
I.J. Intelligent Systems and Applications, 2017, 10, 12-19 
Published Online October 2017 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2017.10.02 

Copyright © 2017 MECS                                                           I.J. Intelligent Systems and Applications, 2017, 10, 12-19 

Scheduling Freight Trains in Rail-rail 

Transshipment Yards with Train Arrangements 
 

Igor Grebennik 
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine 

E-mail: igorgrebennik@gmail.com 

 

Rémy Dupas 
Univ. Bordeaux, CNRS, IMS, UMR 5218, 33405 Talence, France 

E-mail: remy.dupas@gmail.com 

 

Oleksandr Lytvynenko and Inna Urniaieva 
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine 

E-mail: litvinenko1706@gmail.com, inna.urniaieva@nure.ua 

 

Received: 21 June 2017; Accepted: 03 August 2017; Published: 08 October 2017 

 

 

Abstract—A problem of scheduling freight trains in rail-

rail transshipment yards is considered. It is solved at a 

deeper level compared to original papers dedicated to this 

problem: besides scheduling service slots for trains, this 

article additionally solves a problem of assigning every 

train to a railway track. A mathematical model and a 

solving method for this problem are given. A key feature 

of the given mathematical model is that it doesn’t use 

Boolean variables but rather operates with combinatorial 

objects (tuples of permutations). The solution method is 

also based on generation of combinatorial sets, which is 

quite an unusual approach for solving such problems. 

 

Index Terms—Scheduling, Freight Transportation, 

Transportation Logistics, Transshipment Yard, 

Combinatorial Set, Generation, Beam Search. 

 

I.  INTRODUCTION 

Intermodal transportation [1] as well as train routing 

and scheduling [2] are important areas of operations’ 

research nowadays. Particularly, a problem of Container 

Processing in Railway Yards has got lots of attention 

recently. A survey [3] describes the problem setting and 

its various extensions pretty well. 

One of the main issues of the Container Processing in 

Railway Yards area is a problem of scheduling freight 

trains in rail-rail transshipment yards (TYSP) [4]. The 

original paper [4] describes five levels of depth for the 

overall train scheduling problem: 

 

(i) to bundle each train to a service slot, i.e. to schedule 

trains; 

(ii) to assign each train of a bundle to a railway track; 

(iii) to make a decision on positions of trains’ 

containers; 

(iv) to assign container moves to portal cranes; 

(v) to determine a sequence of moving containers for 

every gantry crane [4] (Fig.1).  

 

The article [4] solves the level (i) of the problem  

(scheduling the service slots for trains). The article 

provides a mathematical model and two solution 

algorithms: an exact algorithm that uses dynamic 

programming and a heuristic algorithm that utilizes a 

beam search procedure. A complexity proof for given 

algorithms is also described there. 

Later works bring further improvements to the initial 

mathematical model and improve solution algorithms. In 

[5], the original TYSP is extended by new real-world 

restrictions and a lot of new solution algorithms are given. 

In [6-9], a branch-and-bound algorithm (developed for 

the first time in [5]) is improved with a more effective 

Lagrangian lower bound.  

However, [4] and all later works solve only the level (i) 

of TYSP (scheduling the service slots for trains).  

In this article, a deeper problem of assigning every 

train to a railway track is considered. A mathematical 

model and a solving method for this problem are given 

here. 

A distinctive feature of the given mathematical model 

is that Boolean variables are not used and the model 

mostly works with combinatorial objects (tuples of 

permutations). The proposed solution method is based on 

generation of combinatorial sets. 

A problem of assigning trains to railway tracks in 

every service slot is considered. It could be an important 

task because a total cost of loading/unloading operations 

in real systems can depend on a distance between a 

source train and a target train. If a target train and a 

source one are served within the same time slot, it seems 

appropriate to place them on the closest railway tracks. If 

trains are served in different time slots, it is also 

important to place both trains in such a way that 

movements of the gantry crane are made as short as 
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possible. In this case, the crane should firstly move 

containers from the source train to a storage area and then 

from a storage area to the target train. Thus, both trains 

should be as close to the storage area as possible. 

