On the Validity of Nonlinear and Nonsmooth Inequalities

M. H. Noori Skandari
School of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
E-mail: Math.Noori@yahoo.com

Abstract—In this article, a new approach is presented to survey the validity of the nonlinear and nonsmooth inequalities on a compact domain using optimization. Here, an optimization problem corresponding with the considered inequality is proposed and by solving of which, the validity of the inequality will be determined. The optimization problem, in smooth and nonsmooth forms, is solved by a linearization approach. The efficiency of presented approach is illustrated in some examples.

Index Terms—Nonlinear and nonsmooth inequalities, Generalized Derivatives, Linearization approach, Smooth and Nonsmooth Optimization.

I. INTRODUCTION

There are some techniques that are frequently employed in proving inequalities. A method to prove the inequalities is to start from one side of the inequality and apply a sequence of known inequalities to reach the other side, or we may start from both sides and try to reach a common point. In fact, few problems concerning inequalities can be proved by a direct application of one of the most important and well-known inequalities. So, it is important to apply known inequalities suitably in order that the desired result can be obtained. Also, sometimes we deal with unapparent inequalities.

Several generalizations and proofs are given related to the inequalities such as Jensen type inequalities [1-4], Hermite-Hadamard inequality [5-10], etc. But, it should always be remembered that there is no standard way of proof and there is no general rule in choosing techniques to be used. Specially, when we deal with inequalities including complicated nonlinear or nonsmooth terms, the proof is very hard. Also, when the number of variables appeared in inequalities is great, we usually do not obtain the validity of inequalities and prove them.

In the recent decades, optimization techniques and methods are developed in many fields and problems, but we do not see a technique based on optimization to prove the inequalities or to survey their validity. Hence, in this paper, an approach is presented to investigate the validity of the following general inequality using optimization:

\[F(X) \geq 0, \quad X \in \Omega \]

where \(F : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R} \) is a continuous function, \(X = (X_1, \ldots, X_n) \) and \(\Omega \) is a compact subset of \(\mathbb{R}^n \). Here, we do not know the inequality (1) is valid or invalid and there is not any approach to determine the validity of the general inequality (1).

II. MAIN IDEA

We consider the following problem corresponding to the inequality (1):

\[\text{Minimize} \quad F(X) \]

(2)

We note that since function \(F(\cdot) \) is continuous and \(\Omega \) is compact, the optimization problem (2) has an optimal solution on \(\Omega \).

Theorem 2.1: Let \(X^* \) be the optimal solution of the optimization problem (2). The inequality (1) is valid when \(F(X^*) \geq 0 \).

Proof: Since \(X^* \) is the optimal solution of the optimization problem (2), for all \(X \in \Omega \), we have \(F(X) \geq F(X^*) \). So if \(F(X^*) \geq 0 \) then for all \(X \in \Omega \) we have \(F(X) \geq 0 \), and this means inequality (1) is valid. Moreover, if \(F(X^*) < 0 \) then inequality (1) is invalid.

By considering the Theorem 2.1, from solving the optimization problem (2), we can recognize the inequality (1) is valid or invalid.

There are several well-known methods and algorithms for solving optimization problem (2), such as line search method, gradient method, Quasi-Newton Method, linearization method, steepest descent method, BFGS Method, etc. In the following, a good linearization method is given to solve the problem (2) in two cases: the function \(F(\cdot) \) is smooth (continuously differentiable) or nonsmooth (nondifferentiable). By this method, we can obtain an approximate global optimal solution for smooth or nonsmooth optimization problem (2).

A. Linearization approach in order to solve the smooth optimization problem
In this subsection, assume that function $F(.)$ has the continuous second order derivative. Divide the set Ω to the similar grids Ω_j, $j=1,2,...,m$ such that $\Omega=\bigcup_{j=1}^{m} \Omega_j$ and for all $i \neq j$, $\text{int}(\Omega_i) \cap \text{int}(\Omega_j) = \emptyset$ (where for every set A, the $\text{int}(A)$ shows the interior points of set A). Select the arbitrary points $Z_j \in \text{int}(\Omega_j)$, $j=1,2,...,m$, where m is a sufficiently big number. By Taylor expansion, for all $X \in \Omega_j$, we have:

$$F(X) = F(Z_j) + \sum_{i=1}^{n} (X_i - Z_{ij}) \frac{\partial F(Z_j)}{\partial X_i} (Z_{ij}) + O\left(\|X - Z_j\|^2\right), \quad j=1,2,...,m$$

