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Abstract—This paper will establish the importance and 

significance of studying the fractional-order control of 

nonlinear dynamical systems. The foundation and the 

sources related to this research scope is going to be set. 

Then, the paper incorporates a brief overview on how this 

study is performed and present the organization of this 

study. The present work investigates the effectiveness of 

the physical-fractional and biological-genetic operators to 

develop an Optimal Form of Fract ional-order PID 

Controller (O2Fo-PIDC). The newly developed Fo-PIDC 

with optimal structure and parameters can, also, improve 

the performances required in the modeling and control of 

modern manufacturing-industrial process (MIP). The 

synthesis methodology of the proposed O2Fo-PIDC can 

be viewed  as a mult i-level design approach. The 

hierarchical Multiobject ive genetic algorithm (MGA), 

adopted in this work, can be visualized as a combination 

of structural and parametric genes of a controller 

orchestrated in a h ierarch ical fashion. Then, it is applied 

to select an optimal structure and knowledge base of the 

developed fractional controller to satisfy the various 

design specification contradictories (simplicity, accuracy, 

stability and robustness). 

 

Index Terms—Optimal fractional-order controllers, 

BIBO stability analysis, Multiobjective genetic algorithm, 

CE150 Helicopter model. 

 

I.  INTRODUCTION 

Systems and control theory has evolved as an 

important confluence between the engineering and 

mathematics discip lines. In  general, it  relates to the 

dynamical system analysis and behaviour and to the 

various techniques in which these systems can be 

influenced to obtain some desired results.  

Actually, a wide variety of mathemat ical techniques 

are used in the field of control system design. Moreover, 

many control, modelling and optimizat ion problems can 

be recast as a learning problem and be solved with 

appropriate mathematical tools. It has been shown that 

famous ordinary-order PID controllers (Oo-PIDC), 

generally, do not work well fo r nonlinear complex and 

vague systems that have no precise mathematical models.  

However, a  class of newly modified-type of Oo-PID 

controller based on advanced and intelligent approaches 

has been designed and simulated for this purpose.  

Recently, fract ional-order calculus, included in  

advanced techniques, has received an increasing interest 

due to the fact that fractional operators are defined by 

natural phenomena [1]. 

Fractional derivatives and integrals operators 

   , D f tc t   
provide an excellent instrument fo r 

the description of memory and hereditary properties of 

various materials and processes. 

The theoretical and practical interest of these operators 

is nowadays, well established. Its applicability to science 

and engineering can be considered as an emerging new 

topic. It includes some areas, such as biology and 

chemical engineering (irrigation canal control [2], low 

pressure flowing water network [3], networked control 

system [4]), control and simulat ion of photovoltaic-wind 

energy systems [5, 6], hydraulic turbine regulation [7], 

flight control [8], fractional-order chaotic systems 

modeling and control [9, 10], Modeling of Economic 

Order Quantity [11], control of a servo systems [12, 13], 

realization of higher-order filters [14], robotic control 

[15], astronomy [16], .. etc.         

The fractional-order Controllers (FoC) were introduced 

firstly by Prof. Oustaloup [17]. He developed the so-

called CRONE controller, French abbreviation of 

“commande Robuste d‟ordre non entier”. The idea of 

using FoC for the dynamic system control is well 

addressed in [18, 19]. More recently, Podlubny proposed 

a generalizat ion of the Oo -PIDC, as a natural extension to 

the Fo-PIDC or a PI D   controller, involving an 

integrator of 
  order and a differentiator of    

order. There are many variants of FoC that have been 

used in different applicat ions depending on the 

application specific requirements: CRONE controller and 

its three generations [18], Fo-PIDC [20], non-integer 

integral [21] and tilted proportional and integral 
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compensator [22]. Other FoC like fractional-order lead-

lag compensator [23] and fract ional-order phase shaper 

are also becoming popular in recent robust process 

control applications [24]. The most common is the family  

of the Fo-PID controllers. 

The application of fractional-order calculus has been 

significantly increased and the FoC are, attractively, 

becoming a major topic of control. However, designing 

high-performance and cost effective controllers is a very  

complex task which could be, practically, impossible to 

optimally accomplish by some conventional trial and 

error methods considering different design criterion in  

time and frequency-domain.  

There are many methods to construct and design such 

FoC which can be regarded as analytical and learn ing 

problems of a desired performance of the controlled 

systems 

 

 The first step is to define a mathemat ical structure 

of the controller based on the application of 

approximation (discretization) methods of the 

fractional operators  , Dc t   
 (resp. s  ) 

based on the analysis field (time or frequency-

domain).  

 The second step is to identify the gains 

„parameters‟ of the predefined structure. After an 

extensive literature search on methods of tuning 

and optimization of FoC, especially the Fo-PIDC, 

we arrived to classify these methods, according to 

the  

 

 Manual methods (trial-and-error) [25]; 

 Analytical methods (phase and gain marg in-

based specifications [3], flat phase [26], 

dominant roots-pole placement [27, 28], internal 

model control (IMC) [29]); 

 Optimization-based methods (F-MIGO 

Algorithm [23], Monje‟s methods  [3], simplex 

search min imization [3], metaheuristic 

algorithms (GA [4, 30], PSO [31], DE [4], SA 

[32], ABCA [12], IWO [33], FOA [34], CSA 

[15]) and least squares optimization method 

[35]); 

 Tuning rule for p lants (with an S-shaped step 

response - with a critical gain) [29, 36]; 

 Auto tuning [3, 21].  

 

Based on the previous classification, we may notice 

that metaheuristic algorithms „evolutionary algorithms 

(EA)‟, especially GA, PSO and DE, have the majority of 

references in the design of the predefined (characterized) 

FoC. The frequency-domain analysis is the dominant case 

of these applications, where the problem is how to 

approximate the integrator-derivator operator s 
 and 

how to optimize the associated parameters of the 

controller under development?  

This research is aimed for appreciat ion of the fractional 

calculus, coupling fractional calculus–intelligent design 

and optimization approaches Thus, it is made as an 

application in  engineering field. The present work 

investigates the effectiveness of the physical and 

biological-based operators (fractional and genetic 

approaches) to develop an optimal form (structure with 

optimal dimension)) of fractional-order proportional-

integral-derivative controller (O2Fo-PIDC) with optimal 

parameters (knowledge base) and able to improve the 

performances required in the modelling and control of 

industrial process. In this context, issues related to the 

design of the proposed controller can be classified into 

mathematical configuration and parametric optimizat ion 

categories. 

 

 Characterizat ion 'mathematical configuration' of 

the control law under development by a judicious 

choice of d iscretization techniques of derivative 

   ,  ,D f tc t
      and integral 

     ,  ,I f t D f tc t c t
         operato

rs involved in modeling  of the control signals. In  

addition, it is indispensable to take into account 

the type of the association (parallel or serial) of 

various proportionality, derivative and integral 

actions. It depends on the design field, time-

domain (control of nonlinear dynamical 

continuous or discrete systems) or frequency-

domain (control of linear continuous systems). In 

this phase, the constraint of computing time  (long 

memory effect) related to an analytical model of 

fractional systems will be treated with prudence 

and is also the seeking tools to improve the 

tradeoff between simplicity and accuracy 

specifications.  

 The learn ing process involves the development or 

the implementation of the learning and 

optimization algorithms of relevant parameters of 

fractional-order control system under development. 

This transaction is based upon the factors of 

accuracy and stability conditions of the control 

loop and the used optimizat ion algorithms 

(conventional, advanced or intelligent-based 

approaches). 

 

The paper is organized  as follows. Section 2 provides 

fundamentals of fract ional calcu lus and its properties in 

time and frequency-domain. A presentation of the Fo-

PIDC, their description and properties are also included.  

