
I.J. Intelligent Systems and Applications, 2016, 6, 27-39

Published Online June 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2016.06.04

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

Author Attribution of Arabic Texts Using

Extended Probabilistic Context Free Grammar

Language Model

Ibrahim S. I. Abuhaiba
Computer Engineering Department, Islamic University, P. O. Box 108, Gaza, Palestine

E-mail: isiabuhaiba@gmail.com

Mohammad F. Eltibi
Computer Engineering Department, Islamic University, P. O. Box 108, Gaza, Palestine

Abstract—Author attribution is the problem of assigning

an author to an unknown text. We propose a new

approach to solve such a problem using an extended

version of the probabilistic context free grammar

language model, supplied by more informative lexical

and syntactic features. In addition to the probabilities of

the production rules in the generated model, we add

probabilit ies to terminals, non-terminals, and punctuation

marks. Also, the new model is augmented with a scoring

function which assigns a score for each production rule.

Since the new model contains different features, optimum

weights, found using a genetic algorithm, are added to the

model to govern how each feature participates in the

classification. The advantage of using many features is to

successfully capture the different writ ing styles of authors.

Also, using a scoring function identifies the most

discriminative ru les. Using optimum weights supports

capturing different authors’ styles, which increases the

classifier’s performance. The new model is tested over

nine authors, 20 Arabic documents per author, where the

training and testing are done using the leave-one-out

method. The initial error rate of the system is 20.6%.

Using the optimum weights for features reduces the error

rate to 12.8%.

Index Terms—Author attribution, author identification,

language model, PCFG language model, Chi-square score,

genetic algorithm.

I. INTRODUCTION

Author attribution is the problem of identifying the

author of an anonymous text, or text whose authorship is

in doubt, by studying strategies for discriminating

between the styles of different authors. Also, it can be

defined as the automatic identification of the author of a

text on the basis of linguistic features of the text.

Old applications of author attribution include the

traditional plag iarism detection as settling disputes

regarding the authorship of old historical documents. It is

also applied in criminal law which includes the

determination of documents authority in courts and

forensic linguistics. More recently, author attribution

gained new importance in cybercrimes which include

deducing the writer o f inappropriate communications that

were sent anonymously or under a pseudonym, and in a

more general search for reliable identification techniques

[1]. Another area where author identification and

profiling can provide valuable information is in deriv ing

market ing intelligence from the acquired profiles [2], and

in the rapid ly growing field of sentiment analysis and

classification [3]. Author attribution appears in specific

applications as recognizing the author of a program to

help detect copyright violation of source code as well as

plagiarism [4]. A lso, it helps the developing of

applications by identifying the author of non-commented

source code that we are trying to maintain. It is useful to

detect the programmer of malicious codes and viruses [5].

Due to the growing increase in the number of documents,

especially in the web, automated text categorizat ion by

their authors is a useful way to organize a large

documents collection. Author attribution is becoming an

important application in web information management,

and beginning to play a role in areas such as informat ion

retrieval, information extraction, and question answering.

The general approach that is used to solve the author

attribution problem starts from a set of train ing

documents, which are documents of known authors, a set

of features, that are considered to be most informative in

identifying the author, are extracted, then a machine

learning algorithm is implemented and learned using

these features to be able to classify a document of an

unknown author.

Researchers assume that all authors have specific style

characteristics that are outside their conscious control.

Hence, on the basis of those linguistic patterns and

markers, the author of a document can be identified.

Our method will use language models to assign an

author to a test document of an unknown author [6]. It

starts by forming a language model for each author from

his own training documents. This model can effectively

capture the language syntax of the author, which is

considered as one of the syntactic features that proved to

be informative for capturing the author’s style and can be

used in the author attribution problem. However, this type

28 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

of features alone is not efficient to discriminate authors.

Our proposed method tries to enhance the language

model by involving more syntactic features other than the

language syntax, such as Part of Speech Tagging (POST)

feature, where each word will be assigned a tag reflecting

its corresponding part of speech, such as noun, verb, etc.

Also, more lexical features will be added. At the end, we

will have an extended language model that contains a rich

set of features.