(3)

where $Z_j = (Z_{i1},Z_{i2},...,Z_{in})$ and $X = (X_1,X_2,...,X_n)$. We can write for $j=1,2,...,m$:

$$F(X) = \sum_{j=1}^{m} \left(\bar{F}(X) + O\left(\|X - Z_j\|^2\right) \right) I_{\Omega_j}(X)$$

(4)

where

$$\bar{F}(X) = F(Z_j) + \sum_{i=1}^{n} (X_i - Z_{ij}) \frac{\partial F(Z_j)}{\partial X_i} (Z_{ij})$$

(5)

In (4), $I_{\Omega_j}(X) = 1$ if, $X \in \Omega_j$ and in otherwise $I_{\Omega_j}(X) = 0$. By relation (4), we have

$$\text{Minimum } F(X) = \sum_{j=1}^{m} \left(\bar{F}(X) + O\left(\|X - Z_j\|^2\right) \right) I_{\Omega_j}(X).$$

But, by attention to the selected sets Ω_j, $j=1,2,...,m$ and points Z_j, $j=1,2,...,m$, there exists sufficiency big number $m_0 \in \mathbb{N}$ such that for all $m \geq m_0$, $O\left(\|X - Z_j\|^2\right) \leq \frac{1}{m}, \quad X \in \Omega_j$ and hence, for sufficiently great number m, we can ignore the term $O\left(\|X - Z_j\|^2\right), X \in \Omega_j$ for all $j=1,2,...,m$. Hence, the minimization problem (2) can be converted to the following minimization:

$$\text{Minimize } \sum_{j=1}^{m} \bar{F}(X) I_{\Omega_j}(X),$$

(6)

where m is a sufficiently big number and function $ar{F}(.)$ is defined by (5). Thus, by solving nonlinear programming (NLP) problem (6), we can reach to an approximate optimal solution for (2). In below, is shown that by solving some linear programming (LP) problem, we can obtain the optimal solution of NLP problem (6).

Theorem 2.2: Let $X^{j,*}(j=1,2,...,m)$ be the optimal solution of the following linear programming (LP) problem:

$$\text{Minimize } \bar{F}(X) = F(Z_j) + \sum_{i=1}^{n} (X_i - Z_{ij}) \frac{\partial F(Z_j)}{\partial X_i} (Z_{ij})$$

(7)

where $Z_j = (Z_{i1},Z_{i2},...,Z_{in}) \in \Omega_j$ is given and $X = (X_1,X_2,...,X_n)$ is the variable of the problem. Further, suppose that $\bar{F}(X^{p,*}) = \text{Minimum } \bar{F}(X^{j,*}).$

Then $X^{p,*}$ is a global optimal solution for the NLP problem (6).

Proof: Let $\bar{X} \in \Omega$ be an optimal solution for the NLP problem (6), $\bar{X} \neq X^{p,*}$ and $\bar{F}(\bar{X}) < \bar{F}(X^{p,*})$. So there is $k \in \{1,2,...,m\}$ such that $\bar{X} \in \Omega_k$ and

$$\bar{F}(X^{k,*}) = \text{Minimum } \bar{F}(X),$$

$$\bar{F}(\bar{X}) = \text{Minimum } \bar{F}(X).$$

But $\Omega_k \subset \Omega$, so $\bar{F}(X^{k,*}) = \text{Minimum } \bar{F}(X^{j,*}).$

Hence,

$$\bar{F}(X^{k,*}) = \bar{F}(\bar{X}).$$

On the other hand, $\bar{F}(X^{p,*}) = \text{Minimum } \bar{F}(X^{j,*})$ and

$$\bar{F}(X^{p,*}) \leq \bar{F}(X^{k,*})$$

(8)

(9)
By (8) and (9), we have $\overline{F}(X^{p^*}) \geq F(X^{k^*})$ which is a contradiction.

Remark 2.1: By Theorem 2.2, we solve the LP problem (7), for $j = 1, 2, \ldots m$, to obtain the optimal solution of the NLP problem (6). We note that, for sufficiently number m, the optimal solution of the NLP problem (6) is an approximate optimal solution for the NLP problem (2). Moreover, by Theorem 2.1, the optimal solution of the optimization problem (2) shows that smooth inequality (1) is valid or invalid.

