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Abstract—System Identification is used to build 

mathematical models of a dynamic system based on 

measured data. To design the best controllers for linear or 

nonlinear systems, mathematical modeling is the main 

challenge. To solve this challenge conventional and 

intelligent identification are recommended. System 

identification is divided into different algorithms. In this 

research, two important types algorithm are compared to 

identifying the highly nonlinear systems, namely: Auto-

Regressive with eXternal model input (ARX) and Auto 

Regressive moving Average with eXternal model input 

(Armax) Theory.  These two methods are applied to the 

highly nonlinear industrial motor. 

 

Index Terms—System identification, highly nonlinear 

dynamic equations, Arx system identification algorithm, 

Armax system identification algorithm. 

 

I.  SYSTEM’S DATA COLLECTION 

It is a well known fact that real physical systems 

(engineering systems) are very often uncertain or vague, 

which generally makes it difficult to accurately model 

a complex system or process by a mathematical model. 

Uncertainty means the exact output of a real physical 

system cannot be predicted by a mathematical model 

that describes the physical system under investigation, 

even if the input to the system is known. Uncertainty 

arises from two sources: unknown or unpredictable 

inputs (e.g., disturbance, noise) and unknown or  

unpredictable dynamics. Dynamic models are used for 

many purposes, to explain system behavior, for control 

design (i.e., model-based control) and for simulation. 

As a particular field of application, in motion control 

of robot manipulators, a dynamic model determines the 

control inputs needed to realize a reference  motion  and  

it also  enables  an  analysis of  how  particular  dynamic  

effects  influence overall  robot  manipulator  behavior. 

It is therefore important to model system dynamics.  

Since the model of a system dynamics can at best be 

an approximation of real physical systems, it will only 

capture some properties of real system. 

Motors are very important instruments in any 

industries. The applications of motors are wide such as, 

pumping fluids, compressors and position movement.  

Servos motor and stepper motors are two important 

motors for position control. To detect the position servo 

motors are used. In this types of motors two parameters 

can control: angular position and velocity. In this type of 

motor, the output’s position is controlled by 

potentiometer. This potentiometer is used to detect the 

required voltage and send to motor’s output to select the 

desired position with the minimum error. Figure 1 shows 

the application of servo motors and feedback loop [1-5]. 

 

 
Fig.1. The Servo Motor 

 

Fig.2. Behavior of Step Function system input-output Modeling 
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Fig.3. Behavior of Pulse Function system input-output Modeling  

 

Fig.4. Behavior of Triangular Function system input-output Modeling  

 

Fig.5. Behavior of Band limited white noise Function system input-

output Modeling  

Figure 2 shows the behavior of input-output data 

modeling in step input. 

Figure 3 shows the pulse input-output behavior system 

modeling. 

Figure 4 shows the triangular input-output behavior 

system modeling. 

Finally in Figure 6, the input random number input-

output behavior system is modeling. 

 

 

Fig.6. Behavior of input random number Function system input-output 

Modeling  

 

II.  ARX SYSTEM’S IDENTIFICATION 

The system modeling and identification is divided into 

two main groups: 

 

1. Traditional system identification 

2. Intelligent system identification. 

 

The classical logical methods of modeling,  reasoning, 

and computing are deterministic. A statement can be 

true or false and nothing in between, or a variable 

can be expressed in binary terms (0 or 1, yes or no). 

For example, in two-valued  logic the propositions can 

take on only two truth  values  ''true" or "false." The 

traditional system identification (modeling) are 

divided into following categories [6-10]: 

 

1. ARX modeling 

2. OE modeling 

3. ARMAX modeling 

4. FIR modeling 

5. Box-Jenkins modeling 

 

In real world, uncertainty is presents in every 

phenomenon and challenges every claim one makes. 

