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Abstract—In this paper, a simple and optimal fo rm of 

fractional-order feedback approach assigned for the 

control and synchronization of a class of fract ional-order 

chaotic systems is proposed. The proposed control law 

can be viewed as a distributed network of linear 

regulators wherein  each node is modeled  by a PI 

controller with moderate gains. The multiobject ive 

genetic algorithm with chaotic mutation, adopted in this 

work, can be visualized as a combination of structural 

and parametric genes of a controller o rchestrated in a 

hierarchical fashion. Then, it is applied to select an 

optimal knowledge base, which characterizes the 

developed controller, and satisfies various design 

specifications. The proposed design and optimizat ion of 

the developed controller represents a simple powerful 

approach to provide a reasonable tradeoff between 

computational overhead, storage space, numerical 

accuracy and stability criterion in control and 

synchronization of a class of fractional-order chaotic 

systems. Simulation results show the satisfactory 

performance of the proposed approach. 

 
Index Terms—Fractional-o rder chaotic systems, 

Fractional-order controller, Distributed PI-network, 

Genetic learning, Multiobjective optimization. 

 

I.  INTRODUCTION 

Modeling and control topics using the concept of 

fractional-order of integral and derivative operators have 

been lately attracting more attentions, because the 

advancements in computation power allow simulat ion 

and implementation of such systems with adequate 

precision. These new concepts are aimed  to improve the 

performance required in modeling and control of 

nonlinear dynamical systems. [1].  

The Fractional-order Chaotic Systems (FoCS), as a 

generalization of integer-order chaotic systems, is a  new 

alternative, where significant attention has been focused 

on developing techniques for modeling, synchronizing 

and controlling this class of dynamical systems. 

Consequently, many researchers have made large number 

of contributions varied from the conventional, advanced 

to the intelligent control approaches  [2-5]. For example, 

A survey of fractional dynamical systems, modeling, 

stability analysis and control has been presented in [2]. 

Zhu et al. [3] presented an algorithm for numerical 

solution of fractional-order differential equation. Also, 

the synchronization of fractional-order Chua oscillator is 

discussed. In [4], a web- based interface is designed for 

fractional composition of five different chaotic systems. 

The interface takes in itial and fract ional differentiat ion 

values and yields output signals and phase portraits. 

A view of the works carried out in the field of control 

and synchronization of FoCS, the elaboration of control 

law, the discretization process of fractional operators 

 ,   Dt  (resp. 
s ), and the stability analysis are 

the most fundamental and important issues. It can be seen 

that among the most developed control and 

synchronization algorithms, the linear state-feedback 

approach in its ordinary o r fractional-order form, is 

especially attractive and has been commonly applied due 

to its simplicity in analysis and implementation. 

In [6], the problem of controlling unstable equilibrium 

points and periodic orbits is investigated via the fractional 

feedback of measured states. In [7], the control and 

synchronization of the fractional-order Lorenz chaotic 

system have been addressed via the fractional-order 

derivative approach. The single state fract ional-order 

controller for chaos synchronization process based on the 

Lyapunov stability theory is presented in [8]. In [9], the 

fractional operators are introduced to develop a general 

form for synchronizing the FoCS. The authors, also, 

adopted the CRONE-Oustaloup method to simulate the 

fractional-order operators. Fractional-order PI controller 

for locally stabilize unstable equilibrium points of a class 

of chaotic fractional order systems is proposed by M. S. 
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Tavazoei et al. [10]. The prediction-based control 

technique in its fractional-fo rm may be seen as an 

alternative whose objective is to enhance the desired 

performance [11, 12]. 

The stability of the nonlinear FoCS is, generally, 

proven theoretically by using the stability theory of 

fractional-order linear d ifferential equation after 

linearization of nonlinear model of FoCS around the 

equilibrium points, or by using the Gronwall-Bellman  

lemma as examined in [2, 13], where the pole placement 

technique is derived for designing the linear state 

feedback controller for stabilizing a class of FoCS. In  

[14-16], some sufficient conditions on the stability and 

stabilization of a class of FoCS are proposed by using the 

Mittag-Leffler, Lap lace transform and the generalized 

Gronwall inequality. 

This paper uses the fractional-order control technique, 

addressed in [17-20], for the elaboration of a general 

method assigned to control and synchronize the FoCS. 

During the synthesis of the proposed approach, the 

required performances are articulated around various 

contradictory specifications 

 

 Simple and optimal analytical structure and 

parameters of fractional-order controller; 

 Reduced storage space memory and time 

execution; 

 Accuracy and efficiency ; 

 The guarantee of the stability requirements by 

using the sufficient conditions for the asymptotic 

stability and stabilization of FoCS proposed in 

[13-15]. 