B. Linearization approach in order to solve the nonsmooth optimization problem

We suppose that function $F(.)$ is continuous but nonsmooth (or nondifferentiable) on \mathbb{W}. Hence, the problem (2) is a nonsmooth optimization. In this paper, the practical generalized derivatives (GDs) and generalized first order Taylor expansion (FOTE) of nonsmooth functions proposed by Noori Skandari et.al. (see [11,12]) is used to solve the nonsmooth optimization problem (2). A similar approach is given [13] to solve the nonsmooth optimization problems. Also, some other types of GDs are presented in [14,15].

As the following, the GDs and generalized FOTE are introduced at first, and then they are utilized to solve the nonsmooth optimization problems (1).

Assume $C(\Omega)$ is the spaces of continuous and continuous differentiable functions on the set Ω. Let $\varphi(\cdot), j = 0, 1, 2, \ldots$ are the continuously differentiable basic functions for the space $C(\Omega)$ and suppose $N_{\delta}(S)$ is the neighborhood of S with the radius δ. In addition, selecting the arbitrary points $S_i \in \text{int}(\Omega_i)$ $i = 1, 2, \ldots, m$ where the sets $\Omega_i = (i = 1, 2, \ldots, m)$ are defined in subsection 2.1. Now, consider the following optimization problem:

Minimize $\sum_{i=1}^{m} \int_{N_{\delta}(S_i)} \left[F(X) - F(S_i) - \sum_{k=1}^{n} \sum_{j=0}^{\infty} (X_k - S_{ik}) a_{jk} \varphi_j(S_i) \right] dX$ (10)

where $\delta > 0$ is a given sufficiently small number, $X = (X_1, \ldots, X_n)$ and $S_i = (S_{i1}, \ldots, S_{im}) \in \text{int}(\Omega_i)$ for all $i = 1, 2, \ldots, m$. By assumption

$$\eta_k(S) = \sum_{j=0}^{\infty} a_{jk} \varphi_j(S), \quad S \in \Omega, \quad k = 1, 2, \ldots, n$$

$k = 1, 2, \ldots, n$, the problem (10) is equivalent to the following problem:

Minimize

$$\eta_k(\cdot) \in C(\Omega)$$

$$\sum_{i=1}^{m} \int_{N_{\delta}(S_i)} \left[F(X) - F(S_i) - \sum_{k=1}^{n} (X_k - S_{ik}) \eta_k(S_i) \right] dX$$

(11)

Now, let $(\eta_1^*, \ldots, \eta_n^*)$ be the optimal solution of the optimization problem (11). The GD of the function $F(\cdot)$ with respect to X_k is denoted by $\partial_{X_k} F(\cdot)$ and defined as $\partial_{X_k} F(S_i) = \eta_k^*(S_i)$ for $k = 1, 2, \ldots, n$ and $i = 1, 2, \ldots, m$ (see [6,7]). Here, by assumption

$$\eta_k(S) = \sum_{j=0}^{M} a_{jk} \varphi_j(S), \quad S \in \Omega, \quad k = 1, 2, \ldots, n$$

(12)

where M is a sufficiently big number), the infinite dimensional nonsmooth optimization problem (11) can be approximated to the following finite dimensional smooth problem (see [12]):

Minimize $\sum_{i=1}^{m} \int_{N_{\delta}(S_i)} v(X, S_i) dX$ (12)

subject to

$$-v(X, S_i) \leq F(X) - F(S_i) - \sum_{k=1}^{n} \sum_{j=0}^{\infty} (X_k - S_{ik}) a_{jk} \varphi_j(S_i),$$

$$-v(X, S_i) \leq -F(S_i) + F(S_i) + \sum_{k=1}^{n} \sum_{j=0}^{M} (X_k - S_{ik}) a_{jk} \varphi_j(S_i),$$

$$i = 1, 2, \ldots, m, \quad X \in \Omega.$$
On the Validity of Nonlinear and Nonsmooth Inequalities

\[\bar{F}(X) = F(S_1) + \sum_{k=1}^{n} (X - S_{ik}) \partial_{X_k} F(S_i), \]
\[X \in N_\delta(S_i), \]
(13)

where \(\partial_{X_k} F(S_i) = \sum_{j=0}^{M} a_{kj} \phi_j(S_j) \) for \(k = 1, 2, \ldots, n \)
and \(a_{kj} \) for \(j = 0, 1, \ldots, M \) and \(k = 1, 2, \ldots, n \) are
the optimal solutions of the problem (12). Further, in [12]

