
I.J. Intelligent Systems and Applications, 2017, 11, 26-33
Published Online November 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.11.04

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

Document Summarization using TextRank and

Semantic Network

Ahmad Ashari
Department of Computer Science and Electronics,

Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

E-mail: ashari@ugm.ac.id

Mardhani Riasetiawan
Department of Computer Science and Electronics,

Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada

E-mail: mardhani@ugm.ac.id

Received: 16 March 2017; Accepted: 08 June 2017; Published: 08 November 2017

Abstract—The research has implemented document

summarizing system uses TextRank algorithms and

Semantic Networks and Corpus Statistics. The use of

TextRank allows extraction of the main phrases of a

document that used as a sentence in the summary output.

The TextRank consists of several processes, namely

tokenization sentence, the establishment of a graph, the

edge value calculation algorithms using Semantic

Networks and Corpus Statistics, vertex value calculation,

sorting vertex value, and the creation of a summary.

Testing has done by calculating the recall, precision, and

F-Score of the summary using methods ROUGE-N to

measure the quality of the system output. The quality of

the summaries influenced by the style of writing, the

selection of words and symbols in the document, as well

as the length of the summary output of the system. The

largest value of the F-Score is 10% of the length ta of the

document with the F-Score 0.1635 and 150 words with

the F-Score 0.1623.

Index Terms—TextRank, Semantic Network, Document

Summarization, Rouge-N, F-Score.

I. INTRODUCTION

The development of technology and the dissemination

of information has converged into the wide variety of

data and information [1,2,3]. The information

dissemination is accompanied by the proliferation of

available information, such as documents. However,

increasing the amount of information available does not

always make it easy for the reader. The problem occurs

because everyone does not have enough time to read

through all the information available. Especially after

reading, it turns out the information available in a

document is not following the desired information reader.

Therefore, we need a document summarization approach

to give the reader a general overview of a document

before reading. To resolve this problem, do the method of

reading the document at a glance (skimming) [4,5]. But

sometimes they make some of the information on the

document becomes hard to understand because the

information may require other information previously

unreadable due to come into skimming.

In addition to skimming, another method that can be

done is to read a summary of a document. Summary is a

representation of a document containing the main focus

of the document. A summary can improve the

effectiveness of the reader in searching and finding the

desired document [6]. However, a document generally do

not have a summary for a summary of a document is time

consuming and cost [7]. In addition, a summary

document is not easy because a summary should be able

to represent the whole of the contents of the document.

The research implemented document summarization

system uses TextRank algorithms, Semantic Networks

and Corpus Statistics. The use of TextRank allows

extraction of the main phrases of a document that has

used as a sentence in the summary output. Documents

Summarization on TextRank consists of several processes,

namely tokenization sentence, the establishment of a

graph, the edge value calculation algorithms using

Semantic Networks and Corpus Statistics, vertex value

calculation, sorting vertex value, and the creation of a

summary.

II. RELATED WORKS

 Document Summarization using TextRank and Semantic Network 27

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

III. METHODS

A general description of the system can be seen in

Fig.1. The schematic design of the system, there are two

main modules, namely TextRank module, and the module

Sentence Similarity. In TextRank module, the document

has processed into an undirected graph. Documents that

have been processed into sentences on TextRank module

is then delivered to module Sentence Similarity to

quantify the similarity between the sentence that was then

sent back to the module TextRank to be the edge. After

all processes in TextRank completed, then the sentences

issued on the graph in the form of plain text form of a

summary.

Fig.1. System Design

TextRank module design includes several major

processes, namely splitting the document into sentences,

the creation of graphs, calculation of the degree of

similarity between sentences, and counting rank within

the graph [8,12,14,15]. Chronology of the process of this

module begins with the receipt of the documents that has

been extracted. Documents in the form of plain text that

has entered into the system will be processed first by the

type of encoding specified in the input parameters, then

proceed with the next process, namely tokenization. In

TextRank Sentence

Similarity

Sentences

Similarity Rank

Docu

ments

Long Summary

Sum

mary

Doc Summarization

28 Document Summarization using TextRank and Semantic Network

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

the process tokenization, each sentence in the document

is detected then split into tokens sentence. After tokens

sentences were formed, then the next process is the

manufacture of undirected graph with each vertex

containing tokens sentences preconceived and Initial

Value (IV), which is 1. Value edge of the graph is

obtained from the process the next module Sentence

Similarity.

