
I.J. Intelligent Systems and Applications, 2017, 10, 31-39
Published Online October 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2017.10.04

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

Web Data Extraction from Scientific Publishers’

Website Using Heuristic Algorithm

Umamageswari Kumaresan
Assistant Professor, New Prince Shri Bhavani College of Engineering & Technology, Chennai, 600073, India

E-mail: umamage@gmail.com

Prof. Kalpana Ramanujam
Pondicherry Engineering College, Pillaichavady, Puducherry, India

E-mail: rkalpana@pec.edu

Received: 04 March 2017; Accepted: 05 June 2017; Published: 08 October 2017

Abstract—WWW is a huge repository of information and

the amount of information available on the web is

growing day by day in an exponential manner. End users

make use of search engines like Google, Yahoo, and

Bingo etc. for retrieving information. Search engines use

web crawlers or spiders which crawl through a sequence

of web pages in order to locate the relevant pages and

provide a set of links ordered by relevancy. Those

indexed web pages are part of surface web. Getting data

from deep web requires form submission and is not

performed by search engines. Data analytics and data

mining applications depend on data from deep web pages

and automatic extraction of data from deep web is

cumbersome due to diverse structure of web pages. In the

proposed work, a heuristic algorithm for automatic

navigation and information extraction from journal’s

home page has been devised. The algorithm is applied to

many publishers website such as Nature, Elsevier, BMJ,

Wiley etc. and the experimental results show that the

heuristic technique provides promising results with

respect to precision and recall values.

Index Terms—Structured data, Information Extraction,

Deep web, wrapper, DOM Tree, template, JQuery,

XPATH.

I. INTRODUCTION

World Wide Web is a powerful source of information

which contains information in many desperate formats

which highly affects the automated processing. Many

business organizations require data from WWW for

carrying out analytic tasks such as online market

intelligence, product intelligence, competitive

intelligence, decision making, sentiment analysis[1] etc.

Often search engines are used to get the information from

WWW. Search engines makes use of web spiders to

crawl through the web and retrieve the links that might

contain the information searched for, and presents the

information to us in the form set of hyperlinks. Search

engines are capable of retrieving information from

surface web but not from invisible web or hidden which

requires form submission. From [3], it is clear that

amount of pages not indexed by search engines is 400 to

550 times greater than the size of the surface web. Data

analytics application requires extracting information from

deep web and also from several heterogeneous web sites.

No two web sites are similarly structured and therefore,

extraction process has to deal with heterogeneity in terms

of web technologies such as scripting languages like Java

script, VB Script, languages used for beautifying web

pages like CSS etc. In order to improve user’s web

experience by providing visual effects and sophisticated

rendering, more and more complex structuring of web

pages have been done using different versions of HTML,

CSS and AJAX. This makes data extraction highly

cumbersome task. Challenges faced by extractors include

heterogeneous formats, changes in structure of web pages,

introduction of more and more sophisticated technologies

for enhancing UX etc. Certain commercial tools like

Mozenda [28], Lixto [24], KDNuggets [21] provides GUI

to guide the extraction process but the level of human

intervention they require is high.

General picture of web data extractor steps is shown in

figure 1. It involves four steps namely: Search, Locate,

Filter and Extract. Searching refers to the problem of

automatically locating target web pages given the URL of

the web site. Locating refers to identifying data rich

regions in the target web pages and filtering refers to the

process of filtering the data rich nodes after eliminating

noisy sections such as navigation links, pop-ups,

advertisements etc. The last step extraction involves

extracting the attribute-value pairs from the target web

pages that defines the specification of the object.

A. Motivation

Most of the researchers and students face difficulty in

finding appropriate journals for their research article

publication. The information about journals are present in

the journal home page and it requires going through

sequence of hyperlinks to reach appropriate web page

which contains detailed information about the journals

such as Impact Factor, Five Year Impact Factor,

SCIMAGO Journal Rank, Source Normalized Impact

32 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

Fig.1. Steps in Web Data Extraction.

Factor etc. Manually carrying out the analysis is time

consuming and therefore, a technique is proposed which

automatically crawls through web pages in the journal

web sites which are usually organized in alphabetical

order A-Z. Once the appropriate web pages are

determined, heuristic algorithm is used to determine the

location of target information. Information is extracted

and stored in structured form which facilitates carrying

out different kinds of analysis on the extracted data. As

shown in figure 1, in the first step a heuristic crawler is

used to identify the URL of the journal home pages

linked to the publishers’ web site. In the next step, DOM

tree of a page is generated and text nodes are filtered.