A survey of various design and optimization  

approaches of Fo-PIDC is considered. The aim of Section 

3 is to design an optimal and simplified form of Fo-PIDC 

by considering various contradictory objective functions 

to control dynamical systems, such as simplicity, 

efficiency (precision) and stability. The design deal 

with time-domain analysis of the O2Fo-PIDC adapted to 

nonlinear dynamical systems. In section 4, some 

simulation results to illustrate the effectiveness and 

robustness of the proposed control system are displayed.  

Finally, we present some conclusions and the 

contributions developed in this research.  
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II.  FRACTIONAL CALCULUS: AN OVERVIEW 

Fractional calculus, capable of representing natural 

phenomena in a more general way and do not 

approximate the processes by considering that the order 

of the governing differentials are integers only [23, 37], is 

a branch of mathemat ical analysis. It studies the 

possibility of tacking real numbers power of the 

differential and integration operator. The generalized 

differ-integrator may be put forward as [38] 

 

     

 

 

 

 

,  0

              1,                     0

,  0

D f t I f t D f tc t c t t c

d f t dt
d f t

d t c
t

f t d
c

  

  





 

  


 


  
     


    (1) 

 

where    represents the real-order of the differ-

integral, t  is the parameter for which the differ-integral is 

taken and c  is the lower limit, generally 0c   for the 

causal systems. Several alternative definitions of the 

fractional-order integrals and derivatives exist. The three 

most common known defin itions for fractional 

derivatives-integrals are Grünwald-Letnikov (GL) 

definit ion, Riemann–Liouville (RL) defin ition and 

Caputo (C) definition, given, in time-domain, as follows 

 

 Grünwald-Letnikov definition 

 

     
1

lim 1
0 0

N jGLD f t h f t j hc t
jh j

            
    

(2) 

 

where
t c

N
h

 
  
 

 is the upper limit of the computational 

universe, where    means the integer part, h is a grid size 

and 
j

 
 
 

 is a binomial coefficients. 

 

 Riemann–Liouville definit ion given by the 

generalized form 

 

 
 

 

   

 

1
,

1

                    1

n t fdRLD f t dc t
nn dt

tc

n n

 






 
  

     

  


  (3) 

 

where    is the Euler Gamma function.  

 

 Caputo definit ion, which sometimes called  smooth 

fractional derivative, defined by  

 
 

   

   

 

1
,

1

                     1

n
ftCD f t dc t c nn

t

n n

 







  



  


       (4) 

 

As shown by the RL and GL defin itions, the fractional-

order derivatives are global operators having a memory  

of all past events. This property is used to model 

hereditary and memory effects in most materials and 

systems [13]. For numerical calcu lation of fract ional-

order derivative, we can use the relation (2) derived from 

the GL definition. Th is approach is based on the fact that 

for a wide class of functions, GL (2), RL (3) and 

Caputo‟s (4) are equivalent [10]. The fract ional-order 

derivative and integral can  also be defined in  the 

transformation-domain. It is shown that the Laplace 

transform of a fractional derivative of a signal  f t  is 

given by  

 

     

 

 
1

1                        0
01

Initialization function

L D f t s L f tt

F s

n
k ks D f tt

tk

 



   

     
 



      (5) 

 

Considering null in itial conditions, the last expression 

(5) is reduced to the following suitable form: 

 

    L D f t s F st
                   (6) 

 

The Laplace t ransform reveals to be a valuable tool for 

the analysis and design of fractional-order control 

systems for reasons of analysis and synthesis simplicity 

[13]. It  is noted that some MATLAB-tools of the 

fractional-order dynamic system modeling, control and 

filtering can be found in [39, 40]. Numerical methods for 

simulating and discretization fractional-order systems are 

given in detail in [10] and [41]. 

A.  Approximation and numerical implementation 

‘discretization’ of fractional operators: An overview 

The ideal d igital fractional-o rder differentiator-

integrator 0Dt


 is a d iscrete-time whose output  y n  

is uniformly sampled version of the th
-order derivative 

of  f t . Henceforth, we assume that 0  , we write 

 

   0



y n D f tt

t nh


               (7) 

 

In general, if a  function  f t  is approximated by a 

grid function,  f n h , where h is the period of 
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discretizat ion (step size of calculation or sampling time). 

The approximation for its fractional derivative order   

can be expressed as [42]  

 

 
 

 

   

lim
0

1                                 

d f t
y nh h f th

hdt

h w f n hh







 




      


     
 

   

(8) 

 

where      f n h f n h f n h h
t n h

      
 

, 
1   is 

the shift operator and  1w    is a so-called generating 

function (GF). This GF and its expansion determine both 

the form of the approximation and the coefficients [43]. 

Fractional derivative and integral operators are often 

difficult to find analytically and the simulat ion of 

fractional systems is complicated due to their long 

memory behaviour as shown by Oustaloup [18]. A 

number of techniques are available for approximat ing 

fractional derivatives and integrals. These latter can be 

classified into three main groups based on the field under 

study, temporal (t-p lane), frequency (s-plane) and time-

discrete (z-plane) analysis as illustrated in figure 1. 

 

 

 

t-plane

s-planez-plane

Laplace 
Transform 

z 
Transform 

 

s  z 
Transform 

1 

2 3 

 

Fig.1. Simulation-discretization tools of fractional operators. 

 

1. Methods based on the computation of analytical 

expression of derivative and integral signal 

(temporal-analysis). The GL (2) and the Adams-

Bashforth-Moulton (ABM) algorithms based on 

the Caputo‟s definition are the most used methods. 

2. Methods based on the approximat ion of a 

fractional model by a  rat ional continuous-time one 

(frequency-analysis). The Laplace transform is the 

most used algorithm. The main steps to compute 

the general formula of the output are: 

 

Step 1: Compute the Laplace transform from Eq. (5). 

Step 2: Evaluate      s s N s D s     by using the 

most used s 
 approximat ion and can be 

classified into the three following categories [44]:   

 

a. Methods based on mathemat ical techniques for 

rational approximat ion of functions [45, 46]. 

These techniques are based on the approximat ion 

of an irrational function,  G s , by a rational one 

defined by the quotient of two polynomials in the 

variable s. 

b. Methods based on the explicit recursive location of 

poles and zeros of the rational approximation. 

Many iterative techniques exist for realization of 

the fractional elements in continuous time. The 

most used are Oustaloup [18], Charef [47], 

Carlson [48] and Matsuda [49]. 

c. Methods based on frequency domain identificat ion, 

that is, on finding a rational integer-order system 

whose frequency response fits that of the 

fractional-order operator [45]. Generally, linear 

least squares and metaheuristic optimizat ion 

techniques are proposed to solve the frequency-

domain identification problem [50, 51]. 

 

Step 3: Replace the last approximation of 
s  and 

evaluate the inverse of Laplace operator 

   1
0L L D f tt

 
 in (5) to obtain the 

expression to simulate the fract ional derivator and 

integrator of signal  f t . 

 

3. Methods based on the approximat ion of a 

fractional model by a rational discrete-time one 

(discrete-time analysis). The z-transform is the 

most used algorithm. The main steps to compute 

the general formula of the output are: 

 

Step 1: Discretizat ion of the operator s by  1 s z  

and then the approximation of a GF of the form 

 1





 
 
 

z corresponding to
s . The most 

used s-to-z transform 
s  are [52]: Euler 

(backward - forward), Tustin, Al-Alaoui, Simpson, 

Al-Alaoui – Simpson, Al-Alaoui – SKG and Al-

Alaoui – Schneider. 

Step 2: To obtain the coefficients of the approximat ion 

equations for fractional calcu lus  1





 
 
 

z , we 

can perform the most used algorithms: 

 

 The direct power series expansion (PSE) of the 

Euler operator [53, 54] (FIR filter structure); 

 The continuous fractional expansion (CFE) of the 

Tustin operator [53, 54] (IIR filter structure); or 

 The numerical integration-based method [55, 56].  

 

Step 3: Evaluate the inverse operator    1
0Z Z D f tt

   

to obtain the approximat ion of  0D f tt
 . 
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From a control and signal processing perspective, the 

GL and ABM approaches seem to be the most useful and 

intuitive, particularly , for a discrete-time implementation. 