The next process is to calculate the values at each

vertex. Vertex value at iteration n and n + 1 will be

recorded to gain error rate (errors) by calculating the

difference. If the value of the error is already less than the

specified threshold, then continue the next process, if not,

repeat the calculation of the value of the vertex. This

vertex value calculation process can be performed in

parallel because the value of a vertex at iteration n

independently of each other due vertex values used for

iteration n + 1 is the vertex at iteration n.

The graph showing the vertex, the next process is the

vertex sort by a value ranging from the largest

(descending order). Sentences on vertices that has been

ordered are then taken to be used as a summary in the

form of plain text with a word length specified in the

input parameters.

This similarity accepts input values in the form of a

couple of sentences from TextRank module. Every

sentence received tokenization process has been

conducted so that it will be a collection (set) words. The

next process is the calculation of semantic similarity and

word order similarity. The output of the counting process

semantic similarity is the similarity values between 0 and

1, as well as the word order similarity. After the value of

the two processes previously obtained, then the two

values will be combined to obtain the overall similarity

value which would then be sent to the module to be used

as a value TextRank edge on graph.

IV. IMPLEMENTATION

Implementation of this system is divided into two large

modules as described in the previous section, the module

TextRank and Sentence Similarity. TextRank module is

responsible for handling and document summarization

process. Sentence Similarity module tasked with finding

a similarity between the sentence that was subsequently

used on the module TextRank. However, this

implementation is not limited to these two major modules,

are also add-on modules such as modules that handle

input, output, and the parameters of the program, as well

as modules that handle Corpus used in module Sentence

Similarity.

A. Implementation of TextRank Module

In the implementation of this TextRank module, used

Python library named NetworkX used to handle the graph

creation process. This NetworkX using Python

dictionary-based data types to accommodate the data

vertex, edge, and graphs so that the data can be accessed

quickly. Besides NetworkX, one NLTK module is also

used in this module to handle tokenization sentence,

namely Punct.

This function was originally named create_graph call a

function that will produce a non-directional graph

includes a token sentence and edge that contains the

similarity between sentences. The resulting graph will

then be calculated vertex value by calling a function

named calculate_rank which will produce a list

containing the value of the vertex, with the index of the

list is the same as the index of vertices in a graph. After

the vertex values obtained the list, then the list will be

further sorted in descending order based on the contents

of later retrieved index. List index gained will be used in

the next process for the preparation of the summary by

taking the sentence on the vertex with the corresponding

index in the list of indexes that had previously has

sequenced. The length of the word also needs to be

calculated so as not to vary much with word length

specified in the input parameter (sum_length). This

function will then produce the output of string which will

then sent to the module that handles input and output to

issued in the form of a file.

Fig.2. Create_graph Function

Later in create_graph function as shown in Fig.2,

initially to initialize the object of Sentence Similarity

modules in a variable named _simobj that has used to

compute the similarity between sentences. NetworkX

used to create graphs that contain total_words property

used to accommodate the total words in the input

document to be used in determining the length of the

summary output. To process tokenization in the

document into sentences, use one of the modules NLTK,

Punct which was previously train to detect the

expressions on the input document. Furthermore, punct

variable that contains the list of punctuation symbols used

 Document Summarization using TextRank and Semantic Network 29

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

as a basis to remove symbols of punctuation in the

sentence. The next step is to fill the vertices in a graph

with a token sentences and words from the sentences that

will be the token is used to calculate the similarity

between sentences in Sentence Similarity module.

After all and vertex filled, then all the vertices in a graph

will be connected with each other with the edge whose

value is calculated based on the similarity of the sentence

on the vertex-related uses on _simobj functions that have

previously has initialized. Edge that contains the value 0

will be removed as vertex-vertex connected has no

similarity at all. This function will then produce the

output of which is an object graph of NetworkX.