Text nodes that match with the domain keywords are

selected and the XPATH [39] is determined. It can be

observed that values are located very close to the attribute

name and therefore, this heuristic can be used to retrieve

the corresponding value of the attribute. The XPATH

determined for attribute value pairs are stored and can be

used to locate the attribute value pairs in similarly

structured target web pages. The extracted attribute-value

pairs are stored in structured form onto RDBMS.

B. Problem Definition

The problem of Journal Information Extraction can be

stated as follows: Given a seed URL of publishers’ web

site, determine the set of journal home pages {p1,p2,…pn}

which contains the set of keywords like SJR, SNIP,

impact factor etc. representing the search object (journal),

the problem is to extract the structured records pertaining

to each search object (journal).

Problem: To extract the detailed specification of the

journals.

Constraint: The web pages {p1, p2…., pn} from a

different publishers’ web site might have heterogeneous

templates.

The research article is organized as follows: Section 2

elaborates the state-of-the-art approaches available for

web data extraction, Section 3 discusses the architecture

and algorithms of journal information extraction system,

Section 4 represents the experimental results and Section

5 concludes the article.

II. RELATED WORKS

Web data extraction is broadly classified into four

types: hand-crafted, supervised, semi-supervised, and

unsupervised. Initially manually created wrappers are

used for extracting information from target pages such as

TSIMMIS [13], W4F [32], WIEN [23] etc. These

techniques involve creating wrappers using declarative

languages for extracting the needed information. The

drawback of these techniques include high level human

intervention needed in creating wrappers, error prone and

changes in web page structure requires modifying the

scripts. In order to overcome the problems encountered

with hand crafted wrappers, supervised techniques such

as IEPAD [6], OLERA [5] and Thresher [14] which

involves automatic wrapper induction from labelled web

pages came into existence. These techniques also face the

limitations of requiring post efforts of annotating

extracted data. In [8], a supervised technique is proposed

which involves inferring wrapper dynamically from

training sets. Training data contains labelled values

generated by membership queries. The approach is highly

scalable but requires optimizing the interaction with the

crowd.

Commercial tools like ChickenFoot [27], Mozenda

[28], Lixto [24] etc. are semi-supervised approaches

which provides sophisticated GUI to guide the extraction

process. Further research in the area of web data

extraction, lead to the era of fully automatic or

unsupervised web data extractors such as RoadRunner [7],

EXALG [2], DEPTA [40], DELA [37], FIVATECH [20]

and TRINITY [34]. RoadRunner [7] starts with a sample

page and creates a Union Free Regular Expression

representing wrapper. It matches each successive sample

with the wrapper. It deals with the mismatches by

generalizing the RE. This approach faces the difficulty of

dealing with missing attributes. EXALG [2] uses

identification of Equivalence class as a mechanism to

deduce templates. It considers web page as a sequence of

strings and identifies the sets of tokens having the same

frequency of occurrence in every page which are known

as equivalence classes. It filters those equivalence classes

which are large and frequently occurring in most of the

pages. FIVATECH [20] uses DOM trees of the web

pages to deduce schema. They perform merging of the

DOM trees into fixed/variant pattern tree. The pattern tree

is used to deduce schema of the website. The

experiments were conducted only on 2 or 3 web pages

and the feasibility of the approach has not been proved

for real world websites consisting of several hundreds of

web pages. TRINITY [34] also performs page level

extraction just like the previous approaches. TRINITY

[34] like EXALG [2] considers web pages as a set of

strings. It applies the string matching algorithm Knuth

Pratt Morris [22] to deduce template. It involves

generating a tree like structure called trinary tree in which

each node has three child nodes prefix, separator and

suffix. This tree guides the deduction of template. This

approach does not work well with web pages having

different formatting for the same data records and same

sequence of tokens for all the attributes. These extractors

 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm 33

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

involve learning templates from sample web pages and

using the template for extracting data. DWDE [26] uses

tag tree algorithm for data extraction. It uses domain

classification technique for web page retrieval based on

user query. Information extraction from deep web using

Repetitive Subject Pattern [36] is based on the hypothesis

that information in web page is about a subject item and

repetitive pattern around the subject items can be used to

identify boundary. The limitation of this approach that it

cannot be used for detail pages having a single subject

item. Many semantic approaches came into existence. In

[41], the information present in the leaf nodes is analyzed.

Semantic Information Vector is generated for non-leaf

nodes and sematic tree matching technique is used extract

product information. [12], [31], [10] and [9] involve

transforming and forwarding queries to multiple web sites

and integrating the local results. Another semantic

extraction technique [15] is based on R tool. They have

developed an extraction language R which represents

extraction rules and its syntax is similar to CSS selectors.