 

The design constraints of fractional-order control 

approach become a dimensioning problem of analytic 

structure and optimizat ion of its parameters. The 

discretizat ion and learning processes analyze the tradeoff 

between complexit ies, accuracy and stability of the 

closed loop control system. Nume rical simulations have 

been carried  out to verify the effectiveness of the newly  

designed scheme by taking the fractional-order Chua‘s 

chaotic system as an illustrative example. 

The remaining part of this paper is organized as 

follows. Sect ion 2 provides fundamentals of fractional 

calculus and its properties. Based on fractional approach, 

a new alternative of fractional controller to stabilize and 

synchronize a class of commensurate and 

incommensurate FoCS is proposed in section 3. The 

design and optimizat ion processes of the proposed 

approach are detailed  in section 4. Numerical simulat ions 

are presented in section 5 to confirm the validity of the 

analytical results. Finally, conclusion is given in section 6.  

 

II.  PRELIMINARIES ON FRACTIONAL CALCULUS: 

MATHEMATICS BACKGROUND 

Fractional calcu lus is a generalization of integration 

and differentiat ion to non-integer order fundamental 

operator Dc t . The generalized differ-integrator may be 

put forward as [21]  
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where    represents the real-order of the differ-

integral, t is the parameter for which the differ-integral is 

taken and c  is the lower limit, often assumed to be zero. 

The differentiation is then denoted  D f tt . Several 

alternative defin itions of the fract ional-order integrals and 

derivatives exist [1]. The three most common known 

definit ions of fractional derivatives-integrals are 

Grünwald-Letnikov (GL) defin ition, Riemann-Liouville 

definit ion and Caputo definition. In general, the GL 

definit ion is the most suitable method for the realizat ion 

of discrete control algorithms, given in t ime-domain as 

follows 

 

     lim 1
0 0

           
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N iGLD f t h f t i hc t
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                                                                                         (2) 

 

where     N t c h  is the upper limit of the 

computational universe and    means the integer part. h  

is the step time increment and 

   1 ,   0,1,2,
  

    
 

i
c ii i

 represents the binomial 

coefficients calculated according to the relation 
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As shown by GL definit ion, the fractional-order 

derivatives are global operators having a memory of all 

past events. This property is used to model hered itary and 

memory effects in most materials and systems [22].  

For the memory term expressed by a sum in Eq. (2), a  

‗short memory‘ princip le introduced by Podlubny et al. 

[19] can be used. According to this princip le, the length 

of system memory can be substantially reduced in the 

numerical algorithm to get reliable results. Some authors 

propose other ideas to improve the capacity of storage 

and computation time of fractional-order systems [23-25]. 

The fract ional-order derivative and integral can also be 

defined in the transformation domain such as the Laplace 

transform     L f t F s  of a fractional derivative of a 

signal  f t , given by  
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Considering null in itial conditions, the las t expression 

is reduced to the suitable form  

 

       L D f t s F st                    (5) 

 

The Laplace t ransform reveals to be a valuable tool for 

the analysis and design of fractional-order control 

systems for reasons of analysis and synthesis simplicity 

[22]. There are many approaches to construct and design 

such fractional-order controller which can be regarded as 

analytical 'mathematical' and learning problems of a 

desired performance of the controlled systems. Next, the 

study is concentrated around the representation models, 

the control modes and the stability analysis of FoCS.  

 

III.  SIMULATION, CONTROL AND SYNCHRONIZATION OF 

FOCS 

In this section, we mainly consider the fractional-order 

based feedback approach to stabilize and synchronize a 

large class of FoCS (identical o r non identical, 

commensurate or incommensurate). Next, we will recall 

some basic definitions, remarks and theorem of the 

fractional-order chaotic systems [18, 25]. 

A.  Preliminaries on FoCS 

The most used representation of generalized fo rm of 

nonlinear fractional-order chaotic systems 

(commensurate or incommensurate) with the control 

input vector   1 nu t  is given by  
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y t C x t

         (6) 

 

where  ,  , 1
T

q q qn  for 0 1 q  is the d ifferentiation-

order vector and n is the inner dimension of the system. 

  1 nx t  represents the state vector with the initial 

condition   00



x t x

t
 and  n nA  characterizes the 

constant parameter matrix. The matrix 

 diag ,   ,  1
  n nB sw swn , where  0,11 swi n  

is used to designate the state variables to be controlled. 

    0,  n nF x t  is a continous nonlinear 

function which guarantees  0 0F ; moreover,   F x t  

holds the Lipschitz condition with respect to  x t , i.e., 

    lim 0
0

F x t x t
x

 [13]. 

Remarks. 

 

 If  1 2   q q qn , system (6) modelizes 

the incommensurate FoCS. 

 If  1 2    q q q qn , system (6) 

modelizes the commensurate FoCS. 

 If  11 2   q q qn , system (6) is the 

conventional representation of the chaotic systems. 