Moreover, in the analysis and design of control systems, 

we usually adopt the Laplace transform method. As a 

result, fractional-order controller synthesis is preferably  

carried out in the frequency domain. Th is is the reason 

why the most design methods proposed, so far, for FoC 

are based on using frequency-response information. 

B.  Fractional-order PID controller 

The motivation on using the digital Fo-PIDC was that 

Oo-PIDC belongs to the dominating industrial controllers. 

Therefore, there is a continuous effort to improve their 

quality and robustness. The traditional Oo-PIDC which 

involves proportional (with gain KP ) plus integral (with 

gain  K K T TI P i  ) p lus  derivat ive (w ith  gain  

 

K K T TD P d  ) actions based on the error signal, 

given in continuous and discrete-time as  

 

   

     

     

I-action D-action
P-action

1 1   

    
0

          1

K e t K D e t K D e tP I t D tx t
u x

x n T nK e n T K T e j TP I j

K e n T e n T TD

     
 

         


     


 

(9) 

 

can be generalized to a fract ional controller involving an 

integrator of order    and a differentiator of order 

  [19, 20]. Figure 2 indicates the schematic 

diagram of the Fo-PIDC loop. 
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Fig.2. Fo-PIDC loop design. 

The mathemat ical model of the Fo-PIDC described in  

continuous and discrete-time is given by 

 

     

            K e t K D e t K D e tP I t D tu
K e n T K e n T K e n TP I Dn T n T





    


       
 

 (10) 

 

To analyze and simulate complex dynamical systems, 

variable-order fract ional is proposed by Hu Sheng et al. 

[57] as a generalization of the constant-order 

PI D 
controller, where  ,   in (10) are rep laced 

by     , t t .  

As shown in Fig. 2, it consists of two layers: a  

computational layer (design) and the decision layer 

(operational).  

Three main stages are necessary for the 

implementation of the control loop: 

 

 

 

 The first is to define an analytical structure of the 

controller by applying the methods of 

discretizat ion and approximation of fract ional-

order operators.  

 The second consists of determining the knowledge 

base of the controller structure, previously 

identified, by application of learning and 

optimization algorithms. 

 The last phase is the verification of the coherence 

of the proposed algorithm by real-time execution. 

 

The frequency-domain analysis is the most used in the 

design of the FoC, where the continuous transfer function 

of the Fo-PIDC is obtained through Laplace transform or 

discrete z-transfer function.  

 

 Laplace  transform of t ransfer function of system 

with input  E s  (error signal) and controller‟s 

output  U s , as 
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 
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 
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 Discrete transfer function given by the following 

expression: 

 

 

                        , 0

1 1G z K K z K zc P I D 

 

 
                

      




 

(12) 

 

where  1s z   denotes the discrete operator, 

expressed as function of the complex variable z  or the 

shift operator 1z . The fractional d ifferentiator-

integrator 
s  is substituted by its discrete-time 

equivalent
1z


  

  
  




. 

From figure 3(a), it can be remarked that the Oo-PIDC 

can only be switched in four conditions: {P, PI, PD, PID}.  

It restricts the controller performance. Relatively, 

depending on the value of orders  ,  ( shaded area 

represented in figure 3 (b )), we get an infinite number of 

choices for the controller‟s type, defined continuously on 

the  ,   plane,  i.e., The Fo-PIDC expands the Oo-

PIDC from point to plane, thereby it adds the flexibility 

to controller design and allows us to control our real 

world p rocesses more accurately [38, 58]. In [59], the 

authors applied the P I D    controller to enhance the 

performance of the force feedback control system, where 

the pair  ,  , ,  K ii  represents the control gain and 

the non-integer order. Thus, the design procedure 

involves the parameters of a FoC with three terms 

      ,  ,  K e t K D e t K D e t  
       associated with 

the P, I and D-actions, respectively. This last form 

expands the Oo-PIDC from point to  , ,   -plane as 

shown in figure 3 (c). 

Fo-PID controllers have received a considerable 

attention in the last years both from academic and 

industrial point of view. However, due to the complexity 

of the fractional-order systems, these control design 

techniques available for the ubiquitous fractional-order 

systems suffer from a lack of d irect systematic 

approaches based on the fair comparison with the 

traditional integer-order controllers [58], [60, 61]. 

Searches in the field of fractional control systems are 

concentrated around two areas  

 

 Development of tools for calculat ing (d iscretizing) 

fractional operators  , Dt
    (resp. s 

) 

based on the used analysis field under study (time 

or frequency-domain). 

 Development or implementation of the learning 

approaches of relevant parameters of control 

system under development (tuning and 

optimization). 
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Fig.3. Generalization of the Fo-PIDC 

 

III.  CONTROLLER DESIGN 

This section should address the most significant issues 

schematized in figure 2 by codes into circles DPL, LPL 

and IPL, respectively. 

 

 The main question in DPL is pronounced as: Is it  

possible to analytically design the Fo-PIDC with 

the best achievable performances, such as 

simplicity and accuracy?  

 The aim o f LPL: It is how this Fo-PIDC can be 

tuned for quantitative performances, such as 

accuracy, stability and robustness? 

 The problem of IPL is pronounced as: What a 

performance limit does the Fo-PIDC have? 

 

A.  Problem formulation and adopted tools 

The fractional calcu lus has received an increasing 

interest due to the fact that fractional operators are 

defined by natural phenomena [1]. In the implementation 

of the fractional controllers, especially Fo-PIDC fin ite 

order approximat ion is required since fract ional elements 

have infinite o rder. Th is difficu lty is caused by the 

mathematical nature of the fractional order operators 

which are defined by convolution and require „unlimited 

memory‟. During the synthesis  of the proposed control 

law, the required performances are articulated around 

various contradictory objective functions , such as: 

 

 Simple and optimal analytical structure and 

parameters; 

 Efficiency and precision; 

 Stability and robustness against disturbances; 

 Implementation ability in real-time.  
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In this context, issues related to the design of the 

proposed controller can be classified into mathemat ical 

modeling „characterization‟ o f the control law under 

development „analytical structure‟ and identification 

„learn ing‟ of the knowledge base associated to the 

predefined analytical model of controller „Parametric 

optimization‟. 

B.  Mathematical background: An overview 

The Oo-PIDC algorithm is one of the most commonly  

used control algorithms in industry. It‟s considered as a 

generic closed loop feedback mechanism. The Oo-PIDC 

output is computed in continuous time as illustrated in (9).  

For a small sample increment 0T  , (9) can be turned 

into a difference equation by discretization [62]. It can  be 

predicted that (9) needs a large quantity of memory  space 

„RAM‟ to store the results of the computation, i.e, to 

compute the sum 
0

n
j 

, all past errors 

      0 , 1 , ,e e e n , have to be stored. 

This algorithm is called the „position algorithm‟ [62]. 

To avoid the redundancy and to derive the recursive 

algorithm, we can apply  the integer derivative operator in  

(9), as given by  

 

     

                      

du t dt K de t dt K e tP I

K d dt de t dtD

   

 
         (13) 

 

In order to take better advantage of discrete form of the 

data, (13) has been approximated by the following 

difference equations based on the first-order Euler 

approximation approach 

 

      lim
0

dx t dt x t x t T T
T

  


             (14) 

 

    

          

2 2

lim 2
0

d x t dt d dt dx t dt

x t x t T T x t T x t T T T
T



       
  

 (15) 

 

Replace (14) and (15) in (13), we obtain the 

approximate expression of the Oo-PIDC in time-domain  

as  

 

           

   

   
   
   

0 1

                                       22

  and,  

1
0

1           21

1
2

u t u t T K e t K e t T

K e t T

K K K T K TP I D

K K K TP D

K K TD

      

   

     


     

  

     (16) 

 

Use a series of discrete sampling point 

 ,    0,1,2,t n T n    to instead the recursive 

algorithm, the steady-state value of Oo-PIDC process is 

obtained as 

 

        

         

1 0

           1 21 2

u n T u n T K e n T

K e n T K e n T

      

       
  (17) 

 

As shown in (17), the calcu lus of the  u n T  is, 

mathematically, based on the   1u n T  ,  e n T , 

  1e n T   and   2e n T  . In the software 

implementation, the incremental algorithm (17) can  avoid 

accumulat ion of all past errors  e n  and can realize 

smooth switching from manual to automatic operation, 

compared with the position algorithm [62]. It is observed 

that in (17), the efficiency and the flexib ility of the 

operating environment can be improved than (9) [63]. 