When classifying an unknown document, the method

starts to form an uncompleted language model to

represent the test document. Then, it matches this

language model with each author’s language model, so

that the test document will be assigned the author whose

language model produces the best match.

The rest of the paper is organized as follows. Section II

describes some of the most related works that have been

done in the author attribution problem. Section III

describes accurately the proposed extended language

model to solve the problem. In Section IV, the

experimental environment and results are described.

Finally, concluding remarks and future work are

presented in Section V.

II. RELATED WORKS

Researchers tried to categorize the features that can be

used in author attribution. The basic categorizat ion is

lexical, character, syntactic, and semantic features:

A. Lexical features

Using this set of features the text is viewed as a

sequence of tokens, where a token is a word or a

punctuation mark, which are grouped into sentences.

From this representation, some features can be computed

such as the length of sentences and length of words.

Although these features are basic, they can be applied to

any language with no additional requirements, but still we

need a tokenizer tool to detect tokens and sentence

boundaries. However, these features may not capture the

style of a written text, especially for texts containing a lot

of abbreviations.

Other features that can be extracted from tokens are

vocabulary richness features which measure the diversity

of the vocabulary of a text. A t raditional example is the

type-token ratio described by V/N, where V is the size of

the vocabulary which is number o f unique words, and N

is the total number of tokens. Additional vocabulary

richness features are the hapax legomenon, and hapax

dislegomenon, which are words occurring once, and

words occurring twice, respectively. The vocabulary

richness features are biased toward text length as they

increase when the text length increases; so they are

considered unreliable if used alone.

A more efficient approach is to measure the frequency

of each word, where the text is viewed as a set of words

each having a frequency of occurrence disregarding the

contextual information. One can argue that word

frequencies cannot capture authors’ style since they are

topic dependent. Actually, this is true but the big

advantage of using word frequencies is to specify

function words, which are words that have little lexical

meaning but serve to express grammat ical relationships

with other words. Function words proved to capture the

style of the authors across different topics. However, the

selection of specific function words require language

dependent expertise. There are various researches to find

the best function words for the author attribution problem

[7].

While word frequencies feature computes the

frequency of each word irrespective of the contextual

informat ion, the n-grams take advantage of contextual

informat ion. An n-gram is a contiguous sequence of n

items from a given sequence of text or speech, where an

item is usually a word, and n is the number of grams that

controls the level of context. N-grams were used as

textual features in the author attribution problem [8] and

can achieve good results but not always, because they

may capture content specific information rather than

stylistic information.

Uncommon lexical features measure various writing

errors to capture authors writing styles [9]. These features

are captured using spell checker tools, however, the

accuracy of spell checkers is problematic for many

languages, and the available text is almost error-free since

it is available in electronic form.

B. Character features

In these features, a text is viewed as a sequence of

characters, so that simple character level measures can be

defined as alphabetic characters count, digit characters

count, letter frequencies, and punctuation marks. These

features are available for any language, and can be easily

found without needing any extra tools.

Another effective approach is to extract n-grams on the

character level [10]. Character based n-grams are also

computationally simple. The approach is to extract the

frequencies of each character based on n-grams. This

approach is able to capture nuances of style including

lexical informat ion, contextual informat ion, and using of

punctuation marks. The other advantage of this model is

its tolerance to noise. In cases that the texts are noisy

containing grammat ical errors or making strange use of

punctuations, the character based n-gram model is not

affected dramat ically. Th is model shows acceptable

results in author attribution problem, but it requires more

experiments to find the best value for n. Also, the

dimensionality of this representation is considerably

increased in comparison to the word-based approach,

since many n-grams are needed to represent a single word,

which may capture redundant information.

C. Syntactic features

The authors tend to use similar syntactic patterns

which are out of their consciousness. In comparison to

lexical and character level features, the syntactic features

are considered more valuable to detect the writing styles

of authors. The first attempt to use syntactic features was

done by producing a parse tree for each sentence in a

document, and then extract ing writ ing rules frequencies

 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model 29

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

[11]. The results of using these rules in author attribution

problem are acceptable, but syntactic features alone

performed worse than lexical features. A lso, the syntactic

features require robust and accurate Natural Language

Processing (NLP) tools to perform analysis of text. Thus,

the extraction of such features is language-dependent and

depends on the efficiency of NLP tools.