The drawbacks of grammar based approaches include

huge amount of manual labor is required for writing

extraction rules and also it requires domain expertise. In

[17], a new approach for data extraction using lexical

database WordNet has been proposed. Correct data rich

region is determined by using WordNet. The technique

also deals with different type of data records namely

single-section data record, multiple section data records

and loosely structured records. In [33], the authors have

proposed a framework for finding appropriate datasets for

research problem. It involves using web intelligence for

data set names extraction.

Table 1. Comparison of state-of-the-art approached for web data extraction.

Extraction System
Level of Human

Intervention
Applicability Granularity Technique

TSIMMIS[9] Hand crafted Semi-structured Record level None

W4F[21] High Semi-structured Record level Extraction rules

WIEN[16] High Semi-structured Record level
Uses a family of 6

wrapper classes

OLERA[4] Semi-supervised Template Record level String Alignment

IEPAD[5] Semi-supervised Template Record level
Pattern Mining and

String Alignment

Thresher[9] Semi-supervised Template Record level
Uses tree edit distance

between DOM subtrees

DELA[23] Unsupervised Template Record level Pattern Mining

DEPTA[29] Unsupervised Template Record level Partial Tree Alignment

RoadRunner[6] Unsupervised Template Page level String Alignment

FIVATECH[13] Unsupervised Template Page level
Tree Matching, Tree

Alignment and Mining

EXALG[2] Unsupervised Template Page level

Equivalence class

and Differentiating

Roles

TRINITY[22] Unsupervised Template Record level Trinary tree

The state-of-the-art web data extraction techniques are

shown in table1. These approaches are designed for

general purpose web data extraction and have limitations

with respect to applicability on differently structured web

pages from heterogeneous sites and also for websites

having different ordering of attributes. Often, data

analytics application requires fetching data from multiple

heterogeneous websites. In this work, information

extraction from publisher’s web sites has been done by

focusing on automatic crawling of different journal home

pages, using heuristics to locate journal attributes such as

title, SJR, SNIP, Impact factor, about the journal, ISSN

etc.

III. ARCHITECTURE OF JOURNAL INFORMATION

EXTRACTION SYSTEM

The overall architecture of the journal information

extraction system is shown in figure 2. The first step is to

crawl through the journal web site given by seed URL

and to extract the URLs of the target pages that might

contain the journal information. A heuristic algorithm is

used for extracting information and then, the information

is stored in structured form in RDBMS. The RDBMS can

then be queried to obtain the relevant information. Figure

3 shows the phases of the proposed system.

URL of the Publisher’s web site is given as input to the

system. Heuristic crawling algorithm is designed based

on the fact that the Journal’s links are arranged in

chronological order from A-Z. Clicking on the alphabet

results in displaying a list containing names of journals

whose name starts with the specified alphabet. Again

clicking on a specific link displays the journal detail page

which might contain a link to Journal’s home page. Thus,

it requires on part of the user to navigate through a series

of links in order to reach journal’s home page. These

steps are automated by the heuristic crawler and the URL

of all the journals linked to the publisher’s web site is

retrieved.

In phase 2, Heuristic based WDE technique is used for

the extraction of journal features such as title, ISSN, SJR,

34 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

SNIP, Impact Factor etc. from journal’s home page. First

step is to construct a DOM tree representing journal’s

home page using JSoup [19] API. The algorithm is bases

on the fact that journal metrics are displayed as part of

rendered page and therefore, they constitute text nodes in

the DOM tree. Instead of processing the entire DOM tree,

in this work only the leaf nodes are filtered and compared

with the domain keywords such as Impact Factor, SJR

and SNIP etc. to identify the location of target

information. Once the location of attributes are identified

the values are extracted based on the observation that the

values are available as sibling or child node to the

attribute node. Location is represented as XPATH

expression [39], a language used to locate a node in any

XML document. Once the XPATH expression is

determined for all the journal features expressed as

attribute value pairs, the same XPATH can be used to

extract information from remaining target pages since

they are generated using same server side template. The

extracted information is stored in structured form in

RDBMS. Finally, a GUI is designed to answer user

queries in a single interaction with the system.

Fig.2. Overall Architecture of the Journal Information Extraction System.

Fig.3. Phases in Journal Information Extraction System.

Fig.4. Organization of Journal Home Page URLs

The proposed approach is based on the observation that

the journal home pages linked to publishers’ web site are

well structured and they are generated using same server-

side template. If the location of target data is identified

for a single web page (XPATH for attribute-value pairs)

from the publisher’s web site, then the same XPATH can

be used for extraction from similarly structured pages. It

is clear from table 2 representing the journal information

obtained from Nature [29] publisher’s web site, the

XPATH corresponding to attribute value pairs ISSN and

 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm 35

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

Impact Factor remains the same.