Many tuning methods are presented in literatures during 

this last decade that are based on a few structures of the 

process dynamics.  

As mentioned above, the conventional Oo-PIDC (9) 

can be generalized  to a FoC involving an integrator of 

order    and a differentiator of order    as 

given in (10). Applied the derivative of the expression 

(10), we get 

 

       11 1 1D u t K D e t K D e t K D e tt P t I Dt t
     


 

(18) 

 

In discrete-time control systems, it is required that the 

data are in form of the sampled data. Thus, it needs to 

discretize the fractional derivative or integral operation to 

realize the discrete-time fractional-order control. In  

general, the GL defin ition given in (2) is the most suitable 

method for the realization of discrete control algorithms. 

In (2),  1
j

j

 
  

 
 represents the binomial 

coefficients
 

 ,   0,1,2,c jj


 , calculated accord ing 

to the relation 

 

 

   

0,                                 0

1,                                  0

1
1 ,   0

1

j

c jj

c j
jj



 







 

        
 

            (19) 

 

Replacing the analytical expressions of  1D x tt


, 

 1
D x tt


 computed from (2) and  1D x tt  from (14) in  



80 Review, Design, Optimization and Stability Analysis of Fractional-Order PID Controller   

Copyright © 2016 MECS                                                             I.J. Intelligent Systems and Applications, 2016, 7, 73-96 

(18), we can obtain the approximate expression of the Fo-

PIDC in time-domain as  

 

        

 
 

    

0

u t u t T K e t e t TP

t T

K T d K T q e t j TI j D j
j

 

     

        




 

(20) 

 

The coefficient d j  and q j  are computed from (19), 

respectively, and given by: 

 

 

 

1,                                    0,

2
1 ,      1, 2,...1

1,                                    0,

2
1 ,      1, 2,...1

j

d j
d jj

j

j

q j
q jj

j





 
 

  
      

  



         
 

        (21) 

 

Using series of discrete sampling point 

 ,    0,1, 2,t n T n    instead of the recursive 

algorithm, the final expression of Fo-PIDC obtained after 

simplification of (20) is given by the generalized form 

 

    

             

 

        

  

 

   

1

          1 20 1 2

base

      3 03

  and,

0

11

             

u n T u n T

K e n T K e n T K e n T

u n T

K e n T K en

R eL

K K K T K TP I D

K K K T KP I D

 

 

    

         

 

      

 

    

        

     

       

 

1

1 12
2 2

  and 

3

       

T

K K T K TI D

n
R e K e n j TL j

j

K K T d K T qj I j D j

 

   

 






   

          



     
 


      


 

(22) 

 

This expression is similar (in form) to that given by the 

relation (17) with the addition of a correction term 

  R eL
   which represents an infinite sequence of 

linear regulators.  

In the case of controller implementation, it  is necessary 

to take into account some important considerations  [45].  

First of all, the value of T, the step when dealing with  

numerical evaluation is limited by the characteristics of 

the microprocessor-based system, used for the controller 

implementation, in two ways 

 Each microprocessor-based system has its own 

minimum value of the sample period; 

 Then, it is necessary to perform all the 

computations required by the control law between 

two samples. 

 

Due to this last reason, it is very important to obtain 

good approximat ions with a min imal set of parameters. 

On the other hand, when the number of parameters in the 

approximation  increases, it  increases the amount of the 

required memory too. From Eq. (22), concluding remarks 

can be pronounced. 

 

 The sampling time T determines the rate at which  

the feedback gains are updated. Faster sampling 

rate  T   allow higher adaptation rate to be 

used, which in turn leads to a better tracking 

performance. Therefore, it is difficu lt to 

implement the algorithm in real-time because of 

the existence of the term   R eL
   in (22). 

Cumulat ive values represent a constraint for the 

implementation of the algorithm in real-time. The 

problem of running time in the phase of design and 

simulation is, also, a problem to report (alert). 

 In general, when the sampling rate is slow (large 

T), the effects of sampling and discretization are 

more pronounced and the control system 

performance is degraded. Therefore, in pract ical 

implementation, it  is highly  desirable to increase 

the sampling rate as much as possible by 

optimizing the real-time control program or using 

a multiprocessor parallel computing system. 

 

C.  Elaboration of the proposed Fo-PID model 

In practical applications of the Fo-PIDC (22), real-t ime 

realization problems arise due to linearly  growing 

processed samples (known as  „the growing calculat ion 

tail‟) and fin ite microprocessor memory. The pragmatic  

solution is to adapt the digital control algorithm to the 

dynamic characteristics of the process  under study. In 

order to  

 

 Reduce the amount of historical data; 

 Improve the accuracy of the numerical solution;  

 Avoid the redundancy; 

 Then, derive the recursive algorithm in its optimal 

form,  

 

a simplified  analytical form „structure‟ of the Fo-PIDC 

(22) is proposed. The main idea is developed by 

SOUKKOU et al. in [64]. It consists to make the 

correction term   R eL
   in (22) adjustable (manually  

or automatically) accord ing to the physical characteristics 

of the system to be controlled and technological 

performances of the monitoring PLC (storage space - 

speed) used to implement the control algorithm. Eq. (22) 

can, also, be rewritten in the following manner 
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    

             

    

              

    

      

1

1 20 1 2

, 0; 0,1,2  ,

3 4 53 4 5

, 1; 3,4,5  ,

66 7

u n T u n T

K e n T K e n T K e n T

u n T i ji j

K e n T K e n T K e n T

u n T i ji j

K e n T K e

   

          

   

           

   

             

    

7 88

, 2; 6,7,8  ,

                                                           

n T K e n T

u n T i ji j

     

   

 

(23) 

 

Compared with (17), the expression (23) can be seen as 

a combination of a large set of linear PID regulators, 

temporarily shifted with moderate 

gains    ,  0,1, ,K i ni  . In (23), each i
th

 iteration 

requires the re-calculat ion and summat ion of every 

previous time point convolved with  Ki . This becomes 

increasingly cumbersome for large t imes, which requires 

significant numbers of computations and memory  storage 

requirements.  

Applying some ideas as, for instance, short memory 

principle [19], we can reduce the computational cost of 

time-domain methods. Short memory principle means 

taking into account the function behavior only in the 

“recent past”. The results obtained by these methods are 

more reliab le than those determined using the frequency-

based approximat ion [10]. This would then result in 

approximating (22) by truncating backwards summation, 

only taking into account times on the interval  ,  t L T  

instead of  0,  t , where L is defined as the memory 

length.  

Accord ing  to  the short  memory  princip le [19], the 

length of the system memory can be substantially reduced 

in the numerical algorithm to get  reliab le results. Thus, N 

in  ( 2 )  b e c o m e s     min ,  N N t t L h L h   . 

Obviously, for this simplification, we pay a penalty in the 

form of some inaccuracy. If  f t M , we can  easily 

estab lish the fo llowing est imate fo r determin ing  the 

memory  length L , prov id ing the requ ired  accuracy    

   1
1

L M  


    a n d  t h e  u p p e r  l i m i t  o f 

s ummat ion  N  is  1

1
N M T q


  

     
  

.  The 

upper limit of summation N  in (2) can be calculated from 

the inhomogeneous sampling  algorithm proposed by  

Fu jio  Ikeda in  [65] as   1N L T  
     

, where 

 x  means t runcat ion to   x  , L  is the calcu lat ion  

 

 

 

 

window limiting to some fixed time spam and T  is the 

„transformed t ime‟ sampling period.    is the Euler 

Gamma function given by    1 !,  k k k        .  