The next function is a function calculate_rank tasked to

calculate the value of the input vertex of the. This

function will perform as many repetitions max_iter times

to calculate the vertex value. Maximum iterations given

that the function does not perform repetition does not end

because the threshold has not met. Furthermore, the

values of vertices in a graph represented with a list of

named val and new_val with the same index of the list

with an index of vertices in a graph. If the sum of the

difference in the overall vertex at iteration n (val) and n +

1 (new_val) -in this case is a delta-less than the specified

error threshold, then the iteration will be terminated and

the function will return the list new_val iteration where

these conditions occur , If the function already reached

the limit of maximum iterations, the function will be

stopped and return the list new_val.

B. Implementation of Similarity Module

Sentence Similarity on the implementation of this

module, WordNet which is one of the modules of NLTK

used as a database to search for related words. This

module has implemented as an object for easy storing and

accessing results similarity in function words in it.

Suppose that in a document the word 'eat' and 'rice'

appear 10 times, if the results of the calculation of

similarity between the word 'eat' and 'rice' has not saved,

then the system will search for the similarity between the

words as much as 10 times. It has caused the program

runtime is significantly slower due to the process of

finding similarity between the words is an expensive

process regarding of computing and runtime. In addition

to computing and runtime issues, easy access to various

global variables in the object is also a consideration in the

implementation of this module because this global

variable will be accessed and used on many of the

functions in this module.

Sim_sets variable is a variable of type Python

dictionary that can store data in the form of key-value.

This variable is used to store a collection of similarity

between the words that has previously calculated. Key

stored here is a list containing pairs (kata1, kata2) and

value here shows similarity between kata1 and kata2.

Besides sim_sets, stored too many variables that were

used in other functions such as language, corpus, alpha,

beta, threshold, and used in calculating the similarity

measure.

Sentence_similarity who receive such couples enter a

sentence that has become tokens previously stored in the

vertex of the graph. This function will call three other

functions, namely comb_similarity which will produce

sim_sets calculated using the function word_similarity

with the input of all possible unique combinations of

words in a sentence input, then semantic_similarity used

to calculate the value of semantic similarity of the

sentence, and word_order_similarity that will count value

based on sequence similarity sentence. In the end, this

function will provide a combined output of semantic

similarity between the value and the value of word order

similarity in the form of overall similarity.

Word_similarity which has the task to calculate the

degree of similarity between the two words of input by

considering the path length and depth along the nearest

parent (lowest common subsume) between two words in

WordNet. First, the function will search synset in

WordNet two input words which, if not found, then the

value 0 will be returned. Furthermore, the results of the

search will produce two previous synset, synset list of

two words given that then searched all the possible

combinations and calculated the length of the path

between synset. The length of the path of synset has the

possibility of providing value None, which means two

synset were located in a different tree. Suppose the word

'street' is a verb and the word 'road' which is a noun. Both

words are equally the word 'road', but has different

properties so that the two has not compared, therefore the

length of the path between the two synset None, or no

path connecting the two. If the path length of the entire

combination synset is None, then the function will return

a value of 0. Otherwise, it would have taken a couple of

synset that has the shortest path length.

C. Implementation of Corpus Statistic

The Corpus object initialization, the function will read

the file corpus that has been provided by the corpus of

research results Dinakaramani et al. [3], which contains

10,000 sentences tokenized result are 262,330 tokens.

Another module is a module that regulates the input,

output, and display program. This module uses Python

library named Click to set the input parameters in the CLI.

Partially parameters set by the Book, input parameter to

accept the document input, output summary and length

summaries. Click can set the parameter name, parameter

description, the default value of the parameter and others.

D. Testing

Tests on this system using Java implementation of such

a program named ROUGE 2.0. The program will accept

input in the form of a summary document as plain text.

The summary input document has separated into two

folders named reference to hold summaries or summaries

ideal man, and a folder has named system to

accommodate a summary of artificial systems.