A. Mathematical Model

Heuristic Algorithm for Automatic Navigation

Given the URL of publisher’s site urlp, navigate to the

site and extract the set of URLs arranged in alphabetical

order i.e. A-Z. Navigating to each URL again, produces a

set of journal records containing information such as title,

ISSN, URL of the journal’s home page etc. To collect all

target URLs for all the journals ordered by A-Z. The set

of target URLs is denoted by

}1,{ nihiH  (1)

Each journal home page hi is parsed to collect the

needed attributes such as title, ISSN, Impact Factor,

Source Normalized Impact Factor, SCImago Journal

Rank etc.

B. Algorithm for target URL extraction

The algorithm takes as input base URL of the

publisher’s web site. The algorithm is based on the

observation as shown in figure 4, that all the journal

information are organized in chronological order from

A|B|C....Z. The algorithm filters the anchor elements

whose text matches the regular expression ^[a-z]$|^[A-

Z]$. It then crawls to that page in order to find and extract

the journals home page URL.

Algorithm extractURLs (baseURL)

//Input: Seed_URL

//Output: list of target_URLs

begin

create useragent and visit baseURL

useragent.visit(basehref);

extract all anchor elements

if anchor.text matches ^[a-z]$|^[A-Z]$

target_urls.add(anchor.href)

return target_urls

end

C. Heuristic Algorithm for Data Extraction

The intent of this algorithm is to identify location of

target attributes, extract attribute values, annotate and

store the extracted records containing attribute values into

database. The algorithm is based on the heuristics that all

the needed information is visible content displayed in the

content area of the browser. In the DOM tree representing

the web page, all the text nodes will be present as

leafnodes. Visit each URL and obtain the DOM tree of

the web page. Find the leaf nodes using the algorithm

GetLeafNodes and check whether it is a text node. If they

match with the field names such as SJR, SNIP, Impact

Factor etc. then determine its XPath using the procedure

getFullXPath. Convert XPath to selector string using the

algorithm convert_XPath_to_Selector. The same selector

string is used to carry out extraction from similarly

structured web pages. The algorithms are detailed below:

The algorithm Extract takes as input seed URL of the

publishers’ website and calls the procedure extractURLs

to extract the URLs of the journal home pages. It then

calls procedure display_journal_metrics for extracting

attribute value pais from each target page. It establishes

database connectivity in order to store the structured

records to RDBMS.

Table 2. Similarly structured web pages and the XPATH of attributes.

NATURE JOURNALS[29] XPATH

IMPACT FACTOR
/html/body[@id='home']/div[@id='constrain']/div[@class='constrain']/div[@id='content-

journalnav']/div[@id='content']/div[@class='journal-details']/p[2]/span[@class='impact']

ISSN

/html/body[@id='home']/div[@id='constrain']/div[@class='constrain']/div[@id='content-

journalnav']/div[@id='content']/div[@class='journal-details']/p[1]

IMPACT FACTOR

/html/body[@id='home']/div[@id='constrain']/div[@class='constrain']/div[@id='content-

journalnav']/div[@id='content']/div[@class='journal-details']/p[2]/span[@class='impact']

ISSN

/html/body[@id='home']/div[@id='constrain']/div[@class='constrain']/div[@id='content-

journalnav']/div[@id='content']/div[@class='journal-details']/p[1]

Algorithm Extract (Seed_URL)

//Input: Seed URL(URL of Publishers' site)

//Output: Structured records

begin

 target_urls=extractURLs(Seed_URL);

 for each url in target_urls do

 impact_factor, issn = display_journal_metrics(url)

 create database connectivity

 store impact_factor, issn

 end for

end

The algorithm display journal metrics takes as input

target url. It checks whether the ISSN XPATH and

Impact Factor XPATH are determined. If they are not

found already, then it finds the XPATH by matching the

leaf nodes (obtained using the algorithm getLeafNodes)

with the domain keywords such as ISSN, impact factor

etc and determining the path to those matched nodes. The

XPATH is then converted to JQUERY selector string

[18], since the Jaunt API [16] supports only selector

string for locating node in the DOM tree. The same

36 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

XPATH is used for extraction from remainder of the web

pages linked to the publisher’s web site.