Brian P. Sprouse et al. [66] introduce an adaptive time-

step method for computing the contribution of the 

memory effect associated with the h istory of a system, 

where fractional methods must be taken into account. Zhe 

Gao et al. [67] proposed an alternative d iscretizat ion 

algorithm based on the Haar wavelet method and reduces 

the store space of the history data, just calculating the 

fractional order integral with five sampled data 

    ,  1 ,f n T f n T     2 ,f n T     3f n T 

  4f n T  and the initial value  0f . 

The present work represents a newly powerful and 

simple approach to provide a reasonable tradeoff between 

computational overhead, storage space and numerical 

accuracy. Rearranging (23), the discrete Fo-PIDC law can 

be rewritten as: 

 

      

      

 

 

  

1
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nbr_subs-1 3 2

0 3

,

                

u n T u n T u n T

i
u n T K e n j Tj

i j i

u n Ti j

e

      

 
     

  

 

 

    (24) 

 

The expression (24) represents an association of a 

collection of nbr_subs   linear-PID subsystems as 

summarized by figure 4. The fo llowing three-input 

variables 

 

           3 , 3 1 , 3 2 ,  0,1,2,e n i T e n i T e n i T i             

 

are used by the discrete-time subsystem PID control in  

incremental form, where      re n T y n T y n T     , 

 ry n T  and  y n T  are a set-point/reference signal 

for process output, and the process output  at sampling 

time n.T, respectively. 

The zero-order component of the combination (similar 

to Oo-PID (17)),  0, 1,2,3u n Ti j   , is required since 

it is the fundamental engine of the control law as showed 

in figure 4.   e   is the number of terms
 

  e n j T   

not taken into effect during the association (formulation) 

of elementary controllers ,ui j . 
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Fig.4. Equivalent model of the developed FoC. 

We can consider that the control variation o f the newly  

model developed by (24) will be div ided into two parts 

(B) and (A). Part (B) is the basic element  of the control 

law. Whereas, the additive portion (A) is adjusted to 

obtain more performances. The control variation  (24) can 

be written in iterative form as: 

 

     

      

 

base ,
1

(B)
(A)

3 2

,
    3

         

N
u n T u n T u n Ti j

i

i
u n T K e n j Ti j j

j i

K K T d K T qj I j D j
 

       



 
     


 
      





    (25) 

 

where  nbr_subs-1N  is the upper limit of  

summation (A). The number of linear regulators 

      , 3 ,  3 1,  3 1 ,  1,2, ,,u n T j i i i i Ni j          

in Eq. (25) depends on the number of samples 

N (temporal universe of operation of the process under 

study). The maximum number of subsystems in (25) is 

approximated by  

 

 nbr_subs 3N                           (26) 

 

where    3 int 3N N  is a means the integer part of 

3N . The high order (higher dimension) of the last i
th
 

term in (25), i.e,  3 2,  j i N    be defined by: 

 

 order 2 3Ni                             (27) 

 

In  th is work, the cho ice  of number o f subsystems 

 ,u n Ti j   depends on  the  des ired accuracy  and  the 

specifications of the system to be controlled (fast, very 

fas t , s low, etc.) and  the monito ring  PLC us ed  to 

 

implement the algorithm (25). 

For slow systems where T , needs to be, preferably,  

a large number of subsystems with respect to the amount 

of memory reserved for the application. Indeed, for faster 

systems where T , we need the minimum number of 

selected subsystems must meet a compromise between 

efficiency and precision of the system to be controlled. 

From the incremental algorithm of Fo-PID (25), various 

architectures have been investigated to determine which 

one will p rovide the best results in terms of 

computational speed and accuracy. 

 

 Full Form of Fractional-order PID controller 

(F2Fo-PID) well suited to slow systems (T  ). It  

requires large space memory (RAM) and 

significant time- response.  

 Extended Form o f Oo-PIDC o r just Reduced Form 

of Fractional-order PID controller (EFOo-PIDC 

or R2Fo-PIDC), where    0R eL
   is well 

suited to very fast systems ( T  ). It  requires a 

short storage space and much reduced time-

response.  

 Optimal Form of Fractional-order PID (O2Fo-

PIDC) that represents the F2Fo-PIDC with an 

optimal number of EFOo -PID subsystems. The 

value of nbr_subs
 
in (25) is selected and adjusted, 

by application of learning algorithms to search the 

optimal value, to achieve the control design 

specifications with respect to the functional 

characteristics of the plant to be controlled. The 

O2Fo-PID model represented a trade-off between 

simplicity and efficiency. Moreover, it requires a 

reduced storage space and optimal time-response.  

 

The R2Fo-PID and O2Fo-PID approaches make the 

simulation and implementation of Fo-PIDC much easier 

and enables a smooth transaction for industry to take 

advantages of this new approach. Further, the 

effectiveness of the proposed controllers  remains to be 

approved through application examples  in d ifferent 

industrial and scientific disciplines. 
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D.  Stability analysis of the proposed Fo-PID controller: 

An overview  

The study of the stability o f fractional-order systems 

can be carried out by studying the solutions of the 

differential equations that characterize the m, linear or 

nonlinear. Every study of stability of linear t ime invariant 

fractional-order (LTI-Fo) system is, generally, based on 

frequency-domain analysis. An alternative way is the 

study of the transfer function of the system [23]. There 

are even some attempts to develop polynomial techniques, 

either Routh or Jury type, to analyze their stability  [10], 

[68, 69]. Saeed Balochian et al. [70] present the 

stabilization problem of a LTI-Fo switched system by a 

single Lyapunov function whose derivative is negative 

and bounded by a quadratic function within  the activation 

of each subsystem. The switching law is extracted based 

on the variable structure control with a sliding sector. 

Stability of the fractional-order nonlinear system is 

very complex and is different from the fract ional-order 

linear systems. The main  difference is that for a nonlinear 

system, it is necessary to investigate steady states having 

two characteristics, such as limit cycle and equilibrium 

point. For nonlinear systems (may have several 

equilibrium points), there are many definit ions of stability 

(asymptotic, global, orbital, …etc.) [10]. Stability of 

fractional-order nonlinear dynamic systems is studied in 

[71] by using Lyapunov direct method with the 

introduction of Mittag-Leffler stability and generalized 

Mittag-Leffler stability notions. Actually, in the field of 

fractional-order control, many stability methods are based 

on the original Matignon‟s stability theorem and the 

classic Lyapunov stability theory. Recent examples 

include:  

 

 Fractional-order linear matrix inequalities method 

[72, 73],  

 The robust interval check method [74];  

 Fractional-order Lyapunov inequality method [71]. 

 

In this subsection, by using the small gain theorem 

(SGT) [75] (see appendix), we will find the generalized 

sufficient BIBO stability conditions of the O2Fo-PID 

control system (25). Figure 5, simplified form of figure 2 

well suited to the analysis of the BIBO stability, shows a 

general nonlinear control system in a block diagram form. 

The subsystem f is a fractional controller model and g is a 

nonlinear dynamic system to be controlled. It  is clear 

from figure 5 that: 

 

      

 

      

 

      

 

      

 

 or

2 2

1 1 2 1 1 2

2 2 1 2 2 1

1 1

e t u t g e t u t e t g e t

e t u t f e t u t e t f e t

y t y t

y t y t

 
 
     
 

    
 
  

(28) 
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Fig.5. A typical closed-loop control system. 