Once the summary document has loaded, the next is

the configuration settings ROUGE 2.0 which has located

in a file with the name rouge.properties. The thing to note

in this study is the parameter project.dir, ngram, output,

and outputfile. Project.dir parameter is the name of the

30 Document Summarization using TextRank and Semantic Network

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

folder that holds folders and system reference, ngram is

the number of pairs of word n-gram that will be used in

ROUGE-N, the output is output from ROUGE type 2.0,

and output file is the output file of ROUGE 2.0 if the

previous output parameters filled with files. After

configuration is complete, run the program named

rouge2.0.jar with the command java -jar rouge2.0.jar,

then the program will automatically calculate the value of

the F-Score, re-call and precision.

V. RESULT AND DISCUSSION

The testing is done in two stages, the first stage is to

test the summary document by the length parameter

summary in the form of a percentage of the document,

and the second stage is to examines the summary

document by the length parameter summary form of the

number of words.

Tests using percentages do as much as 6 times the

length of the percentage of a summary document has

tested is 5%, 10%, 15%, 20%, 25% and 30%. The test

results ROUGE-N will generate recall, precision and F-

Score which will then be averaged by columns based on

the length of the summary. The test results shows in

Table 1.

Table 1. Summarization (Percentage)

Average
Summarization (%)

5% 10% 15% 20% 25% 30%

Recall 0,1530 0,2404 0,2811 0,3225 0,3576 0,3930

Precision 0,1655 0,1289 0,1005 0,0868 0,0778 0,0706

F-Score 0,1540 0,1635 0,1448 0,1340 0,1257 0,1178

Tests using the word count done as much as 6 times the

length of each summary is 50, 100, 150, 200, 250, and

300 words. Just as before, the test results ROUGE-N

generate recall, precision and F-Score which will then be

averaged by columns based on the length of the summary.

The test results shows in Table 2.

Table 2. Summarization (Length)

Average
Summarization (%)

50 100 150 200 250 300

Recall 0,0668 0,1188 0,1698 0,1924 0,2129 0,2315

Precision 0,1925 0,1828 0,1634 0,1400 0,1229 0,1136

F-Score 0,0964 0,1404 0,1623 0,1588 0,1522 0,1491

From the second testing that has been done, the recall

value in the second test will increase along with

increasing the length of the summary. This is due to the

longer summary of the output system, the more the words

in the summary output system that are relevant to the

words in the summary of the man-made causes the

expanding recall value obtained. But the great recall

value which does not guarantee the accuracy of the

summary produced by the system with a summary of

man-made, because the recall value simply counting how

many relevant value received by the system. Suppose the

1000 data received by the system, already covers 50 of

the 50 relevant data, the recall value of the system is 1

(100%) due to the received data already covers all

relevant data, although the value obtained is also entering

950 incorrect data.

Fig.3 and Fig.4, the value of precision that results from

both tests tend to decrease with increasing the amount of

long summary. This is because the longer the output

summary of the system, the more the words in the

summary output system that are not relevant to a

summary of man-made cause a decline in the value of

precision given the precision value has obtained by

calculating whether all the accepted values is the value of

the relevant system. Suppose the data received from the

1000 system, obtained 50 of the 50 relevant data, then the

value of precision of the system is simply 50/1000 (5%)

although data received already covers all relevant data.

This is because the 1000 data received, precision or

accuracy of the system are just 50 of the 1000 Data.

Fig.3. Recall Average Percentage

From the above test results, it can be seen that the

precision and recall value inversely with the amount of

data in this study the long-summary-received. To

overcome this, use the F-Score is the average harmonic of

recall and precision. Value F-Score has used to measure

the degree of similarity of the summary output with a

summary of man-made systems. As for the average chart

F-Score of the test shows in Fig.5 for testing with the

 Document Summarization using TextRank and Semantic Network 31

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

length of the sentence in the form of percentages, and

Fig.6 for testing with the length of the sentence in the

form of the word count.

