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Abstract—A fuzzy clustering algorithm for 

multidimensional data is proposed in this article. The data 

is described by vectors whose components are linguistic 

variables defined in an ordinal scale. The obtained results 

confirm the efficiency of the proposed approach. 
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I.  INTRODUCTION 

That’s a very common situation for sociological, 

medical and educational tasks when initial data is given 

not in a numeric scale but rather in a rank (ordinal) scale 

[1-5]. This information (for the one-dimensional case) is 

given in the form of an ordered sequence of linguistic 

variables  
1 2, ,..., ,..., ,i mx x x x  1 ... 1 1 ...j j j m         

where jx  is a linguistic variable and j is its 

corresponding rank.  

A typical example is a traditional (for Ukraine and 

some other ex-USSR countries) educational grading 

system like "poor", "fair", "good", "excellent". Let’s note 

that a person in its daily activities is much more likely to 

use an ordinal scale rather than a numerical one. 

The simplest approach for solving these clustering 

problems on an ordinal scale is based on replacement of 

linguistic variables with their ranks but this method is 

incorrect in most cases because it assumes equal 

distances between neighboring numerical ranks [6-12]. It 

is intuitively clear that a distance between "poor" and 

"fair" is much longer than a distance between "fair" and 

"good" while assessing students' knowledge. Many 

similar examples can be found in medicine. 

That’s a more natural approach that is based on 

fuzzification of input data and further usage of fuzzy 

clustering methods. Thus, an initial set of linguistic 

variables 1 2, ,..., ,...,i mx x x x is replaced with a set of 

membership functions 1 2( ), ( ),..., ( )mx x x    defined in 

the interval [0,1] . This method was used in [13] where 

clustering (based on the Fuzzy C-means (FCM) algorithm 

[14]) was not performed for the initial data but for 

parameters describing corresponding membership 

functions, although a method for determining these 

parameters was not specified. 

There’s an approach that looks more natural. It's 

developed by R.K. Brouwer [15-21] and based on the 

frequency distribution analysis of the specific values’ 

occurrence of linguistic variables. A limitation of this 

approach is an assumption about the Gaussian 

distribution of the initial data. This assumption is not 

usually met in many real-world applications. 

The initial data for solving the task is a sample of 

observations which contains  N  n dimensional feature 

vectors { (1), (2),..., ( ),..., ( )},X x x x k x N  1,2,..., ,k N  

( ) { ( )},j

ix k x k  1,2,..., ; 1,2,...,i n j m   is a rank of a 

specific value of a linguistic variable in the i  th 

coordinate of the n dimensional space for the k  th 

object to be clustered.  

A result of this algorithm is partition of the initial 

dataset X  into m  classes (clusters) as well as calculation 

of a membership level ( )jw k  k  th feature vector to the 

j  th cluster.  

The remainder of this paper is organized as follows: 

Section 2 describes a procedure of the initial data 

fuzzification. Section 3 describes. a fuzzy clustering 

method for ordinal data. Section 4 describes experimental 

results. Conclusions and future work are given in the final 

section. 

 

II.  THE INITIAL DATA FUZZIFICATION 

A fuzzification process for a sequence of rank 

linguistic variables may be considered by an example of 

the one-dimensional sample (1), (2),..., ( )x x x N  where 

each observation ( )x k  may be ascribed one of the j  

ranks, 1,2,...,j m . 

Let the value ( )x k  (which corresponds to the j  th 
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rank) be seen in the sample jN  times. Then a relative 

frequency of occurrence of the j  th rank can be 

introduced 
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as well as cumulative frequencies  
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while naturally there’s a condition  
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Based on these cumulative frequencies, membership 

functions’ ( )j x  centers are formed (Fig.1). At the same 

time, it’s convenient to use a recurrence relation to 

compute centers  

 

1 10,5c f , 1 10,5( ),j j j jc c f f     2,3,...j m , 

 

and to set membership functions in the form 
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Fig.1. Membership functions for a set of rank variables 
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( ) 1, [ , 1].m mx x c    

This method of setting membership functions 

automatically provides the unity (Ruspini) partition 

which means that the following condition is fulfilled  

 

1

( ) 1
m

i

j

x


 . 