Suppose that the incremental control formula of 

fractional control law (25) is used. By defining 

 

       

        

         

,        1 2

,     11 2

,   

      



      

      

e n T e n T e n T u n T

ru n T y n T u n T u n T

u n T f e n T y n T g u n T
   

(29) 

 

It‟s easy to see that we obtain an  equivalent closed-

loop control system as shown in figure 5, we have from 

(28) 

 

        

    

      

1

             1 2

2 2 1

       



   


    


ru n T y n T e n T g u n T

e n T g e n T

u n T e n T f e n T

      (30) 

 

Based on the general form of the incremental O2Fo-

PID form (25), we have 

 

     

   

   

         

 
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1

           base ,
1

           0

1
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          + ,
1

N
u n T u n T u n Ti j

i

N
u n T u n Ti j

i

K e n T

K e n T K e n T

N
u n Ti j

i



       



     



   

      

 








   

(31) 

 

where  

 

     1, , ;  3,4,5 , 6,7,8 , , 2, 1, 3i N j n n n      

 

and  

 

1 K K T K TP I D
                      (32) 
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and  

 

       

                

2y n T g e n T g u n T

g u n T

    

           
(33) 

 

which is of the form 

 

2 g   
              

             (34) 

 

The operator norm g
 
is the gain  of the given  

nonlinear system  g ,  usually defined as [76] 

 

     

   

1 2
  sup

1 2, 01 2

g u n g u n
g

u n u nu u n




 

        (35) 

 

The norm is the gain of the given nonlinear system 

over a set of admissible control signals that have any 

meaningful function norms and  1u n  and  2u n  are 

any two of the control signals in the set. 

So, the sufficient conditions for the O2Fo-PIDC 

system to be BIBO stable if the parameters of the O2Fo-

PIDC satisfy the inequality  11 2    where 1  and 2  

are defined in (32) and (34), respectively. 

Theorem: Sufficient conditions of the O2Fo-PIDC system 

(25) shown in figure 2 to be globally BIBO stable are 

i. The given nonlinear process has a bounded norm, 

i.e., the nonlinear system has a finite gain 

 g    and 

ii. The knowledge base of the O2Fo-PIDC 

      , , , , ,K K K TP I D    satisfies the condition 

1K K T K T gP I D
  

      
 

 . 

Conditions: 

1

1 and

2

K K T K T gP I D

g



 



 
 

       
 
 

  

    (36) 

 

together provide the BIBO stability criteria for the O2Fo-

PIDC design for a given bounded system. By noting that 

0,  0,  0,  0K K K TP I D    , the result for the 

stability of O2Fo-PIDC system will be: 

1

1   and

2

K K T K T gP I D

g



 



 
 

      
 
  


          

(37) 

 

Applying the SGT, we can obtain the sufficient conditions 

for the BIBO stability for the linear Oo-PIDC system, 

where 1   and 1   in (37). 

It can be remarked that the stability conditions  for the 

controllers O2Fo-PID, R2Fo-PID and F2Fo-PID are 

similar.  

The zero -order component of the 

combination,  0, 1,2,3u n Ti j   , is required in study 

of stability analysis, since it is the fundamental engine of 

the control law. The other terms of the combination may 

affected, either locally or globally, on the precision, 

robustness and the possibility of the real-t ime 

implementation of the control law (25).  

 

IV.  OPTIMIZATION OF THE O2FO-PID CONTROLLER 

Multiobjective optimization (MO) process is applied 

which simultaneously minimizes n objective functions 

 J   which are functions of decision variables   

bounded by some equality and inequality constraints 

(constraints could be linear or nonlinear).  

A MO problem can be formulated as follows  

 

     

   

   

 

Objectives

Minimizes    ,  ..., 1

         Subject to

Functional constraints

0,         1,
                     

0,           1,

Parametric co

                     ,    1,

T
J J Jk

g j lj

h i mi

r nr r r

  







  

   


 

 

  

nstraints

        (38) 

 

where   is defined as the decision vector, 

  kJ    as the objective function vector. 

      ,  1,2,...,g g j lj    and       ,  1,2,...,h h i mi    

are the vector of equality and inequality constraints, 

respectively. r  and r  are the lower and upper bounds 

in the decision space for r  parameter. The minimizat ion 

problem (38) can be further represented as  
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 Minimizes G 

             

              (39) 

 

where  G   incorporates the objective function  J   

and the constraint functions  g   and  h  , 

respectively. There are different ways to convert (38) into 

(39), i.e., the transformation of the optimization problem 

(38) to an unconstrained problem is  made through many 

methods. The weighted sum (or min-max) of objectives-

constraints methods are the two popular approaches [77]. 

In order to incorporate constraints into the optimizat ion 

problem, the sequential unconstrained minimizat ion 

technique is used. Here, the pseudo objective function is 

formulated as 

 

     ,  P PG r G r  
 

   
            

 (40) 

 

 G 


 is a  combination of objectives in  (38) (sum or 

max of objectives) and  




 is termed the penalty 

function that introduces the constraints in (38) into the 

cost function. Pr  denotes the scalar penalty multiplier 

and is typically  increased as the optimizat ion goes on to 

put more and more emphasis on avoiding constraint 

violations [78]. Metaheuristic algorithms, that include 

GA, are rapidly becoming the most used methods of 

choice for some intractable systems [79-81].   

A.  Genetic optimization of the developed FoC 

GA are global parallel search and optimizat ion 

techniques based around Darwin ian principles, working 

on a population of potential solutions (chromosomes). 

Every individual in the population represents a particular 

solution to the problem under study, often expressed in 

binary (or real) code. The population is evolved over a 

series of generation (based on selection, crossover and 

mutation operators) to produce better solutions to the 

problem.  

Figure 6 shows the structure of the control design and 

optimization process for a nonlinear dynamical system 

that contains three main blocks  

 

 Optimization layer characterized by the MGA; 

 Control layer representing the closed loop O2Fo-

PIDC strategy; 

 Dynamical system to be controlled.  

 

Once the „optimal‟ structure of the controller is 

identified as given in (25), the optimization of the O2Fo-

PID model is to find the „best‟ parameters, i.e., an 

optimal knowledge base, which can be represented as an 

extremum problem of optimization index (39). 
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Fig.6. Elements of the control loop. 

There are many methods to design such fractional 

controllers which can be regarded as some optimizat ion 

problems of certain performance measures of the 

controlled systems.  

The controller design based on GA can be considered 

as a MO search procedure over a large objective-

parameter space. Figure 7 summarizes the evolution 

process of GA, used in this work, to design the optimal 

FoC able to realize the desired objectives . 

 Using arithmetic map and specified probability do 

crossover of parents to form new offsprings - 

Adaptation of genetic operators to appropriate 

coding mode-. 

 Using chaotic map and specified  probability 

mutate chromosomes to form new offspring‟s. The 

chaotic mutation operator [82] is used to solve the 

problem of maintaining  the population diversity of 

GA in the learning process. 
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 The concept of elite strategy is adopted, where the 

best individuals in a population are regarded as 

elites - Improvement of the basic algorithm -. 
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Fig.7. A general cycle of the GA and the interaction between GA–closed loop control systems. 

The parameters to be optimized are obviously the 

O2Fo-PIDC gains, non-integer integrator-differentiator 

orders and the number of PID subsys tems. So, the 

optimized parameter set may be such that 

 

 

 

,

,
           

nbr_subs

T
K G Sb c c

T
G K K Kc P I D

T
Sc  

 
 





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            (41) 

 

Therefore, three different possibilities exist in general 

 

 Optimize gains only Gc ; 

 Optimize order only Sc ; 

 Optimize all parameters Kb .
  

 

In order to employ the GA to optimize the knowledge 

base of the FoC, we establish the fitness function 

according to the objectives specified by the designer. 

Thus, the controller design based on GA can be 

considered as a MO search procedure over a large 

objective-parameter space. 

 

 Small maximum error with small total squared 

error  1J ; 

 Reduced control effort to be applied to the process 

 2J ; 

 Reduced number of linear-PID subsystems  3J ; 

 Stability analysis conditions  gst .  