The simple approach of syntactic features is to use Part

of Speech Tags (POST) so that each word is assigned a

tag based on contextual information. Then, frequencies of

tags are computed as features. This type of syntactic

features provides only a hint of the structural analysis of

sentences, since it is not clear how the words are

combined to form phrases, or how the phras es are

combined into higher-level structures.

D. Semantic features

NLP tools can be applied successfully to low-level

tasks such as sentence splitting, POS tagging, text

chunking, and partial parsing, so that relevant features

can be measured accurately such that the noise in the

corresponding data sets remains low. On the other hand,

more complicated tasks such as semantic analysis cannot

yet be handled adequately by current NLP technology for

unrestricted text. As a result, very few attempts have been

made to explo it high level features for stylometric

purposes.

An important method used semantic features, by

estimating information about synonymous and

hypernyms of the words, and identification of casual

verbs, in order to detect semantic similarities between

words [12]. A lso, a more advanced approach tried to

assign words or phrases semantic information based on

their meaning and indication. In general, semantic

features require more advanced NLP tools which are not

available.

Most of works, which have been done in the author

attribution problem, use machine learning algorithms

with some set of features. In [1], a set of lexical features

is used, as word frequency, text length, punctuation count,

and average word length. The features are augmented

with part of speech tagging (POST), which is a syntactic

feature. The features are then used to generate a linear

discriminate function that maximizes the difference

between authors’ documents groups. This function is

used to predict the group membership for a given test

document. Ten documents per author are considered,

where each document is related to a p redefined topic. The

achieved accuracy is about 92%. However, using lexical

features cannot efficiently describe the author’s style,

even if they were augmented with a syntactic feature

(POST), since POST is a simple syntactic feature that

describes the type (syntax) of a single word, and cannot

reflect the syntax of a phrase.

Another traditional method is proposed in [13], where

they gathered a set of 85 features . The features are

classified as follows: lemma-related features that capture

the occurrence of specific word lemmas. These lemmas

are selected as their low ―order of occurrence‖ for at least

one author, and high ―order of occurrence‖ for at least

one other author. Also, a new type of features is verbal

features which capture how an author uses verb forms.

They used a POST feature which captures the frequency

of occurrence of grammatical category of a word. They

also implemented many lexical features to capture word

length, sentence length, punctuation marks frequency,

and the frequency of occurrence of the most common

words expressing negation. These 85 features are

supplied to three classifiers: the first classifier is a mult i-

layer perceptron network, the second is Radial Basis

Function (RBF), and the last is a Self-Organized Map

(SOM). They suggested that the accuracy depends on

model deployment, i.e., the parameters that are used to

configure the classifiers, but in all classifiers the accuracy

did not exceed 85% since using too many features may

degrade the performance of the classifiers. Also, the

model depends on optimizat ion fo r parameters estimat ion,

which is a complex and expensive process.

Another method [14] applied neural networks, and

Tilburg in Memory Based Learner (TiMBL), which is a

more advanced version of K Nearest Neighbor (KNN)

algorithm, over a different set of features. Some of the

features are lexical features such as word length, n-grams,

type-token ratio, hapax legomenon, and common word

frequencies. The syntactic features are POSTs extracted

for each token in the text, and the rewrite ru les which

detect some structure of a sentence such as subjects and

objects. They used shallow text analysis to extract the

syntactic features. The best achieved accuracy from the

two classifiers was about 72%. Although the method

combined lexical and syntactic features, it did not achieve

good performance, which may be returned to the

performance of the shallow text analyzer and the absence

of optimization to select lexical and syntactic features.

Another machine learning method in the field of author

attribution problem was proposed in [15]. They used a

Support Vector Machine (SVM) classifier over a set of

features extracted from various documents to identify the

author of a g iven document. The point in their research is

that the SVM classifier can handle a very large set of

features in a better way compared with other classifiers,

but also the precision of their method ranged from 60-

80%. The disadvantage of this method is using of too

many features without selection.