 The effect ive dimension of the system (6) is 

measured by the sum of all involved derivatives 

1n qii
.  

 When    0u x t , there exists an unstable 

behavior, even chaos. In addition, the min imum 

value of q which results the chaotic behaviour of 

system (6) is calculated as 

   max 2 arg eigmin  q A , where 

  arg eig A  denotes the argument of the 

eigenvalue of the matrix A [26]. 

 

For a given reference signal  r t , which can be a 

constant (set point) or a function (target trajectory), the 

problem is to design a controller in the state-feedback 

form     u t x t such that the state dynamics become 

stable. In [13-16], some new sufficient conditions on the 

stability and stabilization o f a class of FoCS are proposed 

by using the Mittag-Leffler, Laplace transform and the 

Gronwall and generalized Gronwall inequality. 

 

Theorem 1. [13, 14]  The autonomous system (6) (with 

  0u t ) is asymptotically stable, if  

 

   F x t  satisfies  0 0F  and 

    lim 0
0




F x t x t
x

 , 

   arg eig 0.5   A q  and 

 1 q A . 

 

where    is the Euclidien norm, 

   max ,  1,2, , q q i ni  and   arg eig A  denotes 

the argument of the eigenvalue of matrix A. This system is 

stable if and only if   arg eig 0.5   A q  and those 

critical eigenvalues that satisfy   arg eig 0.5   A q  

have geometric multiplicity of one.  

Proof. The three necessary and sufficient conditions of 

this theorem are proofed and examined with detail in  

references [13-16]. 
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B.  Numerical methods to simulate behavior of FoCS 

In the literature of the fractional dynamics research 

field, frequency and time -domain methods have been 

proposed for a numerical solution of fract ional-order 

differential equations. In t ime-domain, two approaches 

are the most used in the analysis of FoCS. The GL 

definit ion [2, 3] and the improved version of Adams-

Basforth-Moulton algorithm based on predictor-corrector 

scheme [2, 27]. Based on GL approach (2), general 

numerical solution of the controlled FoCS with left side 

derivative in the form [3] 

 

        
q

D x t F x t B u tt                  (7) 

 

can be expressed for discrete-time   t n hn  in the 

following form 

 

    
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1C diag ,  ,  
 

  
 

qq nc ci j j  is a d iagonal binomial  

matrix, where the j-th coefficient 
qic j  is computed from 

Eq. (3) and  1diag ,  ,  
qqq nh h  is a diagonal sampling  

time matrix. Eq. (8) is an implicit nonlinear algebraic 

equation respect to       1 2
T

x t x t x tn n n . From (8), 

we can construct an iterative algorithm to solve 

    ,  ,  1 2x t x tn n , as follows  
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where, 
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Expressions (9) and (10) are used to simulate the 

behavior of the FoCS, with  the in itial conditions 

 0 0x x . The problem is to design a controller in the 

state-feedback form  u t  such that the state dynamics  

become stable. 

C.  Elaboration of a general method for controlling FoCS 

The design approach consists of two main  steps similar 

as in [28]. The first one is to eliminate the nonlinearity in  

(6) and the second one is to make the system dynamics 

asymptotically stable.  

This strategy can be seen as a distributed fractional 

control approach which preserves the topology and 

flexib ility o f decentralized control yet offers a nominal 

closed-loop stability guarantee. In order to eliminate the 

nonlinearity term   F x t  in (6), we define the control 

signal as follows 

 

        u t x t F x t                    (11) 

 

The linear part    x t  acts as an external input to 

stabilize the system dynamics. Figure 1 summarizes the 

block diagram of the developed control approach of the 

FoCS. 

 

 

State 

Dynamics 

 F  

+ - 

of Controller  
F

r
a
c
ti

o
n

a
l 

C
o
n

tr
o
ll

e
r
 

   u  

 

 1
z

 

+ 

+ 

x 

 

Fig.1. Block Diagram of the Developed Control Scheme. 

To cancel small oscillat ions, if they persist, the 

addition of an integrator, as illustrated in Figure 1, can  be 

seen as an appropriate solution. The control function 

   is defined in its generalized form as  

 

          
q

x t u t G D x tt               (12) 

 

where  diag , ,1
  n nG g gn  is the feedback 

matrix gains which is always diagonal. Usually, G  is 

uniformly bounded 

 

sup      &    0

1
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 

g g gi
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                 (13) 

 

If 0q , the model (6) is just the state feedback 

control law. If  0,1q , the system dynamics (6) 

become  

 

    
q

D x t A x tt                          (14) 

 

where  
1

I


   A G S Aw , I  is the identity matrix, 
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and G  is the feedback gains to be determined. Therefore, 

our aim is to design a suitable feedback matrix gains G  

such that the system dynamics (14) is asymptotically  

stable.  