 

The objectives-constraints for a MIMO system with m 

outputs are given by their expressions: 
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    





       (42) 

 

        

   

1
1

2
0

       2

N
TJ u k M u k R k u k

k

R k k m m


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 


   





    (43)
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S i i m m

 
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
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              (44) 
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
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
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 (45) 

 

 M N T  denotes the integer number of computing 

steps N  is the running time and T  is the sampling 

period.      rx k x k x k   is the tracking error at  

sampling time k . Il m  is the identity matrix o f 

dimension l m  and n is the nu mber of state variables. 

sub is a vector of linear-PID subsystems. The weighting 

factors    0,  1,2,3jj   , selected to provide a 

compromise between design specifications. 

By using the interior penalty function (IPF) method, 

the stability constraints are included. The transformed 

unconstrained problem via the IPF method, used in this 

work, is given by [78] 

 

     Minimizes  , ,

1

n
G w J r ri i g h

j

  


   


  (46) 

 

where  , ,r rg h




 is the IPF, expressed as 

 

   

 

2
, ,

1

1
                               

1

l
r r r hg h h k

k

m
rg

g jj

 




 
    

   

 
  

 
 





          (47) 

 

In the expression (46), 3n   and   0,  h kk     . 

The function  G   in (46), mainly, depends on the 

design specifications required  by the user. The weights 

 ,  0w ri g   can, therefore, be used in control system 

design as design parameters to trade-off between d ifferent 

performance specificat ions. From (46), the local and 

global minima can be calcu lated if the reg ion of 

realizability of   is convex [77]. It  is usually assumed 

that 

 

 , , 1w r ri g h
i

                        (48) 

The expression (48) is a compromise between better 

accuracy, a reduced consumption of energy control (more 

security), optimal structure and satisfied stability analysis 

conditions. In the rest of the algorithm, the performance 

criterion to minimize, will be selected and adapted to the 

case of MIMO systems. The additional constraints are the 

lower TK
b

   and upper 
T

K
b

   limits of the 

controller parameters. The optimizat ion procedure may 

be pronounced as follows: Find the knowledge base 

TK
b

(41) that 

 

 Minimizes   

                   Subject to

                                

G 



  



 

              (49) 

 

The fitness function is a measure of how well a set of 

candidate coefficients meet the design specifications. A 

fitness value used by the MGA can then defined as  

 

 
 

Fitness
G




 








    

              (50) 

 

where   2,    and   is a s mall positive constant 

used to avoid the numerical erro r of div iding by zero. 

Four major operations are necessary for correctly 

handling the execution of the optimization algorithm: 

 

 Determine the O2Fo-PID knowledge base to be 

optimized;  

 Determine an optimization objective;  

 Constraint equations: 

 Bounds for the elements of the design vector.  

 

MGA based learning provide an alternative way to 

learn fo r the O2Fo -PID knowledge base Kb (41). The 

adaptation of these parameters continues until the overall 

number of generations is satisfied. 

B.  Chromosome structure 

The key to put a genetic search for the O2Fo-PIDC 

into practice is that all design variables to be optimized 

(41) are encoded as a finite length string, called 

chromosome.  

The real-valued (or mixed) genes representation is used 

in this work. Global structure of the chromosome, in the 

case of MIMO systems, and the corresponding 

configurations is illustrated in figure 8.  

Every  chromosome which encodes the knowledge base 

of the O2Fo-PIDC can represent a solution of the 

problem, that is, a O2Fo-PID optimal knowledge base. To 

simplify the genes coding mode, i.e., avoidance of the 

mixed coding (real-integer) and the genetic operators 

adapted for each mode, the real-coding is used with the 
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restriction 
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                 (51) 

 

where ctrl  models the number of subsystems, 

nbr_subs  , included in modeling of O2Fo-PIDC 

control law under development of (25) and  x  represents 

the integer part of x . 
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Fig.8. Chromosome structure of O2Fo-PID controller for (a) SISO 
systems. (b) MIMO systems. 

In the next section, the developed algorithm is applied 

to stabilize the CE150 helicopter model. The process is 

modelled by a strongly nonlinear MIMO system. 

 

V.  SIMULATION 

The proposed design controller is applicable to a 

specific class of nonlinear system that can be described 

by the differential equation of form 

 

 
      

        

 
  

 

, , ,

   , ,  ,

       

,       0,0

dx t
f t x t u t v t

dt

y t g t x t u t v t

dv t
s v t

dt

x o x t t f









   

 

               (52) 

 

where   nx t   and   mu t   are the state vector and 

the control vector, respectively.   qv t   represents the 

state of an external signal generator (dynamic of 

disturbances), 0x  is the in itial state vector, 

 : n m nf C    is a nonlinear relationship 

between the state variables of the controlled  system, the 

generated control signals and interference (disturbances) 

signals, respectively. The output or observation 

  qy t   is generated via an output map  g . 

A.  Control of a nonlinear helicopter process 

The CE150 helicopter model offered by Humusoft Ltd 

[83] for the theoretical study and practical investigation 

of basic and advanced control engineering principles. The 

system consists of a body, carrying two propellers driven 

by DC motors and a massive support. The body has two 

degrees of freedom. Both body position angles 

(horizontal and vertical) are influenced by the rotation of 

propellers. The axes of a body rotation are perpendicular. 

Both body position angles, i.e. azimuth angle   in 

horizontal and elevation angle   in vert ical p lane are 

influenced by the rotating propellers, simultaneously. The 

DC motors for driv ing propellers are controlled 

proportionally to the output signal of the computer. All 

inputs and outputs variables are coupled. The user of the 

simulator communicates with the system via the data-

processing interface. The schematic diagram of the 

helicopter model is shown in figure 9. 

 

 

 

u1 

u2 

𝚽 

 

 

 

 

Fig.9. Helicopter simulator configuration. 

 

The helicopter model is a multivariable dynamical 

system with two manipulated inputs and two measured 

outputs. The system is essentially nonlinear, naturally  

unstable with significant cross coupling. The 

mathematical model of the helicopter is given by the 

following differential equations system [84] 
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where,    1x t t  ,    2x t d t dt  ,    3x t t  , 

   4x t d t dt   and    5 9x t x t  are state variables 

representing the two DC motors and the coupling effects.  

Assuming that the helicopter model (53) is a rigid body 

with two degrees of freedom, the helicopter simulator 

CE150 can be viewed as an interconnexion of two  

subsystems. The elevation subsystem characterized by the 

input/output variables     ,  1u t t  and the azimuth  

subsystem characterized by the input/output 

variables     ,  2u t t , where,  t
 
is the elevation 

angle (pitch angle),  t  is the azimuth angle (yaw 

angle),  1u t  is the main motor voltage and  2u t  is the 

tail motor voltage. The decentralized O2Fo-PIDC 

strategy is adopted in this application, where the 

multivariable process is treated as two separate single 

variables process, namely: 

 

        
        

O2Fo-PID ,     and1 1

O2Fo-PID ,  2 2

ru t t t

ru t t t

  

  
     

(54) 

 

where  r t  and  r t  are the desired values (set-

points) of the considered variables. Figure 10 summarizes 

the block diagram of the feedback control by using the 

developed O2Fo-PIDC.  

In our applicat ion, the helicopter model is dicret ized by  

using the fourth-order Runge-Kutta method with 

sampling time chosen to be  0.1 sec  and a time horizon 

of  50 sec . The control object ive is to stabilize the 

system states    
T

t t    around a set-point 

       1 rad 1 rad
Tr rt t         

 under the control 

actions    1 2
T

u k u k   . The in itial conditions , used in 

simulation of the process, are taken 

as   0 0 0x t
T

   . 
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Fig.10. Block diagram of the feedback control of the Helicopter model using two O2Fo -PIDC. 
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The disturbances used to test a particular control 

strategy play a critical evaluation role. Thus, to carry out 

a complete and unbiased evaluation, it is necessary to 

define a series of d isturbances and to subject each control 

strategy to all disturbances.  

Chaotic wave perturbations [83] on the system states 

and the controller signals are added in order to tes t the 

efficiency and robustness of the controller. 

B.  Simulation results 

The adapted chromosome structure with real-coding of 

genes of the MGA for this application has the same form 

of the figure 8 (a), but doubled. A part for O2Fo -PID(1) 

and the other for O2Fo-PID(2). The MGA characteristics 

are summarized in table 1.  