In [16], an SVM classifier is also used for author

attribution, but instead of building a classifier for each

author, a multi-class SVM is used. Three types of features

are used: character features represented by character-level

n-grams, lexical features represented by word n-grams,

functional words, and the syntactic feature represented by

POSTs. The author suggested that the precision of such a

classifier depends on its configuration, which is a

disadvantage for this method, since adjusting parameters

for a classifier is not a trivial problem, and requires

complex estimations. On the other hand, the mult i-class

SVM can deal very well with small and large datasets.

In [8], the authors built and tested four different

machine learning algorithms, each supplied with a feature

vector combined of n-grams and additional features. They

used bi-gram (2-gram), and tri-gram (3-gram), counting

30 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

the occurrence of each gram to be included in a feature

vector. The additional features include statistical features

such as sentence length and word length. Also, they

included vocabulary richness features such as type-token

ratio, words occurring once (hapax legomenon), and

words occurring twice (hapax d islegomenon), POST for

each word in the text , and function words. Because of the

high number of features, they categorize features to a four

sets, and test each set of features independently by

applying the SVM, KNN, Random Forest, and mult i-

layer perceptron classifiers. The overall results ranged

from 60% to 84%. Using n-grams has two drawbacks,

first there is a problem in defining the best value fo r n, as

this method uses many values for n, in order to find the

best solution. Second, n-grams may capture content

specific information, while we search for stylistic

informat ion for the author attribution problem. Also, the

used features are treated equally in the classification

process, which is a problem.

The basic unit in trad itional n-gram models is a word.

In [10], a method is proposed based on a character level

n-gram model, in which the character is the basic unit,

where the details are the same as word-based n-gram

models. They suggested that using a character level n-

gram will d iscover useful inter-word and inter-phrase

features. The advantage of this method is that it avoids

the need of exp licit word segmentation, so there is no

need to parse sentences, and the method can be used to

detect any language. The approach is to learn a separate

language model (character level n-gram) for each author,

which is trained on author’s documents. In classification,

an unknown document will be supplied to each language

model, to evaluate the likelihood, and pick the winning

author. They evaluated the accuracy for three different

languages data sets, and achieved a result between 70%

and 90%. The character-based n-gram model still inherits

the problem of identify ing the best value for n. Also, the

representation of this model leads to high dimensionality

space, which requires complex computations, and with

the probability of capturing redundant information.

Another variation in using the n-gram model was

applied in [17], in which byte n-grams are used to build a

language model for each author. Clearly, to extract such

grams, the text is viewed as a sequence of bytes. A profile

is built fo r each author from the set of most frequent n-

grams, with their normalized frequencies generated from

training documents. Likelihood classification is used.

However, v iewing text as a sequence of bytes is not

effective for the author attribution problem.

In [18], a classifier based on SVM algorithm is built.

They used a sequential minimal optimization method to

speed up the training of the SVM. The algorithm was

trained using several features: characters, character n-

grams, words, word n-grams, and rare words. The system

was trained using only two Arabic documents for each

author, and the testing was made using only one

document. Using different combinations of features, the

best achieved accuracy was 80%. This method used only

lexical features in order to classify a document and the

data set is very small, which may exp lain the reason

behind the low accuracy.

In [19], the authors introduced a set of Arabic function

words as features for author attribution. This set of words

was used by a hybrid classifier, which used an

evolutionary algorithm and a linear d iscriminant analysis

classifier. The ro le of the evolutionary algorithm is to

find a suitable subset of the function words to be used in

training the linear discriminant analysis. The system

accuracy did not exceed 93%. The drawback of the

method is that it depends only on function words to

discover authors.

Some methods tried to use different types of features to

capture authors’ style. In [20], the authors used a set of

300 features of types: lexical, syntactic, structural, and

content-specific features. The structural features measure

the format of online texts written by authors, as font color,

font size, embedded images, and hyperlinks. They tested

these large set of features using SVM classifier over

online texts written both in Arabic and English. The

classifier accuracy reached 97% and 94% for English

texts and Arabic texts, respectively. Merging different

types of features can effectively capture authors’ styles,

but the method did not perform very well for Arabic texts.