 

Although it’s possible to use functions of some other 

view with a finite support  

 

supp 1 1( ) [ , ]j j jx c c   . 
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Fig.2. The areas of influence for neighboring ranks. 

 

Let’s consider two neighboring membership functions 

( )j x  and 1( )j x   (Fig.2). Using a term of the    cut  

 

 : ( )A x X x     , 

 

an area of influence for two neighboring ranks (shaded in 

Fig.2) can be  introduced in the form of  
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   (1) 

 

where L  and R  stand for the left and right sides of 

neighboring membership functions. If there’s a hit of 

some observation in the area of influence of a particular 

rank, we can talk about crisp belonging to this rank. 

 

III.  A FUZZY CLUSTERING METHOD FOR ORDINAL DATA 

Since we have a multidimensional data sample of 

observations (vectors) to be clustered, the fuzzification 

procedure should be performed in every coordinate of the 

n dimensional feature space similarly to the previous 

example. nm  membership functions are formed (they 

have centers ijc ) during this procedure like it’s shown for 

a two-dimensional case (Fig.3). Here comes an object 

( )x k  to be clustered with coordinates 
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As one can see in Fig.3, membership functions 

12 1 13 1 14 1( ), ( ), ( ),x x x    22 2 23 2 24 2( ), ( ), ( )x x x    work in 

this case in such a way that it’s rather hard to make an 

immediate decision about belonging of ( )x k  to one of the 

classes «Poor», «Fair», «Good» and «Excellent» (Fig.3). 

A process of fuzzy clustering for rank variables is carried 

out at the same example that is shown in Fig.4. After nm  

membership functions (in our example, 2 4 8   

membership functions) have been formed, 

n dimensional vectors (cluster centroids) 

1 2( , ,..., ) , 1,2,...,T

j j j njc c c c j m   are taken into 

consideration (in our example, 

1 11 12 2 21 22( , ) , ( , ) ,T Tc c c c c c   3 31 32 4 41 42( , ) , ( , )T Tc c c c c c  ) 

with their areas of influence which are described by ratios 

(1) (shaded areas in the picture). If an object gets into 

these regions, we can say that there’s crisp membership 

of an object ( )x k  to a specific cluster. We have an object 

( ) ( , )Tx k e a  to be classified which is represented in a 

numerical form with coordinates 12c  and 24c  after 

fuzzification.. 

Then distances ( ( ), ) || ( ) ||i id x k c x k c   between ( )x k  

and all centroids ic  are calculated. Membership levels 

( )jw k  of a vector ( )x k  to the j  th cluster should be  
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Fig.3. Membership functions of a 2D feature space 

 

Fig.4. Fuzzy clustering for rank variables 
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defined according to the FCM procedure [22] 
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A drawback of the estimate (2) is the fact that an object 

(except the case when ( )x k  gets into an area of influence 

of a centroid) equally belongs to all the existing clusters 

which leads to loss of a physical sense in the rank scale. 

So, an object under consideration ( ) ( , )Tx k e a  with a 

non-zero membership level may belong both to the 

«Excellent» cluster and to the «Poor» cluster. Obviously, 

that doesn’t make any sense. 

It seems reasonable in this regard to rank all the 

distances ( ( ), )jd x k c  (which have been previously 

computed) in an ascending order and to choose the 

minimum distance min min ( ( ), )jd x k c  and the one 

following it min ( ( ), )ld x k c . Then we can use the 

expression (2) with the only difference that we take into 

account only the two minimum distances. Finally, ( )x k  

belongs to two neighboring clusters with centroids jc  

and 1jc   (or 1jc  ) with some membership levels ( )jw k  

and 1( )jw k  (or 1( )jw k ). 

