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Abstract—The purpose of this paper is to survey 

stochastic differential equations and Euler-Maruyama 

method for approximating the solution to these equations 

in financial p roblems. It is not possible to get explicit  

solution and analytically answer for many of stochastic 

differential equations, but in the case of linear stochastic 

differential equations it may  be possible to get an exp licit  

answer. We can approximate the solution with standard 

numerical methods, such as Euler-Maruyama method, 

Milstein method and Runge-Kutta method. We will use 

Euler-Maruyama method for simulat ion of stochastic 

differential equations for financial problems, such as 

asset pricing model, square-root asset pricing model, 

payoff for a European call option and estimating value of 

European call option and Asian option to buy the asset at 

the future time. We will d iscuss how to find the 

approximated solutions to stochastic differential 

equations for financial problems with examples . 

 

Index Iterms—Stochastic Differential Equations, Euler-

Maruyama method, Asset pricing model, Square-Root 

asset pricing model. 
 

I.  INTRODUCTION 

Stochastic differential equation (SDE) models play a 

prominent role in a range of application areas, including 

chemistry, biology, mechanics, economics and finance 

[1]. These equations have become standard models for 

financial quantities such as asset prices, interest rate and 

their derivatives [2]. Ito and Stratonovich put stochastic 

differential equations in mathemat ics. Ito p ioneered the 

theory of stochastic integral and stochastic differential 

equations, it use in various filed such as financial 

mathematics. To understand the dynamics of most SDEs 

and their solutions, it is important to have some 

knowledge of probability theory as well as some 

mathematical/statistical principles  [3]. It  is not possible to 

get explicit solution to many of stochastic differential 

equations. So, we approximate solution with numerical 

methods. We have based this paper around financial 

examples. At first, we introduce option, Brownian mot ion 

and compute discretized Brownian paths, Ito stochastic 

integral and stochastic differential equations. Then we 

survey how the Euler-Maruyama method simulate a 

stochastic differential equation in financial problems.   

Eu ler method is a method for solving ordinary  

differential equations (ODEs) with a g iven init ial value, it  

is named after Leonhard Euler who t reated this method in 

his book (Institutionum calculi integral is published 1768-

70). Gisiro Maruyama in  1995 showed unique answer for 

stochastic differential equations with Euler approximat ion 

and he proved the mean-square convergence of the Euler 

approximation  of the Ito process without jumps, this 

being one of the first papers on the approximation of Ito 

processes [4]. Eu ler-Maruyama method is named after 

Leonhard Euler and Gisiro Maruyama. 

 

II.  PRELIMINARIES 

In this section, we review some of the basic concepts 

and definitions which are used in this paper. 

A.  Option  

An option is a contract which gives the owner or 

holder the right to buy (call option) or sell (put option) a 

specified number of shares of an underlying asset at a 

fixed price (strike p rice, denoted as K  ) before a 

specified future date or on the specified date. The t ime 

that option exp ires is called expiry, denoted as T . One of 

the most common types of options, is European option. A 

European option can only be exercised at its maturity. 

This option gives its owner the right, to buy one unit of a 

particular asset at a pre-set price ( K ), at some fixed 

future time ( T  ). If the price of the asset at time T   is  

lower than K  , the option value is zero and it will not be 

exercised. Otherwise, if the price of the asset at time T  

exceeds K  , the owner o f the option may  buy one unit of 

the asset at price K  and immediately  sell it at p rice 

( )S T , so gaining a profit of ( )S T K . As a result, the 

payoff of the European call option is:  

 

( ) , ( ) ,
( ( ) )

0 , ( ) .

S T K if S T K
S T K

if S T K


 

  


       (1) 
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Hence, the payoff from purchasing a European call 

option can be represented by the max( ( ) ,0)C S T k  .  

“Fig. 1,” shows payoff for a European call option with  

strike price $30 . Another type of option is Asian option 

or average option. For Asian options the payoff is 

determined by the average price A of the underlying asset 

over some pre-specified period of time as opposed to at 

maturity. Asian call payout is: 

 

( ) max( (0, ) ,0), P T A T K                      (2) 

 

where A  denote the average, and K  the strike price. The 

average A  may be shown in many ways. For the case of 

discrete monitoring with monitoring at time
1,..., Nt t , the 

average is: 

 

1

1
(0, ) ( ).