Machine learning methods may achieve acceptable

results in author attribution problem, but we notice that

almost all methods did not benefit from efficient syntactic

features as sentence structure, although this type of

features can describe author’s style. This is may be due to

the difficulty of implement ing such features in machine

learning algorithms. Even methods that combined

syntactic features with other features assumed that all

features have the same importance for the author

attribution problem.

In the previous researches, there are many features that

can be used in the author attribution problem, which can

be helpful, but in many cases the huge amount of features

may decrease the performance of a classifier. Because of

this, many researches were performed in order to select

the best features that can be used. One of these researches

was proposed by in [21], where a genetic algorithm [22]

was used to identify the best features. Here, each gene

represents a single feature with value 0 or 1 to indicate

whether a feature is selected or not. The fitness function

is defined as the accuracy of the corresponding classifier,

where an SVM algorithm is used to classify an unknown

text. The method shows that choosing 130 features from

270 features can increase the accuracy. The problem of

this method is that one cannot capture all stylometric

features since they may be very large and require

complex estimation to detect best features. Also, the

system depends on a single classifier (SVM) to judge the

importance of a feature, and the syntactic features were

not involved in the method because it is hard to represent

such features using genetic algorithms.

Another approach to select best features was proposed

in [23], in which features are selected according to their

predictive values. These values are calculated using the

chi square metric (X2) which estimates the expected and

observed frequency for every feature to identify features

that are able to d iscriminate between authors. The

 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model 31

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

algorithm uses a combination of lexical features, plus

syntactic features ext racted by a parser to produce POSTs.

In classification, two d ifferent machine learn ing

algorithms were used: TiMBL and SOM.

In [24], the authors tried to depend on similarity

measurements rather than a machine learning approach.

They investigated the author attribution problem for large

candidates (10,000 authors) using similarity-based

classification derived from informat ion retrieving theory.

They represented the text as a vector that includes the

frequencies of each 4-gram characters, including

punctuations, numerals, and sundry, to find an author

from large set of authors. They used cosine similarity

[25], which is a common metric used in informat ion

retrieval. The achieved precision is about 46%, so they

improved the procedure by repeatedly selecting the top k

documents, then computing the score for each author

depending on this set. The algorithm returns the author

who has the maximum score. The idea is to check if a

given author proves to be most similar to the test

document for many different randomly selected feature

sets of fixed size. The drawback of this method is

restricting the features on n-grams only, which cannot

capture the writing style.

Another approach is used in the author attribution

problem incorporating language models. This approach

assumes that each author has writ ing characteristics that

can be captured using a language model. In [26], the

authors used a more advanced language model. They

applied the Probabilistic Context Free Grammar (PCFG)

language model, by training a language model for each

author from his known text documents. A test document

is assigned to the author whose language model gives the

highest likelihood score. The method achieved a good

result in the range of 87 to 95%. A PCFG language model

describes the structure of the sentences that are used in

text, which is considered as a syntactic feature. The

research did not use features other than the syntactic ones

expressed by the PCFG model, and achieved good results.

Syntactic features give better results in author attribution

field if they are combined with other features.

Many of the previous works were tested over

documents written in English language [1, 8]. Some used

Greek language [10, 15], Belg ian language [14],

Germany language [15], and Arabic language [18-20]. In

this paper, we develop an extended the language model

for Arabic texts to solve the author attribution problem.

III. PROPOSED METHOD

The proposed method is described in detail in this

section.

A. Background

Context-free grammar (CFG) is considered as the most

effective grammar formalization for describing language

syntax [6]. CFG is defined as a tuple G = {Σ, N, S, R},

where Σ is a set of terminal symbols which are symbols

or words actually seen in the sentences, N is a set of non-

terminal symbols each of which points to further

production rules. These two sets are disjoint, S ϵ N is the

start symbol, and R is a fin ite set of production rules that

define how a string of terminal and non-terminal symbols

can be immediately produced from a non-terminal

symbol. A production rule has the form: A→α, where A

is a non-terminal ∈N ,α is a sequence of terminal and

non-terminal symbols. So, in a CFG grammar, a phrase

can be viewed as a sequence of terminals.