 

Theorem 2. If feedback matrix gains G  is chosen such 

that  

 

   F x t  satisfies     lim 0
0




F x t x t
x

 , 

   arg eig 0.5   A q  and 

 1 q A . 

 

Then, the controlled system (14) is asymptotically 

stable. 

D.  Elaboration of a simplified form of FoC algorithm 

In order to reduce the amount of historical data (‗the 

growing calcu lation tail‘ and finite microprocessor 

memory [19, 29]), improve the accuracy of the numerical 

solution and derive the recursive control algorithm, a  

Simplified and Opt imal analytical Form ‗structure and 

parameters‘ o f the Fractional-order Feedback (SOF-FoF) 

model of the fractional-order controller (12) is proposed. 

The fract ional feedback state control (12) is  defined in  its 

incremental form by using the GL defin ition given by Eq. 

(2), as 
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where, 
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and  
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where ,  1,2, ,g i ni  is the elementary i-th control gain  

and 
ic j  is computed from Eq. (3).  

Based on the mathematical formula of the ord inary PI 

controller outputs, expression (15) can be seen as an 

infinite sequence of linear regulators modeled by an 

infinite d istributed network of PI controllers temporarily  

shifted.  

Each node in the network represents an elementary PI -

subsystem with modified  gains  , 0,1,2, ,size_netK ii  

and size_net  is the size of distributed PI-network 

measured by the number of additive PI-subsystems in the 

network. Figure 2 summarizes graphically  the main idea 

of the formulation of the proposed i-th control law (15).  

The number of nodes in the network  size_net  is the 

chosen function of the desired performances   DP , 

such as the accuracy (measured by the precision  d ), 

the computation steps  h  and the memory storage 

requirements  Lm , as 

 

 0 size_net , ,    P m dD h L            (18) 

 

where    is the integer part. 
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Fig.2. Equivalent Model of the SOF-Fof Approach. 

It can be conclude that the analytical form (15) makes 

the simulation and implementation of fract ional-order 

controllers much easier and enables a smooth transaction 

for real applications to take advantages of this new 

approach. Moreover, the effectiveness of the proposed 

controllers remains to be approved through application 

examples in different industrial and scientific disciplines. 

E.  Elaboration of a general method for synchronization 

of FoCS 

In this section, we mainly  consider the synchronization 

process of two identical FoCS (in fo rm (6) and order q). 

Furthermore, there are two general properties of the 

fractional-order calculus are used, such as 

 

           
 D D f t D D f t D f tt tt t t  

         

                0 1,   ,

   

 

      

  

q q q
D f t g t D f t D g tt t t

q

 

 

Consider a fractional-order system of vector 
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order  ,  , 0,11   q q q
T

n , described by  

 

 

 0 0


  




q
D x A x F xm m m m mt

x xm m

             (19) 

 

where  nxm  denotes the systems‘s n-dimensional 

state vector,  n nAm is a constant matrix and 

: n nFm  is the nonlinear part of the system. We 

consider the system (19) as the drive (master) system, and 

then the response system (slave) is given as   

 

   

 

,

0 0


    




q
D x A x F x B x xs s s s s m st

x xs s

      (20) 

 

where     n  is the control function.  ,  x F xs s s and 

As imply  the same roles as  ,  x F xm m m and Am  in the 

master system, respectively.  

The chaotic synchronization between drive system (19) 

and response fractional order system (20) belongs to the 

problem of tracking control, i.e., the output signal xs of 

system (20) follows the reference signal xm  ultimately. 

Let  e x xm s  be the error vector of system (19) and 

(20). Then, subtracting system (20) from system (19), the 

synchronization error dynamics is designed as  

 

                 ,

       

   

q
D e A e A A xm m s st

F x F x x xm m s s m s

       (21) 

 

If the control parameters of chaotic systems drive and 

slave are identical, i.e., A Am s , system (21) becomes  

 

     ,      
q

D e A e F x F x x xm m m s s m st   (22) 

 

It can be observed that the synchronization error 

system (21) (resp. (22)) contains two parts. The first is 

the linear part modeled by A em  and the nonlinear other 

part modeled by       F x F xm m s s .  
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Fig.3. Block Diagram of the Synchronization Process of the FoCS. 

Figure 3 summarizes the block d iagram of the 

synchronization process for the three-dimensional 

perturbed fractional order nonlinear systems . 

Moreover, it  can be observed that the 

controllers Ctrl _ xs , Ctrl_ ys  and Ctrl _ zs share 

informat ion in order to improve closed-loop performance, 

robustness and stability. This strategy can be seen as a 

distributed fractional control approach which preserves 

the topology and flexibility of decentralized control yet 

offers a nominal closed-loop stability guarantee. 