N

i

i

A T S t
N 

                           (3) 

 

 

Fig.1. Payoff for European call option with strike price $30 . 

B.  Brownian motion 

A Brownian motion, or Wiener process, over [0, ]T   is a  

random variab le ( )W t  that depends continuously on

[0, ]t T  and satisfies the following conditions: 

 

1. (0) 0W  , With probability 1. 

2. For 0 v t T    the random variable given by the 

increment ( ) ( )W t W v is normally distributed 

(0, )N t v and ( ) ( ) (0,1)W t W v t vN  where 

(0,1)N denote normally distributed random 

variable with zero mean and unit variance. 

3. For 0 v t u s T      the increments 

( ) ( )W t W v  and ( ) ( )W s W u   are independent. 

 

We consider discretized Brownian motion for 

computational purposes, where ( )W t is specified at 

discrete t  values. We set /t T N   (fo r some positive 

integer N ). 
jW  Denote ( )jW t  with

jt j t . We have 

0 0W   with probability 1 from condition 1, from 

conditions 2 and 3: 

 

1 , 1,..., ,  j j jW W dW j N                   (4) 

 

where each 
jdW  is an independent random variable of 

the form (0,1)tN  [1]. MATLAB 1 [1] performs one  

simulation of discretized Brownian mot ion over [0,1]  

with 400N  , and produce “Fig. 2”. Now, we simulate 

the stochastic function  

 

1
( ( ))

2( ( ))
t W t

u W t e


                           (5) 

 

along 2000 d iscretized Brownian paths over [0,1] with 

400N  . Equation (5) has the form of the answer of 

linear stochastic differential equations. “Fig. 3,” show 

average of ( ( ))u W t over 2000 discretized Brownian  paths. 

The average of ( ( ))u W t is plotted with a solid green line. 5 

individual paths are plotted with a dashed red line. 

 

%Brownian path simulation 

% vectorized  

randn('state', 100)                    

T = 1; N = 400; dt = T/N; 

dW = sqrt(dt)*randn(1,N);         

W = cumsum(dW);                    

plot([0:dt:T],[0,W],'r-')               

xlabel('t','FontSize',12) 

ylabel('W(t)','FontSize',12 ,'Rotation',0) 

MATLAB 1. Simulation of Brownian path. 

 

Fig.2. Simulation of discretized Brownian path over [0,1]   with N=400. 

 

Fig.3. ( ( ))u W t  averaged over 2000 discretized Brownian paths 

along 5 individual paths 

In “Fig. 3,” the maximum discrepancy between the 

sample average and the expected value of ( ( ))u W t  (

9

8

t

e ) 

over all point jt  is 0.0177. 
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C.  Ito integral 

Let 
0 1 10 ... N Nt t t t T        be a grid of points 

on the interval[0, ]T   , The Ito integral is the limit: 

 
1

1
0 0

0

( ) ( ) lim ( )( ( ) ( ))
NT

j j j
t

j

h t dW t h t W t W t









           (6) 

 

D.  Ito formula 

If ( , )Y f t X , then 

 
2

2

1
( , ) ( , ) ( , ) .

2

f f f
dY t X dt t X t X dxdx

t x x

  
  
  

     (7) 

 

Where dxdx  term is interpreted as follows: 

 

0,

0,

0.

t t

t t

dtdt

dtdW dW dt

dW dW



 



                       (8) 

 

III.  STOCHASTIC DIFFERENTIAL EQUATIONS 

Stochastic differential equation (SDE) is a differential 

equation in which some of the terms and its solution are 

stochastic processes [5]. SDEs are important in filtering 

problems, stochastic approaches to determin istic 

boundary value problems, optimal stopping, stochastic 

control, and financial mathematics [6]. A general form 

for a stochastic differential equation is: 

 

0

( ) ( ( )) ( ( )) ( ),

(0) ,

0 .

dX t f X t dt g X t dW t

X X

t T

 



 

           (9) 

 

Where W  denote a Brownian motion and f and g  

are given functions. A solution is a stochastic process, 

which can be interpreted as integral equation [7]: 