CFG provides a simple and mathemat ically precise

mechanis m for describing the methods by which phrases

in some natural languages are built from s maller blocks.

CFG can exactly describe the basic recursive structure of

sentences, the way in which clauses nest inside other

clauses, and the way in which lists of adjectives and

adverbs are swallowed by nouns and verbs.

Most grammar formalizations are derived from CFG,

one of which is the Probabilistic Context Free Grammar

(PCFG), in which each production rule is assigned a

probability. These probabilities are required to sum up to

1.0 for each non-terminal. We can view a PCFG as a

tuple G = {Σ , N, S, R, P}, where P is a list of probabilities,

each probability is assigned to one of the rules in R , and

defines the likelihood with which this rule is used in

generating a sentence. After generating a PCFG grammar,

G, and computing a probability for each rule from the

training data, the probability of generating a string is the

product of the probabilities of productions taken at each

branch of its parsing tree.

In our approach, we will have many rules produced

from authors’ documents. We need the rules that are most

efficient to discriminate authors. A popular feature

selection method is ch i-square (X
2
). In classification

problems, the X
2
 score measures the lack of independency

between a feature, t, and class, c. We will have a rule r

and a class c, and we want to know the dependency of

each rule and the class (author). One way to compute X
2

is by using the two-way contingency table of a rule r and

an author c [27]:

 ()
 ()

() ()()()
 (1)

where A is the number of times r and c co-occur, B is the

number of t imes the rule r occurs without c, C is the

number of t imes c occurs without r, D is the number of

times neither c nor r occurs, and N is the total number of

documents. If rule r is independent of author c, then the

X
2
 score will be zero. The computation of X

2
 scores has a

quadratic complexity, similar to mutual informat ion (MI),

and information gain (IG). A major d ifference between X
2

and MI is that X
2
 is a normalized value; hence X

2
 values

are comparable across terms of the same category. A rule

with small score denotes that the rule is not

discriminative for that author, while a h igh score denotes

that it is discriminative and captures the author’s style.

B. Details of proposed method

The PCFG grammar describes the language syntax, but

this alone cannot be efficiently used to distinguish the

author of an unknown text [26], since it focuses on

32 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

grammar rules and their probabilit ies only. So, our

contribution is to extend the PCFG language model in

order to capture addit ional features that can increase the

efficiency of language models in author attribution. We

will incorporate some basic features as lexical features to

the PCFG language model to d istinguish between authors

[1, 10]. These features proved to be informative [14].

Recall that we already know the words in each

sentence (terminals) and their types (non-terminals) from

the PCFG language model. We will use this to capture

some lexical features, which will be handled by adding a

new set, PT, which contains the probabilit ies of terminals,

to the grammar, G. A lso, a second set, PN, will be added

to the grammar, G, which includes the probabilities of

non-terminals. This set is predefined and will be of fixed

size. PCFG do not consider punctuation marks in

generating the rules and their probabilit ies. However,

punctuation marks are considered major features to

capture the style of a text [28], so we will add a new third

set, PU, to grammar, G, which includes the probabilities

of punctuation marks.

The other extension to the PCFG model is to compute

weights for each ru le p robability in the set, R. These

weights will be computed using chi-square score (X
2
). So

the extended weighted PCFG model (we call it XPCFG)

tuple will be:

G = {Σ, N, S, R, P, U, X
2
, PT, PN, PU} (2)

where X
2

is the set of weights for each rule in R, PT is the

probabilit ies of terminals, PN is the p robabilities of non-

terminals, U is the set of punctuation marks , and PU is the

probabilities of punctuation marks.

Our algorithm will generate an XPCFG model for each

author from his set of training documents using a parsing

tool. After generating the production ru les, a probability

is computed for each production rule. Then a score is

computed for each rule to compute the dependency

between this rule and its corresponding author, which is

accomplished by computing the X
2
 score for each rule.