Fig.4. Recall Average Length

Fig.5. Average Precision (Percentage)

Fig.6. Average Precision (Words)

Fig.7 and Fig.8, shows the average value of the F-

Score achieved when the maximum length of the

summary is set at 10% of the total words on the document

or set at 150 words. This shows that on average the

highest proximity to the system summary manmade ideal

is achieved when the length of the summary is set at 10%

of the total words on the document or set at 150 words. In

addition to a long summary, F-Score of the summary is

also influenced by the content of the document to be

summarized.

Fig.7. Average F-Score (percentage)

Fig.8. Average F-Score (Words)

VI. CONCLUSION

Research has been successfully implemented in a

system using TextRank algorithm, Semantic Network and

Corpus Statistics. The results showed that the value of F-

Score Low summary influenced by the style of writing

the source document that gives many examples of cases

so as to provide a significant impact on the value of the

F-Score summary as previously discussed. The result

applies to all documents that use this style of writing such

works by looking at remembering TextRank majority

voting so that the topic with major supporters sentence

that will go into a sentence in the summary. Thus, the

style of writing is one of the factors that affect the quality

of the output summary. The use of symbols and choice of

words that are not standard will also affect the results of

the summary given on Sentence Similarity module as

described earlier, words or symbols that are not on

WordNet will be assigned a value of 0 for the sentence.

The results also showed that the value of F-Score on

summary influenced by the length of the summary. This

is because with the increased length of the summary,

increased many words that are not relevant to the

summary should ideally lead to the falling value of

precision. The fall in the value of precision will

significantly impact the value of the F-Score although

32 Document Summarization using TextRank and Semantic Network

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

recall value will continue to increase, given the value of

the F-Score has obtained by calculating the average

harmonic of recall and precision so that these values must

be in the balance to achieve the F-Score high.

Based on test results, obtained the optimal length of the

output summary which has an average value of the

highest F-Score system that is 10% with a value of

0.1635 if the F-Score lengthy summaries using

percentages, and 150 words with a value of 0.1623 if the

F-Score long summary uses the word count. The F-Score

value generated by the system is still limited to be used as

a summary of the document. This is because the summary

of the results of the document summarize system can only

extract from the sentence contained in the document,

unlike the man-made abstract whose contents may have

the same meaning but use different words (paraphrasing)

so that the ROUGE test can not detect this .

The future work of the reseaech, It should be further

investigated the use of other algorithm models or the

incorporation of several other algorithm models to

calculate the degree of similarity between words.

It should be further investigated how the influence and

use of other ontology models in addition to WordNet in

finding relations between words. Implemented word

matching based on HAS-A relation on WordNet and

combine it with search based on IS-A relation.

ACKNOWLEGMENT

Cloud & Grid Technology Working Group has

supported the research in facilities and technical

assistance. The research has supported by Postgraduate of

Computer Science Program, Faculty of Mathematics and

Natural Sciences, Universitas Gadjah Mada. The research

give acknowledgement to Nurdian Nugroho for his

assistance and technical supports.

REFERENCES

[1] Bond, F., Lim, L.T., Tang, E.K. and Riza, H., 2014, The

Combined Wordnet Bahasa, NUSA: Linguistic studies of

languages in and around Indonesia, 57, 83–100.

[2] Brin, S. and Page, L., 1998, The Anatomy of a Large-

Scale Hypertextual Web Search Engine, Computer

Networks and ISDN Systems, 1-7, 30, 107–117.

[3] Dinakaramani, A., Rashel, F., Luthfi, A. and Manurung,

R., 2014, Designing an Indonesian Part of Speech Tagset

and Manually Tagged Indonesian Corpus, 2014

International Conference on Asian Language Processing

(IALP), Kuching.

[4] Li, Y., McLean, D., Bandar, Z., O'Shea, J.D. and Crockett,

K., 2006, Sentence Similarity Based on Semantic Nets

and Corpus Statistics, IEEE Transactions on Knowledge

and Data Engineering, 8, 18, 1138–1150

[5] Lin, C.Y., 2004, Rouge: A Package for Automatic

Evaluation of Summaries, Text Summarization Branches

Out: Proceedings of the ACL-04 Workshop, Barcelona.