 

0
0 0

( ) ( ( )) ( ( )) ( ) ,

0 .

t t

X t X f X s ds g X s dW s

t T

  

 

      (10) 

 

The second integral is Ito integral. If 0g   and 
0X is 

constant, (10) reduces to the ordinary differential 

equation: 

 

0( ( )), (0) .
dX

f X t X X
dt

                       (11) 

 

To better understand the difference between (9) and 

(11) we suppose that a person has two possible 

investments: 

 

 

1. A risky investment e.g. a  stock, where the p rice 

1( )P t per unit at time t satisfies a stochastic 

differential equation: 

 

1

1( ." ") .
dp

a noise P
dt

                  (12) 

 

Where 0a   and    are constants. 

2. A safe investment e.g. a  bond, where the price 

2 ( )P t per unit at time t  grows exponentially: 

 

2

2 ,
dP

bP
dt

                         (13) 

 

where b  is a constant, 0 b a   [8]. 

 

Equation (12) is stochastic differential equation, we 

don’t know the “noise” behavior. An SDE is an important 

model in science and engineering when noise affects 

behavior. For example, SDEs can model the rapidly  

fluctuating prices of the stock market [9]. But in (13) we 

don’t have the “noise” and (13) is ordinary differential 

equation. . The well- known Black–Scholes model of the 

asset price is described by the linear SDE [10]: 

 

0

( ) ( ) ( ) ( ),

(0) ,

 



dX t X t dt X t dW t

X X

 
                (14) 

 

where   and   are real constants. This stochastic 

differential equation arises, for example, as an asset 

pricing model in financial mathemat ics. The general 

solution of a linear stochastic differential equation can be 

found exp licitly [11].The solution of the (14) is geometric 

Brownian motion [12]: 

 

2

0

1
( ) exp(( ) ( )).

2
X t X t W t                (15) 

 

Geometric Brownian Motion is nonnegative, it  

provides for a more realistic model of stock prices. Also, 

the Geometric Brownian Motion model considers the 

ratio of stock prices to have the same normal d istribution. 

[13]. An alternative to the stock price model (14) is the 

mean reverting square root process [14]: 

 

( ) ,  t t t tdS a b S dt c S dW             (16) 

 

where a, b and c are constant. To check solution (15) for 

(14) [2], write 

 

0( , ) ,  YX f t Y X e                          (17) 

 

where 21
( )

2
tY t W     . By the (9), 
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0

1
.

2

Y YdX X e dY e dYdY                     (18) 

 

where
21

( )
2

tdY dt dW     . By the (10), 

 
2 .dYdY dt                                (19) 

 

As a result 

 

2 2

0 0 0

0 0

1 1
( )

2 2

.

Y Y Y

t

Y Y

t

t

dX X e dt X e dW X e dt

X e dt X e dW

Xdt XdW

   

 

 

   

 

 

(20) 

 

We use Monte Carlo simulation for linear stochastic 

differential equation at following example. 

Example 1. Suppose following process for the stock 

price S : 

 

0.16 0.32 , dS Sdt SdW                       (21) 

 

where the stock pays no dividends, has a volatility of 32%  

per annum, the expected return from a stock is 16% per 

annum with continuous compounding and the initial stock 

price is $100 (
0 100S  ). According to Wiener process, 

dW  is t   where (0,1)N . Let  S  is the 

increase in the stock price in the next s mall interval of 

time. So, 

 

0.16 0.32 .S S t S t                     (22) 

 

Consider a time interval of one week or 1/52 of a year. 

So, 

 
0.00307 0.04434 .S S S                   (23) 

 

Table 1. Monte Carlo simulation of stock price where 0.16   and

0.32   during 1-week periods over fifteen weeks. 

Stock price 

(at start  of period) 

Random sample 

(  ) 
Change in stock price 

during period 

100 -0.66 -2.62 

97.38 -0.46 -1.69 

95.69 0.28 1.48 

97.17 0.27 1.46 

98.63 0.84 3.98 

102.61 0.65 3.27 

105.88 0.95 4.78 

110.66 0.52 2.89 

113.55 0.86 4.68 

118.23 -0.71 -3.36 

114.87 -0.44 -1.89 

112.98 -0.24 -0.85 

112.13 0.91 4.87 
117 1.58 8.55 

125.55 0.54 3.39 

128.94 0.78 4.85 

To produce a random sample   from a standard normal  

distribution in Excel, we use ( ())NORMSINV RAND  [15]. 