Figures 11 (a)-(d), show, respectively, the evolution of 

the control parameters  , , , ,   1,2  K K K iPi Ii Di i i  of 

the controllers O2Fo-PID(1) and O2Fo-PID(2) during the 

optimization process. Around 500 optimization iterat ion 

steps (generation number), the number o f linear -PID 

subsystems (51) and the objective function (49) are 

minimized  as shown in figures 12 (a) and (b), 

respectively. It  can be remarked that the number of linear 

PID subsystems is minimized to 80% of its maximum 

value. 

For generalizat ion, a comparison of the evaluation 

values obtained at the end of the algorithm execution 

between the proposed O2Fo-PIDC (25), the classical Oo-

PIDC, F2Fo-PIDC and R2Fo-PIDC using the same 

optimization procedure (49) is summarized in Table 2.  

Table 1. Specifications of the MGA. 

 Characteristic Value 

Population Size 50 

Max_gen 500 

Coding chromosome Real 

Gain factors  , ,  1,2K K K iPi Ii Di   [10
-6

, 0.1] 

Control factors  ,  1,2ii i    [10
-4

, 1.0] 

Number of subsystems 1 2ctrl   [1.0, 166.0] 

Selection process Tournament 

Arithmetic Crossover Pc = 0.8 

Chaotic Mutation  Pm =  0.02 

 
 

 

As shown in numerical values in  Table 2 (rows and 

columns have been ticked), it has been demonstrated that 

the newly developed O2Fo-PIDC presents better 

performances than the R2Fo-PIDC, F2Fo -PIDC and the 

Oo-PIDC with similar optimization algorithm. 

The simulation results  at the end of the execution of 

the algorithm developed in this work are shown 

schematically in figures 13 and 14.  

Graphical comparative results between O2Fo-PIDC 

and the Oo-PIDC, F2Fo-PIDC and R2Fo-PIDC are 

mentioned in these figures. Figures 13 (a)-(b) illustrate 

the evolution of the output variables and their 

corresponding reference trajectories.  

It has been demonstrated that the developed O2Fo-

PIDC presents better performances then the others 

controllers with similar optimizat ion algorithm (tuning 

and stability conditions). The outputs of the developed 

controllers are illustrated by the figures 14 (a)-(b).  
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Table 2. O2Fo-PIDC, R2Fo-PIDC, F2Fo-PIDC and Oo-PIDC performances. 

 

 
O2Fo-PID R2Fo-PID  F2Fo-PID Oo-PID 

O2Fo-PID(1) O2Fo-PID (2) R2Fo-PID(1) R2Fo -PID(2) F2Fo-PID(1) F2Fo -PID(2) Oo-PID(1) Oo -PID(2) 

 KP  0.026086 0.067830 0.012292 0.060458 0.017621 0.075926 0.010315 0.079464 

KD  0.006076 0.072876 0.007261 0.038959 0.017838 0.077685 0.016022 0.007824 

KI  0.078126 0.047305 0.074661 0.063871 0.079673 0.023698 0.078145 0.008156 

  0.613409 0.555782 0.613581 0.247233 0.991755 0.851211 1 1 

  0.027912 0.493221 0.011761 0.171282 0.855631 0.352196 1 1 

nbr_subs  1base+8 1base+8 1base+0 1base+0 1base+166 1base+166 1base+0 1base+0 

ISE 41.683407 14.456318 43.583710 15.754932 49.608883 14.828958 50.623753 24.129436 

IAE 56.091587 21.582956 57.496647 23.204674 66.638168 24.532221 66.733536 40.239185 

ITSE 102.022896 12.010715 109.308533 14.237223 144.248703 13.459677 149.341995 38.848053 

ITAE 186.917908 52.184265 193.163345 43.827129 277.177338 79.772552 261.660492 168.433258 
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Fig.11. Convergence of the O2Fo-PIDC parameters: (a) and (b) Gains 
of the O2Fo-PIDC(1) and O2Fo-PIDC(2) controllers. (c) and (d) Order 

of integral and derivative operators. 
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Fig.12. Convergence of the (a) number of subsystems for the O2Fo-
PIDC(1) and O2Fo-PIDC(2). (b) Objective function.
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Fig.13. System states using O2Fo-PIDC, R2Fo-PIDC, F2Fo-PIDC and 

Oo-PIDC: (a) Elevation angle. (b) Azimuth angle. 
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Fig.14. Control signal: (a)  1u k . (b)  2u k . 

Simulation results show the good performance of the 

developed algorithm and confirm the effectiveness of the 

control law in  the tracking of the desired  trajectories. 

Finally, the control inputs to the plant are adequately 

constrained within their saturation limits. The stability of 

the overall closed loop system is also preserved 

independently from the uncertainties. 

 

VI.  CONCLUSIONS 

Progress has been made in coupling advanced 

modeling and control methods in modern manufacturing 

industry. This paper has considered a new alternative for 

the synthesis of a simple, accurate, stable and robust FoC 

controller with an optimal structure and parameters.  

It has been demonstrated that the parameters 

optimization of fractional-order controller based on MGA 

is highly effective. According to optimization target, the 

newly proposed method can search the best global 

solution for O2Fo-PIDC parameters and guarantee the 

objective solution space in defined search space. 

The results showed the methodologies proposed in this 

study could achieve the desired optimization goal. The 

FoC can yield high precision trajectory control results. 

Simulation results demonstrate that the proposed O2Fo-

PIDC offers encouraging advantages and has better 

performances.
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APPENDIX 

BIBO STABILIT Y AND SMALL GAIN THEOREM 

Theorem 1: BIBO stability [74]. For a given b, there 

exists  0m b  such that       0u t b g u t m b    

for all  0,t  . Thus, a  bounded input to the nonlinear 

system is assumed to produce a bounded output.   

 
Theorem 2: Small Gain Theorem  [74]. Consider the 

interconnected nonlinear feedback system of figure 5 with 

inputs     ,  1 2u t u t  and outputs     ,  1 2y t y t , which 

is described by the relation (28). Suppose that both 

subsystems  f  and  g  are causal and let 

  1 f   the gain of  f  and   2 g   the 

gain of  g . Also, suppose that there exists 

constants ,  ,  01 2 1    , and 02   so that 

 

    

    

1 1 1 1

2 2 2 2

f e t e t

g e t e t

 

 

  

  
 

 

then, the closed loop system is also finite gain stable from 

 ,  1 2u u  to  ,  1 2y y  (BIBO stable) if  

 

11 2  
 

 

i.e., any bounded input pair  ,1 2u u  produces a bounded 

output pair  ,1 2y y  (the SGT states that if the product of 

1 2   is less than 1). Then, the following error bounds 

are true 

 

   

   

1
11 1 2 1 2 2 2 2 1

1
12 1 2 2 1 1 1 1 2

e u u

e u u

     

     


       


       

 
 

so that a bounded inputs yield a bounded outputs. The 

hypothesis of the theorem guarantees that 

 1 01 2     so that one obtains the following 

estimates 

 

1 1 1 2 2 1 1 2
1

1 1 2

2 2 1 2 1 2 2 1
2

1 1 2

u u
y

u u
y

     

 

     

 

      


 

      


 
 

 

From these estimates, it follows that bounded inputs, 

i.e.,  ,  1 2u u  produce bounded outputs. Also, this 

establishes that the closed loop system is finite gain 

stable. 

Proof. It follows from 

 

 1 1 2e u g e   

 

That 

 

 1 1 2

     1 2 2 2

e u g e

u e 

 

   
 

 

Similarly, we have 

 

2 2 1 2 1e u e    
 

 

Combining these two inequalities, we obtain 

 

1 1 2 1 1 2 2 2 2 1e e u u               

 

or, using the fact  

 

11 2   , 

   1
11 1 2 1 2 2 2 2 1e u u     


       

 
 

The rest of the theorem follows immediately. 
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