[6] Aliguliyev, R.M., 2007, Automatic Document

Summarization by Sentence Extraction, Вычислительные

технологии, 5, 12, 5–15

[7] Radev, D.R., Hovy, E. and McKeown, K., 2002,

Introduction to the Special Issue on Summarization,

Computational Linguistics, 4, 28, 399–408.

[8] Mihalcea, R. and Tarau, P., 2004, TextRank: Bringing

Order into Texts, Proceedings of the 2004 Conference on

Empirical Methods in Natural Language Processing,

Barcelona.

[9] Li, Y., Bandar, Z.A. and McLean, D., 2003, An Approach

for Measuring Semantic Similarity between Words Using

Multiple Information Sources, IEEE Transactions on

Knowledge and Data Engineering, 4, 15, 871–882

[10] Zikra, H., 2009, Sistem Peringkas Teks Otomatis

Menggunakan Algoritme Page Rank, Tesis, Jurusan Ilmu

Komputer FMIPA IPB, Bogor

[11] Hoffmann, A. and Pham, S.B., 2003, Towards Topic-

Based Summarization for Interactive Document Viewing,

K-CAP 2003 - Proceedings of the 2nd International

Conference on Knowledge Capture, Sanibel Island.

[12] Park, S., 2009, User-focused Automatic Document

Summarization using Non-negative Matrix Factorization

and Pseudo Relevance Feedback, Proceedings of 2009

International Conference on Computer Engineering and

Applications (ICCEA 2009), Manila.

[13] Aji, S. and Kaimal, R., 2012, Document Summarization

Using Positive Pointwise Mutual Information,

International Journal of Computer Science & Information

Technology, 2, 4, 47–55.

[14] Miller, G.A., 1995, WordNet: A Lexical Database for

English, Communications of the ACM, 11, 38, 39–41

[15] Noor, N.H.M., Sapuan, S. and Bond, F., 2011, Creating

the Open Wordnet Bahasa., Proceedings of the 25th

Pacific Asia Conference on Language, Information and

Computation (PACLIC 25), Singapore.

[16] Fang, C., Mu, D., Deng, Z., Wu, Z., 2016, Word-Sentence

co-ranking for automatic extractive text summarization,

Expert System with Appliactions, 72,, 189-195.

[17] Abdi, A., Idris, N., Alguliyev, R.M., 2017, Query-based

multi-dicuments summarization using linguistic

knowledge and content word expansion, Soft Computing,

21(7), 1785-1801.

[18] Di Sciascio, C., Mayr, L., Veas, E., 2017, The 2017 ACM

Workshop on Exploratory Search and Intreactive Data

Aanalytics, 41-48.

[19] Kumar, Y.J., Kang, F.J., Goh, O.S., Khan, A., 2017, Text

Summarization Besd on Classficiation Using ANFIS,

Studies in Computational Intelligence, 405-417.

Authors’ Profiles

Ahmad Ashari, Dr.techn is senior researcher in

Department of Computer Sciences and

Electronics, Faculty of Mathematics and Natural

Sciences, Universitas Gadjah Mada. His work

has been published in several international

journals for Computer and Network architecture

area. The research focuses are computer network,

security and high performance computing.

Mardhani Riasetiawan is researcher in

Department of Computer Sciences and

Electronics, Faculty of Mathematics and Natural

Sciences Universitas Gadjah Mada, Indonesia.

Mardhani research focus is in Cloud, Grid and

Cluster Infrastructure, Enterprise Data Center,

and Big Data.

 Document Summarization using TextRank and Semantic Network 33

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 11, 26-33

How to cite this paper: Ahmad Ashari, Mardhani Riasetiawan,

"Document Summarization using TextRank and Semantic

Network", International Journal of Intelligent Systems and

Applications(IJISA), Vol.9, No.11, pp.26-33, 2017. DOI:

10.5815/ijisa.2017.11.04