The remainder of this paper is organized as follows. 

Section 2 describes a mathematical model of the 

proposed approach. Section 3 gives details to a solution 

algorithm. Section 4 presents computational results. 

Conclusions are given in the final section. 

 

 

Fig.1. Representation of transshipment yard 

 

II.  THE MATHEMATICAL MODEL 

A mathematical model is a further extension of the one 

proposed in [4] as it describes a more detailed problem: 

the problem of assigning every train to a railway track 

(the level 2 according to [4]). Our model describes the 

problem using combinatorial structures instead of 

Boolean variables. 

We should dwell on the problem [4] once again. There 

are G tracks and a given set I of trains, where each train 

has a predefined number of wagons and a certain load 

factor, defining a number of containers carried by this 

train. Each train is then assigned to a service slot t = 

1,…,T of G simultaneously served trains. This 

assignment is restricted to the earliest available slot ei of a 

train i (the earliest arrival time) and the latest available 

slot li (the latest departure time). The transshipment yard 

typically deals with distinct bundles of trains (also known 

as service slots). It means that G trains (one per a track) 

are simultaneously served and jointly leave the system 

after all container moves required for that bundle of trains 

have been accomplished. Then another bundle of G trains 

enters the yard [4]. Every iteration is a service slot. 

Thus, some special situations are also considered in [4]: 

 

(1) revisits, i.e. situations, when a train to have already 

been unloaded has to enter the transshipment yard again 

to be loaded with items to have been delivered after the 

first train’s visit; 

(2) split moves when a train i that carries a container 

dedicated to a train j and is served in a service slot t 

before a service slot t’ of the train j. 

 

A core decision of the transshipment yard scheduling 

problem (TYSP) involves assigning every train i of the 

given train set I to a service slot t = 1,..., T [4]. In addition 

to [4], this article solves the problem of assigning every 

train to one of the tracks at each slot. At most G trains 

can be assigned to each slot t because G is a number of 

parallel railway tracks of the transshipment yard [4].  

Let us construct the mathematical model of the 

problem in terms of combinatorial optimization. 

Let’s describe each time slot t using a tuple tK  

containing an amount of all trains assigned to the slot t; 

we consider assigning every train to a certain railway 

track, their order is important, so 

1 2( , ,..., ,..., )t t t t t
g GK k k k k . Here t

gk I  denotes an 

amount of trains assigned to the time slot t and located on 

a railway track g G .  

It’s worth noting that while forming a time slot, we are 

choosing G trains from I  possible ones, so that we are 
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choosing tK  from a set of permutations G
IP  

(permutations of I  elements are taken from G at one 

time). So, choosing an optimal time slot tK  can be 

treated as the combinatorial optimization problem of 

choosing the optimal permutation from the set t G
IK P . 

In this way, decision variables are time slots 

, 1,2,...,tK t T  to have been formed by the trains. 

A decision result should meet three points:  

 

1. A number of trains’ revisits. 

2. A cost of split moves for containers (which depends 

on assignment of trains to railway tracks) is to be 

minimized. 

3. A cost of moves for containers between trains at the 

same time slot (which also depends on assignment of 

trains to railway tracks) is to be minimized. 

 

The objective #1 is the same one as in [4]; the 

objective #2 is a more general case for the one described 

in [4] where an only number of split moves is considered; 

the objective #3 is a new one compared to [4] because 

trains’ assignment to railway tracks is taken into account. 

As described in [4], we have the multi-objective 

optimization problem (the objectives #1 and #2 exist here, 

but the objective #3 is new) and use linear scalarization to 

formulate the problem as the single-objective 

optimization one. Let’s describe an objective function 

and constraints. 