Our goal is to design an appropriate feedback 

controller  , x xm s , such that the trajectory of the 

response system (20) with in itial condition  0xs  

asymptotically approaches that of the drive system (19) 

with initial condition  0xm  and, finally, implement 

synchronization, in the sense that  

 

 lim lim 0 
 

e t x xm s
t t

            (23) 

 

where    is the Euclidian  norm. Therefore, the control 

function  , x xm s , is chosen such that the error 

dynamics (21) become stable. 

To simplify the study, the approach consists of two 

main steps. The first is to eliminate the nonlinearity in (21) 

and the second is to make the system dynamics 

asymptotically stable. In order to eliminate the 

nonlinearity term 

 

        ,       x x F x t F x t A A xm s m m s s m s s  

 

in (21), we define the nonlinear control law as  

 

     , ,  x x x x u tm s m s                 (24) 

 

Next, we propose the linear control law similar than 

the previous section, such that 

 

    
q

u t G D e tt                            (25) 

 

where 0G  is the feedback matrix gains which is 

always diagonal. Thus the error dynamics (25) become  

 

    
q

D e t e tt A                             (26) 

 

where  
1

I


   G S Aw mA , I n n
 is the identity 

matrix and the feedback gain 
 n nG  needs to be 

determined. The design procedure consists of spotting the 

matrix gains G  to stabilize error dynamics (26). 

 

Theorem 3. The error dynamics (26) is asymptotically 

stable, if  
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  F xm m  satisfies  lim 0
0




F x xm mxm
 

and  F xs s  satisfies  lim 0
0




F x xs sxs
 , 

   arg eig 0.5   qA  and 

 1 q A . 

 

where  max ,  1,2, q q ii  and  eig A  represents the 

eigenvalues of matrix A . 

Based on the used reasoning in the previous SOF-FoF 

approach (15), the general form of the linear part  of the 

control law used in  the synchronization of identical FoCS 

is given in its simplified form as  

 

   

 
 

  
 

size_net

PI_Reg
0

2
 2 2 1PI_Reg

        2 1

C , 0,1,2, ,size_net



  
       

    

     


u t u tn n
ii

e tn i
u t K Kn i i

i e tn i

K G ii i

    (27) 

 

where ,  G h  and Ci  are d iagonal matrices given in (17). 

Therefore, the nonlinear control function ensures the 

synchronization between the systems (19) and (20) will 

be obtained as  

 

         

            

      
 

    

u t F x t F x tn m m n s s n

A A x tm s s n

    (28) 

 

The linear part  u tn  acts as an external input to 

synchronize the system master-slave as shown in Figure 4.  

The nonlinear part  , x xm s  is considered to eliminate 

or reduce the effect of the nonlinearit ies  Fm  and  Fs . 

The linear part acts as an external input to synchronize 

the system master-slave. 
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Fig.4. Block Diagram of the Developed Synchronization Approach.  

To  cancel s mall os cillat ions , if they  pers ist , the 

addition of an integrator, as illustrated in Figure 4, can  be 

 

 

 

 

seen as an appropriate solution. 

 

IV.  MULTIOBJECTIVE OPTIMIZATION OF THE SOF-FOF 

CONTROL LAW 

To design an optimal controller, an efficient 

optimisation technique should be used. In  particular, the 

evolutionary computations has received considerable 

attention in recent years. In this work, Genetic 

Algorithms (GAs) have been proposed as a learning 

method that allows automatic generation of optimal 

structure and parameters of the fractional controllers , 

which can be represented as an extremum problem of 

optimization index. A lgorithm 1 shows the schematic 

process of GA used in this work. The chaotic mutation 

operator [30] is used to solve the problem of maintain ing 

the population diversity of GA in the learn ing process. 

The concept of elite strategy is adopted, where the best 

individuals in a population are regarded as elites. 

Algorithm 1. Basic structure of the used GA. 

1. Begin 

2. gen: = 0; 
3. Initialize (P(gen));  

4. Evaluate (P(gen));  
5. Keep_The_Best_Individual();  

6. while (not_stopping_criteria (P(gen), gen) 
do 

i. gen: = gen +1; 

ii. Select ((P(gen)) from (P(gen-1)); 
iii. Crossover (P(gen)); 

iv. Mutate (P(gen)); 
v. Evaluate (P(gen)); 

vi. Elitism_strategy (P(gen)); 
7. end; 

8. end. 
 

The parameters to be optimized are obviously the 

controller gains and the number of PI-subsystems 

uncluded in modeling of control law (network nodes). So, 

the optimized parameter set may be such that  

 

,ctrl net

,ctrl 1

size_net size_netnet 1


   




    

    


T
K G Sb

T
G g gn

T
S n

        (29) 

 

The key  to put a genetic search for the SOF-FoF into 

practice is that all design variables to be optimized (29) 

are encoded as a finite length string, called chromosome. 