\[\delta_F(S, \delta) = \left\| F(x) - \bar{F}(x) \right\|_{N_\delta(S)} \]

is showed that the total error
\[\delta_F(S, \delta) = \left\| F(x) - \bar{F}(x) \right\|_{N_\delta(S)} \]

of the approximation \(F(x) \equiv \bar{F}(x) \) on \(N_\delta(S) \), tends to zero
when \(\delta \to 0 \). Also, the generalized FOTE of the
continuous nonsmooth function \(F : \Omega \subset \mathbb{R}^n \to \mathbb{R} \) is
given as follows:

\[F(X) = F(S_i) + \sum_{k=1}^{n} (X_k - S_{ik}) \partial_{X_k} F(S_i) \]
\[+ E_{b, \delta F(S_i)}(X), \quad X \in N_\delta(S_i), \]
(14)

where \(E_{b, \delta F(S_i)}(X) \) is the pointwise error of the
approximation \(F(X) \approx \bar{F}(X) \), \(X \in N_\delta(S_i) \) (the
function \(\bar{F}(.) \) is defined by (13)).

By generalized FOTE, the minimization problem (2)
lead to the following minimization:

\[\text{Minimize } \sum_{i=1}^{m} \bar{F}(X) I_{\Omega_i}(X) \]
(15)

where \(m \) is a given sufficiently big number, linear
function \(\bar{F}(.) \) is defined by (13), and \(I_{\Omega_i}(.) \)
is characteristic function of set \(\Omega_i \).

Theorem 2.3: Consider the NLP problem (15). Let
\(X^{i,*}(i = 1, 2, \ldots, m) \) be the optimal solution of the
following linear programming (LP) problem:

\[\text{Minimize } \sum_{i=1}^{m} \bar{F}(X) I_{\Omega_i}(X) \]
(16)

where \(\Omega_j = \left[\frac{j-1}{m}, \frac{j}{m} \right], \quad j = 1, 2, \ldots, m \) and select points
\(z_j = \frac{2j - 1}{2n}, \quad j = 1, 2, \ldots, m \) on \(\text{int}(\Omega_j) \) Now, the
corresponding LP problem (7) for \(j = 1, 2, \ldots, m \) is as follows:

\[\text{Minimize } \bar{F}(x) = F(z_j) + (x - z_j)F'(z_j) \]
subject to \(\frac{j-1}{m} \leq x \leq \frac{j}{m} \),
(19)

where
\[F'(z_j) = e^{z_j + 1} + \frac{2z_j}{(z_j^2 + 1)} - 2z_j - 2\pi \cos(\pi z_j) + 2\pi \sin(\pi z_j), \quad j = 1, 2, \ldots, m. \]

By solving the LP problem (19), we obtain the optimal solution
\[x^{j,*} = \left(x_1^{j,*}, \ldots, x_m^{j,*} \right), \quad j = 1, 2, \ldots, m. \]
Moreover, we have
\[\text{Minimize } \bar{F}(x^{j,*}) = \bar{F}(x^{P,*}) = 0.4651542. \]

where \(x^{P,*} = 0.1360000 \) is an approximate global optimal solution for the smooth NLP problem (20). Thus, by attending to Remark 1.2, since \(F(x) \geq 0.4651505 > 0 \) the inequality (18) is valid.

Here, the graph of functions \(F(.) \) and \(F'(.) \) are showed in Figure 1.

Example 3.2: We show that the following nonsmooth inequality is invalid:
\[2\left| x - 0.5 \right| + 5x \geq e^{x - 0.25}, \quad x \in [0, 1]. \]
(20)

We define
\[F(x) = 2\left| x - 0.5 \right| + 5x - e^{x - 0.25}, \quad x \in [0, 1], \]
(21)
and assume that \(m = 1000 \) and \(\Omega = \left[\frac{i-1}{m}, \frac{i}{m} \right] \),
\(i = 1, 2, \ldots, m \). Also, we select points \(s_i = \frac{2i - 1}{m} \).

By solving the LP problem (23), we obtain the optimal solution
\[x^{j,*} = \left(x_1^{j,*}, \ldots, x_m^{j,*} \right), \quad j = 1, 2, \ldots, m. \]
Moreover, we have
\[\text{Minimize } \bar{F}(x^{j,*}) = \bar{F}(x^{P,*}) = -0.2840252 < 0 \]
where \(x^{P,*} = 0.5 \times 10^{-16} \) is an approximate global optimal solution for the nonsmooth NLP problem (22). Thus, by attending to the Remark 2.2, the inequality (20) is invalid.