Algorithm display_journal_metrics (target_url)

//Input: target url

//Output: impact_factor,issn

begin

 useragent.visit(target_url);

 issn_pattern = "\\d\\d\\d\\d-\\d\\d\\d\\d|\\d\\d\\d\\d-\\d\\d\\dX"

 impact_pattern = "\\d.\\d{1,3}|\\d\\d.\\d{1,3}"

if (issn_xpath is NULL) then

begin

 doc = construct DOM tree

 root = node corresponding to Body element

 leaf = getLeafNodes(root)

for each node in leaf do

if node.text matches issn_pattern then

 issn_xpath = getFullXPath(node)

 issn = node.text.substring(start, end)

end if

if node.text matches impact_pattern then

 impact_xpath = getFullXPath(node)

 impact_factor = node.text.substring(start,end)

end if

else

 impact_factor_selector =

convert_xpath_to_selector(impact_xpath)

 issn_selector = convert_xpath_to_selector(issn_xpath)

 impact_node = doc.select(impact_factor_selector)

 impact_factor = impact_node.text.substring(start,end)

 issn_node = doc.select(issn_selector)

 issn = issn_node.text.substring(start, end)

end if

 return impact_factor,issn

end

The algorithm getLeafNodes takes as input the root

node of the DOM tree and produces leaf nodes that are of

type text.

Algorithm getLeafNodes (Node root)

//Input: root

//Output: leaf_nodes

begin

if (root.getType() equals Node.ELEMENT_TYPE) then

for each node in root.getChildNodes()

begin

 if node.getType() equals Node.TEXT_TYPE then

 leaf_nodes.add(node)

 else

 getLeafNodes(node)

 end if

return leaf_nodes

end

The algorithm getFullXPath constructs XPATH by

taking the node for which XPATH has to be determined

as input. It finds the hierarchy of nodes from root to the

given node and separates them by /. The algorithm

returns the XPATH which is converted to corresponding

selector string using the algorithm

convert_xpath_to_selector.

Algorithm getFullXPath (Node n)

//Input: Node n

//Output: XPath

begin

hierarchy.push(n)

parent = n.getParent()

while (parent is NOT NULL AND parent.getType() NOT

equals DOCUMENT_TYPE)

hierarchy.push(parent)

// get parent of parent

parent = parent.getParent()

end while

// construct xpath

while (!hierarchy.isEmpty() AND (node=hierarchy.pop()) IS

NOT NULL)

if (node.getType() equals ELEMENT_TYPE) then

XPath.append("/")

XPath.append(node.getName())

end if

if (node.hasAttribute("class")) then

XPath.append("[@class='" + e.getAt("class") + "']")

else if (e.hasAttribute("id")) then

// id attribute found - use that

XPath.append("[@id='" + e.getAt("id") + "']")

else if (e.hasAttribute("name")) then

XPath.append("[@name='" + e.getAt("name") + "']")

end if

if (node.getName().equals("table")) then

XPath.append("/tbody")

end if

end while

return XPath

end

Algorithm convert_xpath_to_selector takes XPATH as

input and produces JQUERY selector [12] as output.

JQUERY selector [18] like XPATH is used to select

nodes from HTML documents using attribute such as

name, id, class etc. Space in XPATH is replaced by ―.‖,

―[@class=‖ by ―.‖, ―[@id=‖ by ―#‖ and ―/‖ by ―>‖.

Algorithm convert_xpath_to_selector (String xpath)

input: xpath

output: selector_string

begin

if (xpath.contains(" ")) then

xpath1 = xpath.replace(" ", ".")

else

xpath1 = xpath

end if

if (xpath1.contains("']")) then

xpath2 = xpath1.replace("']", "")

else

xpath2 = xpath1

end if

if (xpath2.contains("[@class='")) then

xpath3 = xpath2.replace("[@class='", ".")

else

xpath3 = xpath2

end if

if (xpath3.contains("[@id='")) then

xpath4 = xpath3.replace("[@id='", "#")

else

xpath4 = xpath3;

end if

if (xpath4.contains("/")) then

xpath5 = xpath4.replace("/", " > ")

else

xpath5 = xpath4

end if

selector_string=xpath5

return selector_string

end

IV. EXPERIMENTAL RESULTS

The experiment was conducted on Elsevier [11], BMJ

[4], Nature [29], Wiley [38], Oxford Journal [30] and

 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm 37

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

Springer Open Journal [35] publishers’ web site, in which

journals are organized in lexicographical order and

clicking on each link gives a listing of journals starting

with the alphabet. To know the journal information, one

more level of navigation is needed i.e. About Journal

hyperlink has to be clicked. The proposed module

performs appropriate level of navigation, fetches the

structured data embedded in unstructured HTML pages

and then, stores it onto RDBMS. The extraction results

are shown in the table 3. The three classic metrics of

information retrieval namely precision, recall and F-

Measure are used to evaluate the effectiveness of this

technique in journal information extraction. The graph in

figure 5, shows that for well-structured web sites like

Elsevier [11] and Wiley [24], accuracy of extraction is

good whereas for websites like BMJ [4] and Nature [28]

which contains certain differently structured pages, the

use of XPATH expression derived from a sample, does

not work well for all the target web pages. In future,

machine learning approaches can be studied and adapted

to information extraction which may learn new templates

when encountered and therefore may increase the

accuracy of extraction in case of websites having

heterogeneous web pages linked to it.