As an attempt to deal with uncertainties and account 

for the concept of partial truth, another type of logic 

called fuzzy logic (FL) was proposed by Zadeh. The  

fuzzy logic is based on the remarkable ability of  the  

human brain in approximate reasoning, in an 

environment of uncertainty  and imprecision. With this  

definition of  FL,  precise  reasoning  can  be  viewed  

as  a  limiting  case  of  approximate reasoning. Unlike 

the classical logic, fuzzy logic allows partial truth and 
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it also allows for values between 0 and 1. FL provides 

approximation capabilities (human way of approach) 

to capture uncertainties which cannot be described by 

precise mathematical  models. The modeling aspect of  

FL has been employed by the control community  

either to model  a controller itself  (e.g., modeling the 

actions of a human operator  that controls a machine), 

or a complex and uncertain phenomenon in the 

systems to be controlled  (e.g., nonlinearities of robot 

manipulator dynamics) maybe precisely and rigorously. 

The intelligent modeling is divided into following 

methods [11-15]: 

 

1. Fuzzy Modeling 

2. Neural network modeling 

3. Neuro fuzzy modeling 

4. Genetic algorithm modeling 

 

The general input-output form is: 

 

 ( ) ( )  
 ( )

 ( )
  (    )  

 ( )

 ( )
  ( )              (1) 

 

Is defined by the five polynomials 

 ( )  ( )  ( )  ( )     ( )  In this state A is: 

 

 ( )                                  (2) 

 

The most used model structure is the simple linear 

difference equation: 

 

 ( )     (   )     (   )        (    )
    (   )     (   )   
     (         ) 

(3) 

 

which relates the current output y(t) to a finite number of 

past outputs y(t-k)and inputs u(t-k). 

The structure is thus entirely defined by the three 

integers na, nb, and nk. na is equal to the number of poles 

and nb–1 is the number of zeros, while nk is the pure 

time-delay (the dead-time) in the system. For a system 

under sampled-data control, typically nk is equal to 1 if 

there is no dead-time. For multi-input systems nb and nk 

are row vectors, where the i-th element gives the 

order/delay associated with the i-th input [14-15]. To  

ARX modeling  we have: 

 

 ( ) ( )   ( )  (    )    ( )              (4) 

 

 
Fig.7. Input-Output Configuration 

To ARX modeling three factors are important: inputs, 

noise and output. Figure 7 shows the basic input-output 

configuration [12-15]. 

Assuming the signals are related by a linear system, the 

relationship can be written 

 

( ) ( ) ( ) ( )y t G q U t e t                        (5) 

 

where q is the shift operator and  G(q).U(t) is short for: 

 

 ( ) ( )  ∑ ( )  (   )                     (6) 

 

and 

 

 ( )  ∑ ( )        ( )   (   )            (7) 

 

The parameters of the ARX model structure is: 

 

 ( ) ( )   ( )  ( )    ( )                (8) 

 

 

The order in ARX modeling is: 

 

                                      (9) 

 

Where na is output order in ARX, nb is input order in 

ARX and nc is delay order. The nn in ARX identification 

is [2 2 1]. 

Discrete-time IDPOLY model in ARX for step input is:  

 

 ( ) ( )     ( ) ( )     ( ) 

 

 ( )                                
 

 ( )                             

 

In this identification the, Loss function           
    and                         

The fitting between input/output is 100% as Figure 8. 

 

 

Fig.8. Fitting test compare between ARX identification and output
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Figure 9 shows the error between estimate 

identification system and real output. 

 

 

Fig.9. Error test compare between ARX identification and output 

Discrete-time IDPOLY model ARX modeling for 

pulse input is:  

 

 ( ) ( )     ( ) ( )     ( ) 

 
 ( )                               

 
 ( )                            

 

Loss function 1.66081e-015 and FPE 1.70495e-015. 

The fitting between input/output is 100% based on 

Figure 10. 

 

 

Fig.10. Fitting test compare between ARX identification and output 

(Pulse input) 

Figure 11 shows the error between estimate 

identification system and real output in pulse input. 

Discrete-time IDPOLY model ARX modeling for ramp 

input is: 

 

 ( ) ( )    ( ) ( )    ( ) 

 

 ( )                               

 
 ( )                            

 

Loss function is 1.26637e-006 and FPE is 1.30003e-

006. 