Example 3.3: We survey the validity of the following nonsmooth inequality:
On the Validity of Nonlinear and Nonsmooth Inequalities

3x_1^2 + 2\left|x_1 - x_2\right| + 0.5 \geq 1.5x_2 + x_1\sin(\pi(x_2 - 0.75)) \quad x_1, x_2 \in [0,1]^2.
\tag{24}

Assume that

\[F(x_1, x_2) = 3x_1^2 + 2\left|x_1 - x_2\right| - 1.5x_2 - x_1\sin(\pi(x_2 - 0.75)) + 0.5, \]
\[x_1, x_2 \in [0,1]^2, \quad (25) \]

and solve the following nonsmooth NLP problem:

\[\text{Minimize} \quad F(x_1, x_2) \]
\[\text{subject to} \quad 0 \leq x_1 \leq 1, \quad 0 \leq x_2 \leq 1. \quad (26) \]

For this purpose, we assume that \(m = 200 \) and \(\Omega_{ij} = \left[\frac{i-1}{m}, \frac{i}{m}\right] \times \left[\frac{j-1}{m}, \frac{j}{m}\right] \), for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, m \). Also, select points \((s_i, s_j) = (\frac{2i-1}{m}, \frac{i}{m}) \times (\frac{2j-1}{m}, \frac{j}{m}) \in \text{int}(\Omega_{ij})\). We first calculate the GD of nonsmooth function \(F(.) \) defined by (25) where it is illustrated in Figure 3. By discretization the corresponding continuous optimization problem (16), we reach to the some LP problems and obtain the GD of \(F(.) \) with respect to \(x_1 \) and \(x_2 \) as \(\partial_{x_1} F(s_i, s_j) \) and \(\partial_{x_2} F(s_i, s_j) \), for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, m \), where they are illustrated in Figures 4 and 5, respectively. Now, the corresponding LP problem (16), for solving the nonsmooth NLP problem (26), is as follows (for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, m \)):

\[\text{Minimize} \quad \bar{F}(x_1, x_2) = F(s_i, s_j) \]
\[+ (x_1 - s_i)\partial_{x_1} F(s_i, s_j) \]
\[+ (x_2 - s_j)\partial_{x_2} F(s_i, s_j) \]
\[\text{subject to} \quad \frac{i-1}{m} \leq x_1 \leq \frac{i}{m}, \quad \frac{j-1}{m} \leq x_2 \leq \frac{j}{m}, \quad (27) \]

By solving the LP problem (27), we obtain the optimal solution \((x_1^{i*}, x_2^{j*})\) for \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, m \). Moreover, we have

Minimum \(\bar{F}(x_1^{i*}, x_2^{j*}) = F(x_1^{p*}, x_2^{q*}) = 0.0004391 > 0 \)

where \((x_1^{p*}, x_2^{q*}) = (0.3524999, 0.3524999)\) is an approximate global optimal solution for the nonsmooth NLP problem (26). Thus, by attending to the Remark 2.2, the inequality (24) is valid.
IV. CONCLUSION

The nonlinear and nonsmooth inequalities can be proved or rejected by applying a smooth or nonsmooth optimization problems. In fact, we can solve an optimization problem and receive to the validity of inequality. This optimization problem can be solved by optimization techniques such as linearization approach, approximately and globally.

REFERENCES

Authors’ Profiles

Mohammad Hadi Noori Skandari
Received his B.Sc., M.Sc. and Ph.D. degrees in Applied Mathematics from Ferdowsi University of Mashhad, Mashhad, Iran, in 2005, 2007 and 2012 respectively. He is an Assistant Professor in Applied Mathematics in Faculty of Mathematics at Shahrood University of Technology, Shahrood, Iran. His research interests include Optimal Control, Optimization, Numerical Methods, Nonsmooth systems, Control Systems, Fuzzy Systems and Modeling.

How to cite this paper: M. H. Noori Skandari,”On the Validity of Nonlinear and Nonsmooth Inequalities”, International Journal of Intelligent Systems and Applications(IJISA), Vol.9, No.1, pp.60-66, 2017. DOI: 10.5815/ijisa.2017.01.06