We use Monte Carlo simulation of stock price over 

fifteen weeks for this example in  Table 1. So, the random 

sample from the distribution of stock prices at the end of 

15
th

 week is 128.94. 

 

IV.  EULER-MARUYAMA METHOD 

There is a stochastic analog of Eu ler’s method which is 

known as the Euler-Maruyama method [6]. Euler-

Maruyama method is constructed within the Ito integral 

framework [7]. To  apply Euler-Maruyama method to (9) 

over [0, ]T , we first divide the interval. Let /t T L  (for 

some positive integer L  ) and 
j j t    ( 0,...,j L ). Our  

numerical approximat ion to ( )jX   will be denoted
jX  . 

The Euler-Maruyama method takes the form [1]: 

 

1 1 1 1( ) ( )( ( ) ( )),

1,..., .

j j j j j jX X f X t g X W W

j L

        

  
(24) 

 

Now we want to obtain (24). Setting jt  and 1jt  

in (10), we obtain: 

 

0
0 0

( ) ( ( )) ( ( )) ( ).
j j

jX X f X s ds g X s dW s
 

       (25) 

 
1 1

1 0
0 0

( ) ( ( )) ( ( )) ( ).
j j

jX X f X s ds g X s dW s
 


 

     (26) 

 

We subtract these equations ((25) and (26)): 

 

1 1
1( ) ( ) ( ( )) ( ( )) ( ).

j j

j j
j jX X f X s ds g X s dW s

 

 
 

 
     (27) 

 

For the first integral in (27) we can use the 

conventional determin istic quarture approximation and 

for second integral we use Ito formula [7]: 

 

1
1 1 1( ( )) ( ) ( ) ( ).

j

j
j j j jf X s ds f X tf X




 


          (28) 

 

1
1 1( ( )) ( ) ( )( ( ) ( )).

j

j
j j jg X s dW s g X W W




 


        (29) 

 

Setting (29) and (28) in (27) gives us Euler-Maruyama 

formula (24).The Euler-Maruyama method has strong 

order of convergence ½ and weak order of convergence 1 

[16]. Now, we use this method for approximat ing 

stochastic differential equations in financial problems. 

Example 2. Suppose following process for the stock 

price:  

 

0

0.16 0.30 ,

100.

t t t tdS S dt S dW

S

 


                  (30) 
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S  is the stock price at a particular time and 
tW  is 

Brownian motion. The exact solution to this equation is: 

 

100exp(0.115 0.30 ). t tS t W                  (31) 

 

We have a discretized Brownian path over [0,1]  with

82t  . The solution (31) is plotted with magenta line 

in Fig 4. We apply Euler-Maruyama method to (30) using 

a step size t R t   with 32R  , that is plotted as green 

asterisks connected with dashed lines in “Fig. 4”. The 

discrepancy between the exact solution (31) and Euler-

Maruyama approximation at the endpoint 1t T  , was  

found to be 3.8741. Using smaller R values of 8 ( 8R  ), 

shown in “Fig. 5,” (see MATLAB 2), produced endpoint 

errors of 0.5084. So, the endpoint errors decreased with 

smaller R. For better conclusion we use values of 2 

( 2R  ), shown in “Fig. 6”. 

 

 

Fig.4. Exact solution and the solution based on Euler-Maruyama 

approximation with step size t R t  , 32R  . 

 

Fig.5. Exact solution and the solution based on Euler-Maruyama 

approximation with step size t R t  , 8R  . 

 

Fig.6. Exact solution and the solution based on Euler-Maruyama 

approximation with step size t R t  , 2R  . 

Example 3. We apply Euler-Maruyama method to a 

square-root asset pricing model with 0.09  , 0.6   

and
0 25S  : 

 

0.09 0.6 ,

0 1.

t t t tds S dt S dW

t

 

 
                       (32) 

 

We approximate this stochastic differential equation 

(32), for a single path but with different step sizes 

(
4 5 62 ,2 ,2  

 and
72

) [14] are shown in “Fig. 7”. 