The fitting between input/output is 99.11% based on 

Figure 12. 

 

 

Fig.11. Error test compare between ARX identification and output in 

pulse input 

 

Fig.12. Fitting test compare between ARX identification and output 

(Ramp input) 

 

Fig.13. Error test compare between ARX identification and output in 

ramp input 
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Discrete-time IDPOLY model ARX modeling for band 

limited white noise input is: 

 

 ( ) ( )     ( ) ( )     ( ) 

 
 ( )                                

                                                 
 ( )                            

 

Loss function is 2.25909e-016 and FPE is 2.31913e-

016. 

The fitting between input/output is 100% based on 

Figure 14. 

 

 

Fig.14. Fitting test compare between ARX identification and output 

(Band limited white noise) 

Figure 15 shows the error between estimate 

identification system and real output in band limited 

white noise input. 

 

 

Fig.15. Error test compare between ARX identification and output in 

band limited white noise input 

Discrete-time IDPOLY model ARX modeling for input 

random numbers is:    

 

 ( ) ( )     ( ) ( )     ( ) 

 
 ( )                               

 

 ( )                            

 

Loss function is 5.65716e-016 and FPE is 5.80752e-

016. 

The fitting between input/output is 100% based on 

Figure 16. 

 

 

Fig.16. Fitting test compare between ARX identification and output 

(Input Random Number) 

Figure 17 shows the error between estimate 

identification system and real output in input random 

number test. 

 

 

Fig.17. Error test compare between ARX identification and output in 

input random number input 

The Discrete-time IDPOLY ARMAX model is:  
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where 
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Loss function              and FPE          
     

Based on ARX system identification  the S domain 

transfer function  and Z domain transfer functions are: 

 

 ( )  
          

            
 

 

 ( )  
               

                  
 

 

III.  ARMAX SYSTEM’S IDENTIFICATION 

The general input-output form is: 
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  ( )         (10) 

 

The parameters of the ARMAX model structure is: 

 

 ( ) ( )   ( )  ( )    ( ) ( )              (11) 

 

The order in ARMAX modeling is: 

 

                                       (12) 

 

Where na is output order in ARMAX, nb is input order 

in ARMAX, nc is the noise order and nk is the delay 

order and the nn in ARMAX identification is [2 2 1 1]. 

The Discrete-time IDPOLY ARMAX model for step 

input is:     

 

 ( ) ( )     ( ) ( )     ( ) ( ) 

 

where 
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Fig.18. Fitting test compare between ARMAX identification and output 

Loss function              and FPE          

     
The fitting between input/output is 100% as Figure 18. 

Figure 19 shows the error between estimate 

identification system and real output in ARMAX 

modeling. 

 

 

Fig.19. Error test compare between ARMAX identification and output 

Regarding to final predictive error (FPE) for ARX and 

ARMAX in step input, ARMAX modelling is better than 

ARX in this type of input. 

The Discrete-time IDPOLY ARMAX model for pulse 

input is:     

 

 ( ) ( )     ( ) ( )     ( ) ( ) 

 

where 

 

 ( )                               
 

 ( )                            
 

 ( )                          

 

Loss function              and FPE          
     

The fitting between input/output is 100% for pulse 

input ARMAX modeling shows in Figure 20. 

 

 

Fig.20. Fitting test compare between ARMAX identification and output 

(pulse input) 
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Figure 21 shows the error between estimate 

identification system and real output in ARMAX 

modeling in pulse modeling. 

 

 

Fig.21. Error test compare between ARMAX identification and output 

in pulse input 

Regarding to final predictive error (FPE) for ARX and 

ARMAX in pulse input, ARMAX modelling is better. 

The Discrete-time IDPOLY ARMAX model for ramp 

input is: 

    

 ( ) ( )     ( ) ( )     ( ) ( ) 

 

where 

 

 ( )                               

 
 ( )                           

 
 ( )                                

 

Loss function              and FPE          
     The fitting between input/output is 98.86% for ramp 

input ARMAX modeling shows in Figure 22. 