To simplify  the genes coding mode, i.e., avoidance of the 

mixed coding (real-integer) and the genetic operators 

adapted for each mode, the real coding is used with the 

restriction 
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 

size_net ,  retpi

0,  ,  1,2, , ;  retpi

0 max





   
  


 
   
 

   


m m

Lm i n
m h

g gi

      (30) 

 

where netpi  modelizes the number of nodes in the 

network, size_net  , included in modeling of SOF-FoF 

control law (15) and  x  represents the integer part of x . 

Every chromosome (Figure 5) which encodes the 

knowledge base of the SOF-FoF model can represent a 

solution of the problem, that is, a  SOF-FoF optimal 

knowledge base. 
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Fig.5. Chromosome Structure of the Knowledge Base of SOF-Fof 

Model. 

In this paper, the optimization process is to find the 

optimal knowledge base (29) of the SOF-FoF model, 

while satisfying the objectives and constraints specified 

by the designer such as simplicity, precision (accuracy), 

fewer energetic effort and overall stability  conditions 

guarantee. 

The simplicity of the control law is measured by a 

combination of a reduced (optima l) number of PI-

subsystems while keep ing a prescribed level of 

efficiency  d ,    1  
dx t x tn n c  in the control process 

and       dx t x tm n s n s  in the synchronization process. 

The general optimization procedure may be pronounced 

as follows  

Find the knowledge base Kb  (29) that minimize the 

objectives ,  1,2,3J ii , such that 

 

  

 

 

1Max_net size_net
1

          and

1
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0

                    and
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 
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



iJ i

N
i dJ M e tx i k i

k

N
iJ M u t i nx i k

k

      (31) 

 

and satisfying the design constraints g , such that 

 

  1 arg eig 0,
2 

2 1 0


  


   


g A q
g

g q A

            (32) 

 

 M N hx  denotes the integer number of computing 

steps, n is the number of state variables to be controlled 

and N  represents the running time. size_net  is a  

number of PI-subsystems and Max_net  characterizes the 

upper limit  of PI-subsystems in  control law. The 

additional constraints are the lower   TK
b

 and upper 

 
T

K
b

 limits of the parameters to be optimized. The 

optimization problem (31)-(32) can be transformed to an 

unconstrained problem v ia the Exterior Penalty Function 

(EPF) [31] given by  

 

     Min 

1 1

 


  
     

       

 
n n

cG w Ji i
i c

    (33) 

 

where  




 is the EPF, expressed as 
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2

1
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1


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



l
r hh k

k

p
ir gg

i

            (34) 

 

In this application, 0,    h kk . The weights 

 ,  ,  0w r ri g h  can therefore, be used in the control 

system conception as design parameters to tradeoff 

between different weights of performance specificat ions 

(better accuracy, a reduced consumption of energy 

control, optimal structure and satisfied stability analysis 

conditions). From (33) and (34), the local and global 

minima can be calculated if the reg ion of realizability of 

  is convex [32]. It is usually assumed that  

 

 , , 1 w r ri g h
i

                           (35) 

 

The fitness function used by the GA, can then defined 

as 

 

 
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








 




Fit
G

                          (36) 

 

where   2,   and   is a s mall positive constant used 

to avoid the numerical error in  divid ing by zero. The 

algorithm stop criterion is fixed by a maximal number of 
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generation, or by a required precision values specified by 

a given error. 

 

V.  CONTROL AND SYNCHRONIZATION OF FOCS VIA SOF-

FOF APPROACH 

In this section, we apply the proposed design in 

stabilizing and synchronizing the fractional-order Chua‘s 

oscillator to verify its effectiveness. 

A.  Description of fractional-order Chua’s oscillator 

The mathematical model of the circuit can be obtained 

by applying the Kirchhoff‘s laws into the circuit depicted 

in Figure 6. 
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Fig.6. Diagram of Chua‘s Circuit under Numerical Control Computer. 

The integer-order of derivative and integral operator in 

classical form of Chua's circuit    ,  
1 2

dv t dt dv t dtC C  

and  di t dtL  are rep laced by the fractional operators  

   1 1 2 2,  
1 2

q q q q
d v t dt d v t dtC r C r

and  3 3q q
d i t dtLr

, 

respectively, where 1q  is the real-o rder o f the 

capacitor 1C r , 2 q  is the real-order of the capacitor 

2C r and 3q  is the real-order of the inductor Lr . 