Table 3. Precision, Recall and F-Measure values for various attributes extracted from journals associated with various Publishers’ sites.

 Precision Recall F-Measure

Elsevier

SNIP 1 0.990991 0.995475

SJR 1 0.990991 0.995475

IMPACT FACTOR 1 0.993243 0.99661

IMPACT FACTOR FOR 5

YEARS
1 0.898649 0.946619

BMJ

IMPACT FACTOR 0.955556 0.826923 0.886598

ISSN 0.888889 0.740741 0.808081

Nature

IMPACT FACTOR 0.896552 0.855263 0.875421

ISSN 0.951724 0.907895 0.929293

Wiley

IMPACT FACTOR 1 1 1

ISSN 1 1 1

Oxford

IMPACT FACTOR 0.961538 0.892857 0.925926

ISSN 0.909091 0.833333 0.869565

EISSN 0.928571 0.902778 0.915493

Springer

IMPACT FACTOR 0.977778 0.942857 0.96

ISSN 0.972222 0.933333 0.952381

Fig.5. Comparison of Precision, Recall and F-Measure values for attributes extracted from journal home pages

associated with various Publishers’ web site.

A. Advantages

This technique differs from other unsupervised

approaches in the following ways:

1. Unlike other DOM tree based techniques [20], [40],

it does not require processing the entire DOM tree to

identify location of attribute value pairs. Usually they

represent text nodes and text nodes are always leaf nodes

in the DOM tree.

2. It requires linear time since it does not involve

complex pattern matching or string alignment algorithms

as in [3] [7].

3. Running time is greatly reduced because once the

XPATH is determined for a journal home page, the same

XPATH can be used for extraction from similarly

38 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

structured journal home pages linked to the publishers’

web site.

4. It can be extended for data extraction belonging to

different domains provided domain keywords and their

synonyms are known.

B. Limitations

1. It does not work well in case of differently

structured journal pages linked to single publishers’ web

site.

2. It does not handle ordering of attributes

3. It does not accommodate new templates in ad hoc

manner.

V. CONCLUSION

Extracting structured data from hidden or deep web is a

challenging problem because of the intricate structure of

the web pages which changes from one web site to

another. Researchers and publishers tend to use search

engines to find appropriate journals for research article

publication which involves a tedious task of navigating

through a series of links to obtain detailed information

about the journals such as SJR, SNIP, Impact Factor,

scope etc. The proposed framework uses a heuristic based

approach for navigating the publishers’ web site to find

the journal home pages and to extract the needed

information. The versatility of the proposed work is

proved by making use of the approach for extracting

journal information from different publishers’ web site

like Elsevier, BMJ, Nature, Wiley, Springer and Oxford

journals. The same can be extended to get information

from different domains provided we know the domain

keywords used across sites. The limitation associated

with our approach is that the data to be extracted should

be enclosed within HTML tags. If the journal metrics are

available as part of text, then the system won’t be able to

recognize and extract the data. In future, we are planning

to incorporate NLP techniques in order to recognize

metrics available as part of text nodes and also machine

learning techniques to learn new templates in an ad hoc

manner. We are also planning to deduce template from

DOM tree by applying Adaptive Weighted Frequent

Itemsets algorithm[25].

REFERENCES

[1] Akshi Kumar, Teeja Mary Sebastian (2012). Sentiment

Analysis: A Perspective on its Past, Present and Future,

IJISA, vol.4, no.10, pp.1-14, 2012. DOI:

10.5815/ijisa.2012.10.01

[2] Arasu, A., & Garcia-Molina, H. (2003). Extracting

structured data from Web pages. Proceedings of the ACM

SIGMOD International Conference on Management of

Data, San Diego, California, pp.337-348.

[3] Bergman, M. (2001). The deep Web: Surfacing hidden

value. The Journal of Electronic Publishing, Vol. 7.

[4] BioMed Journal. Accessed May 18, 2016 from

https://www.biomedcentral.com/journals

[5] Chang, C.-H., & Kuo, S.-C. (2004). OLERA: A Semi-

Supervised Approach for Web Data Extraction with

Visual Support. IEEE Intelligent Systems, 19(6), pp. 56-

64.