 

 

Fig.22. Fitting test compare between ARMAX identification and output 

(ramp input) 

Figure 23 shows the error between estimate 

identification system and real output in ARMAX 

modeling in ramp modeling. 

 

 

Fig.23. Error test compare between ARMAX identification and output 

in ramp input 

Regarding to final predictive error (FPE) for ARX and 

ARMAX in ramp input, ARMAX modelling is better. 

The Discrete-time IDPOLY ARMAX model for band 

limited white noise is: 

 

 ( ) ( )     ( ) ( )     ( ) ( ) 

 

where 

 

 ( )                               

 
 ( )                            

 
 ( )                              

 

Loss function              and FPE          
     

The fitting between input/output is 100% for band 

limited white noise input ARMAX modeling shows in 

Figure 24. 

 

 

Fig.24. Fitting test compare between ARMAX identification and output 

(band limited white noise input) 
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Figure 25 shows the error between estimate 

identification system and real output in ARMAX 

modeling in band limited white noise modeling. 

 

 

Fig.25. Error test compare between ARMAX identification and output 

in band limited white noise input 

Regarding to final predictive error (FPE) for ARX and 

ARMAX in band limited white noise input, ARMAX 

modelling is better. 

The Discrete-time IDPOLY ARMAX model input 

random number is: 

 

 ( ) ( )     ( ) ( )     ( ) ( ) 

 

where 

 

 ( )                               

 
 ( )                            

 
 ( )                          

 

Loss function              and FPE          
   . The fitting between input/output is 100% for 

random numbers input ARMAX modeling shows in 

Figure 26. 

 

 

Fig.26. Fitting test compare between ARMAX identification and output 

(random numbers input) 

Figure 27 shows the error between estimate 

identification system and real output in ARMAX 

modeling in random numbers input modeling. 

 

 

Fig.27. Error test compare between ARMAX identification and output 

in random numbers input 

Regarding to final predictive error (FPE) for ARX and 

ARMAX in random numbers input, ARMAX modelling 

is better. Based on system ARMAX identification  the S 

domain transfer function  and Z domain transfer functions 

are: 

 

 ( )  
          

            
 

 

 ( )  
               

                  
 

 

Table 1 shows ARX and ARMAX parameter 

identification in five types of inputs. 

Table.1. System’s parameters Identification (ARX Vs ARMAX) 

system a1 a2 b1 b2 c1 c2 
ARX 

Step 

-

1.718 
0.9048 0.4839 

-

0.4371 
  

ARMAX 

Step 

-

1.718 
0.9048 0.4839 

-

0.4371 
0.0336 0.2794 

ARX 

Pulse 

-

1.718 
0.9048 0.4839 

-

0.4371 
  

ARMAX 

Pulse 

-

1.718 
0.9048 0.4839 

-

0.4371 
0.6501 1 

ARX 

Ramp 

-

1.718 
0.9049 0.4818 

-

0.4342 
  

ARMAX 

Ramp 

-

1.717 
0.9045 0.481 

-

0.4336 
0.2618 0.1648 

ARX 

White 

noise 

-

1.718 
0.9048 0.4839 

-

0.4371 
  

ARMAX 

White 

noise 

-

1.718 
0.9048 0.4839 

-

0.4371 
1 

-

1.57e-

5 

ARX 

Random 

number 

-

1.718 
0.9048 0.4839 

-

0.4371 
  

ARMAX 

Random 

Number 

-

1.718 
0.9048 0.4839 

-

0.4371 
0.7278 1 
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IV.  CONCLUSION 

Regarding to this research, system identification for 

highly nonlinear dynamic system (electric motor) is 

introduced. According to this research two methodologies 

are used for parameters identification: ARX modeling 

and ARMAX modeling. For data collection and data 

analysis, we have five types input-output regarding to this 

dynamic system. In final predictive error point of view, 

ARMAX modeling has better performance in comparison 

to ARX modeling. This methodology is important to 

design high performance controller for this electric motor.   
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