 

*
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where I ={1,2, …, N} is a set of the trains (indices i and j) 

[4]; 

Li    is a set of the trains carrying containers dedicated to 

the train i [4]; 

T is a number of the time slots for trains’ (un-)loading (an 

index t) [4]; 

G is a number of parallel tracks within the transshipment 

yard (an index g) [4]; 

A = [Aij], i,j=1,2,…, N is a number of containers the train 

i receives from the train j [4]; 

ei  is the earliest time slot the train i may be assigned to 

[4]; 

li  is the latest time slot the train i may be assigned to [4]; 

M stands for a Big integer value (e.g., M = T − 1) [4]; 

1 2 3, ,   are given weights for the objectives #1-#3, 

1 2 3, , 0    ; 

yi denotes a binary variable: 1, if the train i has to revisit 

the yard; 0, otherwise [4]; 

1 2( , ..., )t t t t G
G IK k k k P   is the time slot t formed by G 

trains assigned to the railway track; 

pqC  determines a cost of picking a container from the 

source train on a track p and dropping it to the target train 

on a track q, if the trains are served within the same time 

slot; 
*
pqC  is a cost of picking a container from the source train 

on a track p and dropping it to the target train on a track q, 

if the trains are served at different time slots (a cost of the 

split move). 

 

Costs pqC  and *
pqC  are predefined values that can be 

calculated once (during an initialization procedure). 

 

pq pqC c                                 (6) 

 
*

0 0pq p qC c c                            (7) 

 

Here pqc  is a constant cost of moving a container from 

the track p to the track q. 

The storage area is denoted by a fictitious track 0. If 

the container is moved directly, the movement cost pqC  

is just a cost of the direct container move pqc . But if the 

trains are served at different time slots, then, first of all, a 

container should be moved from the source train to the 

storage area ( 0pc ) and later from the storage area to the 

target train ( 0qc ), so that *
0 0pq p qC c c  . 

All constants pqc  depend on the specific transshipment 

yard. In the simplest case, if the cost depends only on a 

distance between railway tracks, and neighboring tracks 

are located approximately at the same distance, pqc  can 

be calculated as p q . 

The condition (3) ensures that each train is served 

within the acceptable time slot [ei; li]. 

Similar to the condition (4) in [4], our condition (4) 

ensures that the source train 
t
pk  arrives before the target 

train 
't

qk  (but if the target train revisits, then the condition 

is always satisfied due to a right summand). 
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III.  A SOLUTION ALGORITHM 

We use the beam search procedure from [4] with an 

only distinction that we arrange the trains while forming 

every slot in order to minimize a sum of the move costs: 

 

 between the trains within the current slot (a direct 

move cost); 

 from the trains at the current slot to the staging 

area (if the trains have containers for other trains 

that are not at the current slot) – a split move begin 

cost; 

 from the staging area to the trains at the current 

slot (if the staging area has containers for the trains 

at the current slot) – a split move end cost. 

 

For now, minimization of the move costs is achieved 

by a simple exhaustive search over all permutations of the 

trains. 

Let us briefly recall main steps of the algorithm [4]: 

 

1. At the first step, t=0 and we have no schedules yet. 

It means that we have an empty node in an acyclic 

graph [4]. Let us call it a parent node. 

2. Increase t and generate a set of possible time slots 

1 2( , ..., )t t t t G
G IK k k k P  . 

3. Calculate a value of (1) for each generated slot and 

select the best BW (a beam width and a predefined 

parameter) in terms of (1). 

4. For each BW selected slot, build a new node in the 

acyclic graph [4] which is located under the parent 

node and recursively call the step 2 with setting 

this node as the parent one. 

 

Example. Given G=2 tracks, 4 trains I ={1,2,3,4} and a 

beam width BW=2. The acyclic graph from [4] (in some 

different form: a node text indicates the current slot 

instead of the trains already scheduled up to the current 

slot), produced by the solution algorithm, is depicted in 

Fig.2. Nodes selected by the beam search are marked in a 

bold font; some nodes  are also replaced by ‘…’: 

 

 

Fig.2. An example of a solution graph 

The top of the graph is here the beginning t=0.  

The next level t=1 represents a few possible variants of 

slots, i.e. (12), (13), …. (43). It should be noted that the 

slots (12) and (21) are different because train 

arrangement is important. For example, the train 2 has to 

unload containers to the staging area (which is considered 

as the track 0 which is closer to the track 1) and therefore 

it makes sense to place the train 2 to the track 1, which 

means that the slot (21) has a lower cost compared to (12). 