Thus, the fuzzy clustering algorithm for 

multidimensional observations given in the ordinal scale 

is implemented as a sequence of steps: 

 

1. Calculation of relative jf  and cumulative jF  

frequencies in a dataset  (1), (2),..., ( ),..., ( )x x x k x N ; 

2. Fuzzification of an initial data set of linguistic 

variables by forming mn  membership functions 

( ), 1,2,..., ; 1,2,...,ij ix j m i n    and m  vectors–

centroids 1 2( , ,..., )T

j j j njc c c c  for the clusters to 

be formed; 

3. Building areas of influence jZ  for centroids jc  in 

the form of an orthotop with edges 0,5ij ijc f ; 

4. Checking a possibility of crisp clustering in the 

form: if ( ) jx k Z , this observation can be 

unambiguously classified, i.е. ( ) 1jw k   and 

( ) 0jw k   for all other l k ; 

5. If the previous condition is not fulfilled, 

calculation of all distances 

( ( ), ) ( )j jd x k c x k c   is performed; 

6. Choosing two minimal distances min min ( ( ), )jd x k c  

and min ( ( ), )ld x k c  where l  may take on a value of 

1j   or 1j  ; 

7. Computing membership levels for ( )x k  to find out 

its belonging to two neighboring clusters: 
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IV.  EXPERIMENTS 

To check the efficiency of the proposed method, we 

have gathered data about students' academic performance 

at one faculty at Kharkiv National University of Radio 

Electronics. A dataset contains students’ grades in 6 

subjects for 135 persons. 

Statistical analysis showed that a hypothesis for each 

variable (subject) about the estimates’ normal distribution 

was not confirmed (Fig.5). 

 

 

Fig.5. A histogram of grades’ distribution for six subjects 

Having applied the proposed method, we calculated 

centroids for each rank (grades) for each variable and 

built membership functions with areas of influence 

(shown in Fig.6-11). 

 

 

Fig.6. Membership functions with   cuts for 6 subjects (case 1) 
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Fig.7. Membership functions with   cuts for 6 subjects (case 2) 

 

Fig.8. Membership functions with   cuts for 6 subjects (case 3) 

 

Fig.9. Membership functions with   cuts for 6 subjects (case 4) 

 

Fig.10. Membership functions with   cuts for 6 subjects (case 5) 

 

Fig.11. Membership functions with   cuts for 6 subjects (case 6) 

The proposed algorithm was compared to the FCM 

procedure  2   and the clustering method for ordinal 

data by R.K. Brouwer (BFCM) [15]. Since classes 

weren’t initially given in the dataset, it’s quite difficult to 

talk about a clustering accuracy of each method. 

Although analyzing the computed membership functions 

for some observations (Tables 1 and 2), it should be 

noticed that the proposed approach performs data 

processing in a more correct manner. It’s clear that the 

demonstrated observations (Tables 1 and 2) may belong 

to the "Good" and "Excellent" clusters with a certain 

membership level but there’s no way for them to belong 

to the “Fair” cluster. It’s proven by the FCM and BFCM 

methods (Table 3). 
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Table 1. Observations from the dataset. Examples (Subjects #1 - #3) 

# obs Subject #1 Subject #2 Subject #3 

1 Fair Excellent Excellent 

2 Fair Excellent Fair 

Table 2. Observations from the dataset. Examples (Subjects #4 - #6) 

# obs. Subject #4 Subject #5 Subject #6 

1 Excellent Excellent Excellent 

2 Good Fair Fair 

Table 3. Membership levels of observations’ belonging to clusters 

Models # obj. Fair Good Excellent 

FCM 
1 0.13 0.37 0.5 

2 0.35 0.48 0.17 

BFCM 
1 0.14 0.26 0.6 

2 0.31 0.49 0.2 

MBFCM 
1 0 0.38 0.62 

2 0.56 0.44 0 

 

V.  CONCLUSION 

The task of fuzzy clustering ordinal data has been 

solved with the help of the proposed method. The most 

peculiar feature of this procedure is the fact that it can 

work under conditions when objects belong to different 

clusters at the same time. 
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