[6] Chang, C.-H., & Lui, S.-C. (2001). IEPAD: Information

Extraction based on Pattern Discovery. Proceedings of

the Tenth International Conference on World Wide Web

(WWW), Hong-Kong, pp. 223-231.

[7] Crescenzi, V., Mecca, G., & Merialdo, P. (2002),

Roadrunner: Automatic Data Extraction from Data-

Intensive Websites. SIGMOD, pp. 624–624.

[8] Crescenzi, V., Merialdo, P., & Qiu, D., (2013). A

Framework for Learning Web Wrappers from the Crowd.

WWW'13 Proceedings of the 22nd international

conference on World Wide Web, pp. 261-272.

[9] Dönz, B., Bruckner, D., (2013). Extracting and Integrating

Structured Information from Web Databases Using Rule-

Based Semantic Annotations. Industrial Electronics

Society IECON 2013–39th Annual Conference of the

IEEE, pp. 4470-4475.

[10] Dönz, B., Boley, H., (2014). Extracting Data from the

Deep Web with Global-as-View Mediators Using Rule-

Enriched Semantic Annotations. Proceedings of the

RuleML 2014 Challenge and the RuleML 2014 Doctoral

Consortium hosted by the 8th International Web Rule

Symposium, vol. 1211, pp. 1-15.

[11] Elsevier Journals. Accessed May 18, 2016 from

https://www.elsevier.com/journals/title/a

[12] Furche, A., Gottlob, T., Grasso, G., Orsi, G., Schallhart,

G., Wang, C., (2012). AMBER: Automatic Supervision

for Multi-Attribute Extraction. CoRR abs/1210.5984 2012.

[13] Hammer, J., McHugh, J., & Gracia-Molina, H. (1997).

Semistructured data: The TSIMMIS experience.

Proceedings of the First East-Europen Symposium on

Advances in Databases and Information Systems (St.

Petersburg, Russia), pp. 1-8.

[14] Hogue, A., & Karger, D. (2005). Thresher: Automating

the Unwrapping of Semantic Content from the World

Wide. Proceedings of the 14th International Conference

on World Wide Web (WWW), Japan, pp. 86-95.

[15] Janosi-Rancz ,K.-T., Lajos ,A. (2015). Semantic Data

Extraction. Elsevier Procedia Technology, Vol. 19, pp.

827–834.

[16] Jaunt API. Accessed May 18, 2016 from http:// jaunt-

api.com/

[17] Jer Lang Hong (2011). Data Extraction for Deep Web

using WordNet. IEEE Transactions on Systems, Man, and

Cybernetics—Part C: Applications and Reviews, Vol. 41,

No. 6, pp. 854 – 868.

[18] JQuery selector, Accessed May 18, 2016 from

https://api.jquery.com/category/selectors/

[19] JSOUP API. Accessed May 18, 2016 from

https://jsoup.org/

[20] Kayed, M. & Chang, C.-H. (2010), FiVaTech: Page-level

web data extraction from template pages. IEEE

Transactions on Knowledge and Data Engineering, 22(2),

pp. 249–263.

[21] KDNuggets. Accessed May 18, 2016 from

http://www.kdnuggets.com/

[22] Knuth, Donald E., James H. Morris, Jr, and Vaughan R.

Pratt. (1977). Fast pattern matching in strings. SIAM

journal on computing 6.2 pp. 323-350.

[23] Kushmerick, N., Weld, D., & Doorenbos, R. (1997),

Wrapper Induction for Information Extraction.

Proceedings of the Fifteenth International Conference on

Artificial Intelligence (IJCAI), pp. 729-735.

[24] Lixto. Accessed May 18, 2016 from

http://www.lixto.com/

[25] Long Nguyen Hung, Thuy Nguyen Thi Thu, Giap Cu

Nguyen (2015). An Efficient Algorithm in Mining

http://www2013.org/
https://www.elsevier.com/journals/title/a
https://jsoup.org/
http://www.kdnuggets.com/
http://www.lixto.com/

 Web Data Extraction from Scientific Publishers’ Website Using Heuristic Algorithm 39

Copyright © 2017 MECS I.J. Intelligent Systems and Applications, 2017, 10, 31-39

Frequent Itemsets with Weights over Data Stream Using

Tree Data Structure, Int’l Jour. of Intelligent Systems and

Applications, Vol. 7, No. 12, pp. 23-31.

[26] Manoj, D.-S., Sonune, G., Meshram, B.-B. (2013).

Understanding the Technique of Data Extraction from

Deep Web. (IJCSIT) International Journal of Computer

Science and Information Technologies, Vol. 4 (3), pp.

533-537.

[27] Michael Bolin. (2005) End-user programming for the web.