Having generated all 2
4 12P   possible slots

1K , the 

beam search procedure selects BW=2 slots/nodes with the 

best value of (1) for expanding. Other slots/nodes are 

excluded from further consideration. Let’s assume that 

we selected slots (12) and (43). 

 

IV.  COMPUTATIONAL RESULTS 

We implemented the solution algorithm in Python 2.7. 

A developed application is available online at http://tsy-

litvinenkoapps.rhcloud.com/. Please take a look at 

screenshots of an example of input data and its solution in 

Figs. 3, 8, 9, 10. 

Computational experiments were carried out to show 

how train arrangement impacts a solution quality and 

time. We generated a bunch of test instances. Every 

instance is a combination of following input parameters: 

 

 9 options of a train count N=6,7, … ,14; 

 4 options of a track count G=2,3,4,5; 

 4 options of a track-track move cost:  

 

pqc = cost_coef * p q , cost_coef = 1,10,50,100; 

 

 5 various numbers of the target trains for each 

train: when each train carries containers for 

1,2,3,4,5 other trains; in other words, a various 

sparseness of a matrix 

A:
1

1,2,3,4,5, 1,2...
N

ij

i

A j N


  . Let us denote 

this parameter as cargos_per_train. 

 

Objective weights were taken equal for all instances 

1 2 3 1    
. 

We solved each of 9*4*4*5=720 instances twice: 

without train arrangement (solving only the level 1 issue 

described in [4]) and with train arrangement (solving also 

the level 2). For every instance, we calculated a relative 

time increase and a relative cost decrease of the solution 

with arrangements compared to the solution without 

arrangements: 

 

cost_decrease = (c1-c2)/c2,                             (8) 

 

time_increase = (t2-t1)/t1                     (9) 

 

where c1 and c2 determine values of the expression (1) for 

the solutions with and without arrangements; t1 and t2 

define the solution time for the solutions with and without 

arrangements respectively. 

One can find a full set of the solution data at 

https://goo.gl/D36bf7. 

We have analyzed in what way each described input 

parameter may impact both the time increase and the cost 

decrease. Results are depicted in Figs. 4-7. Y-axis in all 

diagrams contains logarithms of cost_decrease and 
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time_increase (y=lg cost_decrease, y=lg time_increase), 

while X-axis contains values of a specific input parameter. 

The diagrams show that G and cargos_per_train 

directly impact both the cost decrease and the time 

increase while n generally impacts the time increase and 

cost_coef does not seem to impact either the time increase 

or the cost decrease. 

 

 

 

Fig.3. A screenshot of the developed application (input data) 

 

Fig.4. cost_decrease and time_increase (y axis) for various N (x axis) 
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Fig.5. cost_decrease and time_increase (y axis) for various G (x axis) 

 

Fig.6. cost_decrease and time_increase (y axis) for various cost_coef (x 

axis) 

 

Fig.7. cost_decrease and time_increase (y axis) for various 

cargos_per_train (x axis) 

 

V.  CONCLUSION 

This article solves the second level of the 

transshipment yard scheduling problem, which includes 

assignment of the trains to the certain tracks.  

The mathematical model and the solving method have 

been given for the described problem. 

The article also describes TYSP in terms of the 

combinatorial optimization instead of using Boolean 

variables. 

In computational experiments, we figured out that the 

solving problem for the second level allows decreasing 

the total schedule cost. However, more computational 

time is required to arrange the trains to the tracks. 

The algorithm of the train arrangement could be 

improved in order to decrease computational time. 

 

 

Fig.8. A screenshot of the developed application (its solution for the 

second slot) 

 

Fig.9. A screenshot of the developed application (its solution for  

the third slot) 
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Fig.10. A screenshot of the developed application (its solution for the first slot) 

REFERENCES 

[1] T. Crainic and K. Kim, "Intermodal transportation", 

Handbooks Oper. Res. Manag. Sci., Vol.14, pp.467–537, 

2007.  

