforms are not well suited for handling graphs with 

skewed degree distributions, which demands efficient 

graph partitioning techniques for load distribution and 

balancing to be implemented within the framework. 

 

VIII.  CONCLUSION AND FUTURE WORK 

As the size of the real world graphs becomes very large, 

the need of using parallel algorithms for graph processing 

has attracted researchers. This works aims at conducting a 

performance and feature comparison of the parallel 

computing based Big Data platforms, MapReduce and 

BSP on graph processing by considering triangle 

counting as a benchmark problem for study. Experiments 

with graph datasets of various domains showed that BSP 

can be a better platform for graph analytics if the cluster 

is equipped with enough physical memory for graph 

storage and operations. Latest versions of BSP systems 

support spilling to disk techniques which can handle 

memory constraints. BSP can also provide a more natural 

way of programming with graphs than MapReduce. The 

structure of the graph remains to be an interesting 

challenge for both the platforms and can be a good area 

of research. 

The work can be enhanced by including an iterative 

MapReduce model into the current comparison and also 

by adding more graph algorithms as benchmarks.  A 

comparison of BSP frameworks, Giraph, GraphLab and 

Graphx can be another interesting research direction. 

Parallel algorithm design and implementation for scalable 

social network analysis using BSP models can also be 

considered for work in future. 
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