According to the Example 1, we conclude that the 

approximation with the smallest t  is the best 

approximation. So, the red asterisks connected with 

dashed line is the best approximation. 

 

 

Fig.7. Euler-Maruyama approximation to a square-root asset pricing 

model with different step sizes. 

 

V.  THE APPROXIMATION PAYOFF FOR A EUROPEAN 

CALL OPTION 

Let ( , ( ))f t S t   represent the value of a European call 

option on stock S . Let S  follow the equation 

 

.dS Srdt S dW                      (33) 

 

We want to compare Euler-Maruyama method and true 

solution of the payoff at the initial t ime. We compute the 

true solution and Euler-Maruyama approximation  along 

2000 d iscretized Brownian paths for d ifferent init ial 

values, ranging from 70 to 95. The strike price K  set at 

83, the interest rate at 10.9%, the time T  at 0.2 years and 

0.1195   (volatility). Look at “Fig. 8”, it  resembles the 

call payoff graph shown in “Fig. 1”. The black line 

represents the true solution and the x-green line 

represents the Euler-Maruyama approximation. The 

graph’s curve in “Fig. 8,” begins to rise before the strike 

price ( 83K   ), that differs from the prev iously shown 

payoff graph in “Fig. 1”. This d ifference can be exp lain  

by the fact that graph in “Fig. 8,” is for the expected 

value of the payoff at the initial time, while the 

previously shown payoff graph was drawn at the 

expiration date [13]. 



 Using the Euler-Maruyama Method for Finding a Solution to Stochastic Financial Problems  53 

Copyright © 2016 MECS                                                             I.J. Intelligent Systems and Applications, 2016, 6, 48-55 

% Euler-Maruyama method on linear SDE Stock Price. 
%SDE is dS= mu*S dt + sigma*S dW, S(0) = Szero, 

%where mu =0.16, sigma =0.3 and Szero = 100. 
%Discretized Brownian path over [0,1] has dt = 2^(-8). 
%Euler-Maruyama uses timestep R*dt. 
randn('state',100) 

mu = 0.16; sigma= 0.3; Szero = 100;                
T  = 1; N = 2^8; dt = 1/N; 
dW = sqrt(dt)*randn(1,N);                                
W = cumsum(dW);                                           

Strue = Szero*exp((mu-0.5*sigmâ 2)*([dt:dt:T])+sigma*W); 
plot([0:dt:T],[Szero,Strue],'m-'), hold on 
R =8; Dt = R*dt; L = N/R;  

Xem = zeros(1,L);  
Xtemp = Szero; 
linetypes={'b-','g--*'}; 
for j = 1:L 

Winc = sum(dW(R*(j-1)+1:R*j)); 
Xtemp = Xtemp + Dt*mu*Xtemp + sigma*Xtemp*Winc; 
Xem(j) = Xtemp; 
end 

plot([0:Dt:T],[Szero,Xem],'g--*'), hold off 
legend(': Exact solution',': Euler-Maruyama') 
xlabel('t ','FontSize',12) 
ylabel('S','FontSize',12,'Rotation',0,'HorizontalAlignment','right') 

emerr = abs(Xem(end)-Strue(end)) 

MATLAB 2. Exact solution and the solution based on Euler-Maruyama method on linear SDE stock price. 

%Euler-Maruyama method on stochastic volatility SDE asset price. 
% SDE is  dS(1) = mu*S(1) dt  + S(2)*sqrt(S(1)) dW(1), S(1)_0 = Szero(1) 
%         dS(2) = 1/2*(sigma_0- S(2)) dt + 2*sqrt(S(2)) dW(2), S(2)_0 = sigma_0 
% S(1) is the asset price,  S(2) represents the volatility 

% European Option Price 
% Vectorized across samples 
clf 
randn('state',1) 

T  = 1; N = 2^10; Delta = T /N; M = 1e+4;   
mu = 0.16; Szero = 100; sigma_zero = 0.3; r = 0.05; 
 