[2] J.-F. Cordeau, P. Toth, and D. Vigo, "A Survey of 

Optimization Models for Train Routing and Scheduling", 

Transp. Sci., Vol.32, pp.380–404, 1998.  

[3] N. Boysen, M. Fliedner, F. Jaehn, et al., "A Survey on 

Container Processing in Railway Yards", Transp. Sci., 

Vol.47, pp.312–329, 2013. 

[4] N. Boysen, F. Jaehn, and E. Pesch, "Scheduling Freight 

Trains in Rail-Rail Transshipment Yards", Transp. Sci., 

Vol.45, pp.199–211, 2011. 

[5] N. Boysen, F. Jaehn, and E. Pesch, "New bounds and 

algorithms for the transshipment yard scheduling 

problem", J. Sched., Vol.15, pp.499–511, 2012.  

[6] M. Barketau, H. Kopfer, and E. Pesch, "A Lagrangian 

lower bound for the container transshipment problem at a 

railway hub for a fast branch-and-bound algorithm", J. 

Oper. Res. Soc., Vol.64, pp.1614–1621, 2013. 

[7] P.K. Agrawal, M. Pandit, H.M. Dubey,"Improved Krill 

Herd Algorithm with Neighborhood Distance Concept for 

Optimization", International Journal of Intelligent 

Systems and Applications(IJISA), Vol.8, No.11, pp.34-50, 

2016. 

[8] H.A.R. Akkar and F.R. Mahdi,"Grass Fibrous Root 

Optimization Algorithm", International Journal of 

Intelligent Systems and Applications(IJISA), Vol.9, No.6, 

pp.15-23, 2017. 

 

 

 

 

 

[9] S.P. Singh and S.C. Sharma,"A Particle Swarm 

Optimization Approach for Energy Efficient Clustering in 

Wireless Sensor Networks", International Journal of 

Intelligent Systems and Applications(IJISA), Vol.9, No.6, 

pp.66-74, 2017. 

 

 

 

Authors’ Profiles 

 
Igor Grebennik was born in 1966. He is 

D.Sc., professor, Chair of Systems 

Engineering Department at Kharkiv 

National University of Radio Electronics.  

I.Grebennik is an author of more than 180 

publications and eight books. 

Scientific interests: Combinatorics, 

Combinatorial Generation, Combinatorial Optimization, 

Combinatorial Optimization Problems of Placement of Objects, 

Mathematical Modeling, Vehicle routing problems. 

 

 

Rémy Dupas was born in 1961. He is a 

professor at University of Bordeaux. 

Scientific interests: operational research, 

combinatorial optimization, industrial 

engineering, production and transportation 

problems (scheduling, supply chain 

planning and vehicle routing). 

 

 

 

 

 



 Scheduling Freight Trains in Rail-rail Transshipment Yards with Train Arrangements 19 

Copyright © 2017 MECS                                                           I.J. Intelligent Systems and Applications, 2017, 10, 12-19 

Oleksandr Lytvynenko was born in 1992. 

He graduated from Kharkiv National 

University of Radioelectronics (Automatics 

and Computer Technologies Faculty, 

specialization System Engineering) in 2013. 

He is currently a Ph.D. student and a web 

developer. 

 

 

Inna Urniaieva was born in 1969. She is an 

assistant professor at Systems Engineering 

Department in Kharkiv National University 

of Radio Electronics. 

Scientific interests: Combinatorial 

Optimization Problems of Placement of 

Objects, Mathematical Modeling, Vehicle 

routing problems. 

 

 

 

How to cite this paper: Igor Grebennik, Rémy Dupas, 

Oleksandr Lytvynenko, Inna Urniaieva, "Scheduling Freight 

Trains in Rail-rail Transshipment Yards with Train 

Arrangements", International Journal of Intelligent Systems and 

Applications(IJISA), Vol.9, No.10, pp.12-19, 2017. DOI: 

10.5815/ijisa.2017.10.02 