Master’s thesis, Massachusetts Institute of Technology,

May 2005.

[28] Mozenda. Retrieved 18 May, 2016 from

http://mozenda.com/

[29] Nature Journal. Accessed May 18, 2016 from

http://www.nature.com/siteindex/

[30] Oxford Journal. Accessed April 17, 2017 from

https://academic.oup.com/journals/pages/journals_a_to_z

[31] Pavai, G., Geetha, T.-V., (2013). A Unified Architecture

for Surfacing the Content of Deep Web Databases. Proc.

of Int. Conf. on Advances in Communication, Network,

and Computing pp. 35 – 38.

[32] Sahuguet, A., Azavant, F. (2001). Building Intelligent

Web Applications using Lightweight Wrappers. IEEE

Transactions on Data and Knowledge Engineering, 36(3),

pp. 283-316.

[33] Singhal, A., & Srivastava, J. (2013). Data Extract: Mining

Context from the Web for Dataset Extraction.

International Journal of Machine Learning and Computing,

Vol. 3, No. 2, pp 219 – 223.

[34] Sleiman, H.-A., Corchuelo, R. (2014). Trinity: On Using

Trinary Trees for Unsupervised Web Data Extraction.

IEEE Transactions on Knowledge and Data Engineering,

26(6), pp. 1544-1556.

[35] Springer Journals. Accessed on April 17, 2017 from

https://www.springeropen.com/journals-a-z#A

[36] Thamviset, W. & Wongthanavasu, S. (2014).

Information Extraction for Deep Web using Repetitive

Subject Pattern. World Wide Web (2014) 17: 1109.

doi:10.1007/s11280-013-0248-y

[37] Wang, J., & Lochovsky, F. - H. (2003). Data extraction

and Label Assignment for Web databases. Proceedings of

the Twelfth International Conference on World Wide Web

(WWW), Budapest, Hungary, pp. 187-196.

[38] Wiley Journals. Accessed on May 18, 2016 from

http://onlinelibrary.wiley.com/browse/publications

[39] XPATH, Accessed May 18, 2016 from

https://www.w3.org/TR/xpath/

[40] Zhai, Y., & Liu, B. (2005). Web Data Extraction Based on

Partial Tree Alignment. Proceedings of the 14th

International Conference on World Wide Web (WWW),

Japan, pp. 76-85.

[41] Zhou, S., Zhang, S., & Karypis, G., (2012). Automated

Web Data Mining Using Semantic Analysis. ADMA 2012,

LNAI 7713, pp. 539–551.

Authors’ Profiles

Umamageswari Kumaresan is currently

working as assistant professor in the Dept. of

IT, at New Prince Shri Bhavani College of

Engineering and Technology. She received

her B.Tech in Computer Science and

Engineering from Pondicherry Engineering

College in 2005, her M.Tech in Computer

Science and Engineering from Bharath

University in 2010, and currently pursuing Ph.D. degree in

Computer Science and Engineering in Pondicherrry Engineering

College respectively. Her research interests include web mining,

web data extraction, information security and sentiment analysis.

She is a member of IAENG.

Kalpana Ramanujam is currently working

as Professor in the Department of Computer

Science and Engineering at Pondicherry

Engineering College, Puducherry, India. She

received her B.Tech. degree in Computer

Science and Engineering from Pondicherry

University, Puducherry, India in the year

1996 and M. Tech. degree in Computer Science and

Engineering from Pondicherry University, Puducherry in1998.

She completed her Ph.D in Computer Science & Engineering in

the year 2013 in the field of Parallel Computing Systems. She

joined as Lecturer in Department of Computer Science &

Engineering, Pondicherry Engineering College, Puducherry in

the year 2000. Subsequently she was promoted as Assistant

Professor in the Department of Computer Science &

Engineering, Pondicherry Engineering College, Puducherry in

the year 2007 and elevated as Associate Professor in the year

2010. She is presently holding the post of Professor. Her areas

of interest include Parallel Computing Systems, High

Performance Computing, Web services and Distributed

Computing. She has published more than 30 research papers in

International Journals / Conferences. She is also a member of

ISTE.

How to cite this paper: Umamageswari Kumaresan, Kalpana

Ramanujam, "Web Data Extraction from Scientific Publishers’

Website Using Heuristic Algorithm", International Journal of

Intelligent Systems and Applications(IJISA), Vol.9, No.10,

pp.31-39, 2017. DOI: 10.5815/ijisa.2017.10.04

http://mozenda.com/
http://www.nature.com/siteindex/
https://academic.oup.com/journals/pages/journals_a_to_z
https://www.springeropen.com/journals-a-z#A