By defining the rescaling 
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we can transform the main expression of Chua‘s circuit  

into the corresponding dimensionless form [3], with the 

addition of the adjustable voltage and current generators, 

as a generalized form  

 

 

 

 

1 01

1 1 1

0

0 0

                0 0 0

0 0 0

 

 



 
           
        
          
 
 

     
    

     
    

     



q
D xrt m xrq
D y yr rt

q zrD zrt
A

g x sw ur x x

sw uy y

sw uz z

F B

x

y

z       (37) 

 

where, 

 

   

   
1

         0.5 1 10 1

  

      

g x m x g xr r r

m m x xr r
       (38) 

 

Typical values of the system parameters 

10.725,  10.593,  0.268,  1.17260      m  and 

0.78721  m  create chaotic behaviour ‗chaotic attractor‘ 

in the dynamical systems (37) as indicated in Figures 7 

(a)-(e). We have selected the initial conditions as 

        0 ,  0 ,  0 0.2,  -0.1,  0.1x y zr r r  and the derivative 

orders are chosen to be    , , 0.93,0.99,0.92q q qx y z  

[2]. The calculus step is chosen as  0.01 sech  for 

numerical simulations. 
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Fig.7. Phase Planes and T ime Responses for The Uncontrolled 
Fractional-Order Chua‘s Oscillator. 

The first case corresponds to the control of the 

fractional-order Chua‘s oscillator (37) at  the origin. Here, 

the contribution is illustrated in the fractional chaos 

control context.  

The second case corresponds to the synchronization of 

two identical fract ional-order Chua oscillators. Here, the 

contribution is illustrated in the fractional chaos 

synchronization context. 

B.  Control of fractional-order Chua’s oscillator via 

SOF-FoF approach 

In this application, the reference model is chosen to be 

 0 0 0
Trx  at time  50 sect , i.e., the SOF-FoF 

controller was applied at  time  50 sect  to stabilize the 

state  x t  of the fract ional-order Chua‘s oscillator at the 

equilibrium point (origin). 

Table 1. Specifications of the GA learning. 

 
Characteristic Value 

Population Size 20 

Number of max generation 1000 

Coding chromosome Real 

Gain factors   1,2,3g ii   [10
-4

, 1.0] 

Number of regulators  netpi  1,2,3ii
   [0.0, 1/0.01] 

Selection process Tournament 

Arithmetic Crossover Pc = 0.6 

Chaotic Mutation  Pm =  0.08 

  
 

The MGA characteristics are summarized in Tab le 1, 

with the chromosome structure schematized in figure 8. 

The knowledge base to be optimized (37) has the 

dimension of three, i.e, n = 3. 

Around 200 optimizat ion iteration steps (generation 

number), the knowledge base of the SOF-FoF model is 

obtained as 

 

 
 
 

0.8976,  reg 10

0.4184,  reg 00

0.9205,  reg 10

 
 

  
  

TK
b

                     (39) 

 

Stability analysis: The knowledge base (39) is chosen 

in order to guarantee the asymptotic stability of the 

system dynamics (14), i.e., satisfy the three conditions of 

Theorem 2. 

 

 By applying the inequality      a b a b , it  

is easy to verify that      F x g x  satisfies 

  0 0F x  and  

 

  

 

    

    

lim
0

2
0.5 1 10 1

lim
2 2 20

2
0.5 1 10 1

lim
2 2 20

0








      

  

      


  

F x t

x tx

m m x xr r

x x y zr r r

m m x xr r

x x y zr r r

     (40) 

 

which implies that   F x t  satisfies condition 1 

of Theorem 2.  

 

 For the system matrix o f (17), we get the 

eigenvalues 0.1021 1.86821,2     j , 

6.29423   . All eigenvalues satisfy condition 2 

of Theorem 2, where 

 arg 1.6254 0.99 0.5 1.55511,2       and 
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 arg 1.55513   .  

 According to the condition 3 of Theorem 2, 

where 0.99 11.3038 12.8772 1    q A , the 

system is asymptotically stable. 

 

Figure 8 (a) shows the evolution of the system states. It 

can be remarked that the states of the Chua‘s circuit  have 

been regulated effectively and efficiency to the 

equilibrium point    ,  ,  0,  0,  0r r rx y zr r r  and the control 

objective is attained. From Figure 8 (a), in point of 

reference signal t ransitions, we can observe that the effect 

of coupling between the three controlled variables was 

reduced. This is a good compensation of the interactions 

between the state variables. The controller was able to 

ensure convergence with relatively short transient 

responses. The corresponding input signals of the system 

are depicted by Figure 8 (b). Simulation results displayed 

in Figures 5 (a)-(c), show that the zero solution 

 0,  0,  0
T  of the controlled fractional-order Chua‘s 

oscillator is globally asymptotically stable.  
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Fig.8. Stabilization of Fractional-Order Chua‘s Oscillator at the Origin 
using SOF-Fof Approach: (a) System States. (b) Linear Control Signals. 

It is noted that the SOF-FoF approach provides slightly 

faster responses to set-point changes, with only small 

overshoots. The decoupling capabilities resulting from 

the design technique were generally good. 