Xem1 = Szero*ones(M,1); 
Xem2 = sigma_zero*ones(M,1); 
for j = 1:N 
    Winc1 = sqrt(Delta)*randn(M,1); 

    Winc2 = sqrt(Delta)*randn(M,1); 
    Xem1 = abs(Xem1 + Delta*mu*Xem1 + sqrt(Xem1).*Xem2.*Winc1); 
    Xem2 = abs(Xem2 + Delta*1/2*(sigma_zero - Xem2) + 2*sqrt(Xem2).*Winc2); 
end 

Price = exp(-r)*mean(max(0,Xem1-1)) 

MATLAB 3. Estimating the value of European call option to buy the asset at the future time T  (using   Euler-Maruyama method). 

 

 

Fig.8. Euler-Maruyama approximated payoff for a European call option. 

Example  4. Look at the pair of following stochastic 

differential equations, the first equation is the asset price 

model, with asset variance 2

tS , fo llowing second equation:  

 

1 1 2 1 1

2 2 2 2

0

1
( ) 2

2

t t t t t

t t t t

dS S dt S S dW

dS S dt S dW





  



  


           (34) 

 

for 0 1t  . The Brownian paths 1

tW  and 2

tW  are 

independent. We set 0.16  , 1

0 100S   and 2

0 0 0.3S   .  

We apply Euler-Maruyama method with step size 
102

 

fo r 10,000M   paths . For es t imat ing  the value o f 

European call option to buy the asset at the future time T , 

we form the average o f 1

1max(0, 1)r

te S

   overall paths 

with r=0.05. MATLAB 3 produce 110.6482 (value of  

European option to buy asset at future time T ). So, the  
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price of asset at t=1 exceeds K=100, the owner of the 

option may buy the asset at price K=100 and immediately  

sell it  at 110.6482, hence gain ing a p rofit  of 10.6482. If 

we approximate 
1

[max(0, 1)]r
te E S   fo r equat ion (34),  

 

 

where
1

tS  is the average o f 1

tS  over 0 1t  , this 

corresponds to pricing an Asian option. MATLAB 4 

produce 102.2217 (value of Asian option to buy asset at 

future time T ). If we exercise this option, we gain a profit 

of 2.2217. 

% Euler-Maruyama method on stochastic volatility SDE asset price. 
% SDE is  dS(1) = mu*S(1) dt + S(2)*sqrt(S(1)) dW(1), S(1)_0 = Szero(1) 
%         dS(2) = 1/2*(sigma_0-S(2)) dt +2*sqrt(S(2)) dW(2),  S(2)_0 = sigma_0 
% S(2) is the asset price, S(2) represents the volatility 

% Asian Option Price 
% Vectorized across samples 
clf 
randn('state',1) 

T  = 1; N = 2^10; Delta = T /N; M = 1e+4;    
mu=0.16; Szero = 100; sigma_zero = 0.3; r = 0.05; 
 

Xem1 = Szero*ones(M,1); 
Xem2 = sigma_zero*ones(M,1); 
Ssum = Xem1; 
for j = 1:N 

    Winc1 = sqrt(Delta)*randn(M,1); 
    Winc2 = sqrt(Delta)*randn(M,1); 
    Xem1 = abs(Xem1 + Delta*mu*Xem1 + sqrt(Xem1).*Xem2.*Winc1); 
    Xem2 =abs(Xem2 + Delta*1/2*(sigma_zero - Xem2)+2*sqrt(Xem2).*Winc2); 

    Ssum = Ssum + Xem1; 
end 
Smean = Ssum/(N+1); 
Price = exp(-r)*mean(max(0,Smean-1)) 

MATLAB 4. Estimating the value of Asian call option to buy the asset at the future time T   (using   Euler-Maruyama method). 

 

VI.  CONCLUSION 

In this paper, we surveyed the applications of 

stochastic differential equations and Euler-Maruyama 

method for some financial problems.  We found out the 

endpoint errors decreased with smaller delta ( t ) fo r 

linear stochastic differential equation (the process for the 

stock price). Besides, we approximated square-root asset 

price model with d ifferent step sizes, because the solution 

to this equation is not explicit. Moreover, we estimated 

the value of European call option to buy the asset at the 

future time T , and we applied it for Asian option. 
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