C.  Synchronization of fractional-order Chua’s oscillator 

via SOF-FoF approach 

In order to observe the synchronization behavior in two  

identical fractional order Chua systems, we construct a 

master-salve configurat ion with a master system given by 

the fractional-order Chua‘s oscillator comprising three 

state variables denoted by the script m (abbreviation of 

master) and with a similar chaotic system with three state 

variables denoted by the script s (abbreviation of slave). 

The drive (master) and the response (slave) are described 

by the following differential equations. 

 

 The drive system is described by  

 

  

 


   




  

     


q
D x y x g xm m m mt

q
D y x y zm m m mt

q
D z y zm m mt

x

y

z

               (41) 

 

 The response system is given by  

 

  

 

 



 


     




    

       


q
D x y x g x sw us s s s x xt

q
D y x y z sw us s s s y yt

q
D z y z sw us s s z zt

x

y

z

    (42) 

 

The main objective is to design the controller 

, , 
 

T
u u u ux y z  based on the developed SOF-FoF 

approach (27) so that the response system (42) 

asymptotically approaches the driving  system (41), and 

that the limit of the synchronisation error vector 

, , 
 

T
e e e ex y z approaches zero, where  e x xx m s , 

 e y yy m s  and  e z zz m s .  

In the numerical simulations, we also set the calculus 

step as  0.01 sech  and the system parameters are as : 

10.725  , 10.593  , 0.268  , 1.17260  m  and 

1.78721  m  and    , , 0.93,0.99,0.92q q qx y z . The 

init ial conditions of the drive system are 

        0 ,  0 ,  0 0.2,  -0.1,  0.1x y zm m m  and the 

init ial conditions of the response system are selected as : 

        0 , 0 , 0 3.0, 2.0, 1.0 x y zs s s [3].  

From Figure 9, it is evident that, 

when  0  sw sw swx y x , the trajectories diverge from 

each other due to the sensitivity to the in itial conditions. 

However, as soon as the controller (28) is applied, not 

only tracking of the reference signal but also 

synchronization of all the state variables is achieved. In 

this application, the control law is applied at time  

 10 sect .  

Around 450 optimizat ion iteration steps (generation 

number), the knowledge base of the SOF-FoF model is 
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obtained as 

 

 
 
 

0.8624,  reg 10

0.0154,  reg 00

0.3526,  reg 20

 
 

  
  

TK
b                (43) 

 

For the system matrix o f the system (17), we get the 

eigenvalues 0.1951 3.91441,2     j , 78.95653   . 

All eigenvalues satisfy condition 2 of Theorem 3, where 

 arg 1.6206 0.99 0.5 1.55511,2       and 

 arg 1.55513   .  

According to the condition 3 of Theorem 3, where 

0.99 155.8866 154.3278 1    q A , the system is 

asymptotically stable. Then, the system (26) can be 

stabilized to the origin point, i.e., synchronization of 

system (41) and (42) is achieved. 

From Figures 9 (a)-(d), in point of reference signal 

transitions, we can observe that the effect of coupling 

between the three controlled variables was reduced. This 

is a good compensation of the interactions between the 

state variables.  

The controller was able to ensure convergence with 

relatively short transient responses as depicted in Figures 

10 (a). The numerical results, illustrated in Figure 10 (b), 

shows that the error system is driven to the origin point 

fast, i.e., the systems (41) and (42) are synchronized. 
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Fig.9. The Orbits of the Three States of Drive and Response Systems: (a) 

x xs m . (b) y ys m . (c) z zs m . (d) The portrait  in 
3
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Fig.10. T ime Response of the (a) Control Inputs and (b) 
Synchronization Errors between Drive and Response Systems of the 

Fractional-Order Chua‘s Oscillator.
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Simulation results show the good performance of the 

developed algorithm and confirm the effectiveness of the 

control law in the tracking of the desired trajectories. 

 

VI.  CONCLUSION 

Progress has been made in coupling advanced 

modeling and controlling methods to chaotic dynamical 

systems. In this paper, a simple and optimal form of 

fractional-order feedback approach assigned for the 

control and synchronization of a class of FoCS is 

proposed.  

The proposed design and optimization of SOF-FoF 

model represents a powerful and simple approach to 

provide a reasonable tradeoff between computational 

overhead, storage space, numerical accuracy and stability 

criterions in stabilization and synchronization of a class 

of FoCS. 

The advantages of the proposed designing 

methodologies are that they reduce the dimension of 

fractional configuration, search the optimal knowledge 

base, min imize the storage space and computational time 

while maintaining almost the same level of desired 

performances.  

Finally, due to the fact that the generated real-t ime 

executable runs on the processor of a computer and the 

memory constraints are not so critical. Thus, an optimal 

implementation of the SOF-FoF model will be possible. 
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