Also, the probabilities of terminals, non-terminals, and

punctuation marks are computed. Fig. 1 illustrates the

process of generating author’s XPCFG language model.

Fig.1.The process of generating the extended language model, XPCFG,
for a specific author using a set of training documents belonging to that

author.

We use different types of features: grammatical

features represented by rules, lexical features represented

by probabilit ies of terminals, non-terminals, and

punctuation marks (actually, non-terminals are

considered syntactic features). A genetic algorithm is

used to find the best weights for these features, as shown

in Fig. 2. The algorithm uses a new corpus called genetic

data set, which is used only for the purpose of finding the

best weights of different features for a specific author.

The weights depend on maximizing the classification

accuracy for documents in the genetic set.

Finally, in the classification process, Fig. 3, a test

document is passed to the classifier, with all authors’

models and optimum weights for each author as inputs.

The classifier estimates a score between the test

document and each model so that the test document is

assigned to the author who has the maximum score.

As shown in Fig. 1, the first step in train ing an XPCFG

language model for a specific author is parsing his

training documents. Parsing is the process of analyzing a

text, made of a sequence of tokens (words), to determine

its grammat ical structure with respect to a given formal

grammar [29]. So, any document in training, testing, or

genetic corpuses is parsed before it can be used. We use a

probabilistic parser, also called statistical parser, which is

a parser that uses knowledge of the language gained from

previously hand-parsed sentences. The result of the

parsing process is a set of grammatical rules.

Fig.2.Estimation of optimum weights of different features in XPCFG

model for a specific author.

Fig.3. Classification of a test document.

In training phase, Fig. 4, we produce a full XPCFG

language model for each author. The language model

includes the rules produced in the parsing phase, with

their probabilities and scores, and three lists of terminals,

non-terminals, and punctuation marks, with their

probabilit ies. The following subsections explain the

training steps in details.

After parsing each document in the training data set ,

and producing the rules, the probability for each rule is

computed. For example, the probability () of a

Parser

Rules

Probabilities

X2

Score

Lexical

Probabilities

Author’s
XPCFG

Model

Training

Documents

Best

Weights

Genetic

Algorithm

Author’s

XPCFG

Model

Genetic set

Data set

Best

Weights

Classifier

Authors’
XPCFG

Models

Test

Documents

Candidate

Author

 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model 33

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

rule is computed by:

 ()
 ()

 ()
 (3)

If is the number of train ing documents for a specific

author, and () is the probability of rule

 in the th training document for that author, then

the average probability ̅() is given by:

 ̅()
∑

()

 (4)

Following this procedure, each author language model

contains non-duplicated rules, and a rule has a probability

that reflects the average probability of that rule in all

training documents that belong to that author.

When rules are generated from training documents by

the parser, the right side of a ru le contains either non-

terminals, or terminals. In a t raditional PCFG language

model, there is no difference when dealing with these sets

of ru les, but in our p roposed model, XPCFG, we have

two different sets of rules, the first is non-terminal ru les,

and the other is terminal rules. For example, rules such as

S → VP, VP →VBP NP PP, NP → DTNN, PP → IN NP,

and NP → DTNN are categorized as non-terminal ru les,

while the rules VBP → تطلع, DTNN → الشمس, IN → من,

and DTNN → الشرق are categorized as terminal rules. The

goal of this categorization of the ru les is to measure the

efficiency of each set of ru les in the classification process.

Note that for the simplicity of notation we did not

mention this categorization of rules in (2).

Purpose: Produce a complete XPCFG model for a

specific author from his training documents

Input: Training document for a specific author

Output: Complete XPCFG language model for the

author

Procedure:

Begin

For each training document dj

Parse document dj to generate the set of rules

R.

Compute rules probabilities P.

Compute terminals probabilities PT.

Compute non-terminals probabilities PN.

Compute punctuation marks probabilities PU.

End loop

Compute the average probabilities for P, PT, PN,

and PU , over all training documents.

Compute the X
2
 score for each rule in R.

Return XPCFG = {Σ, N, S, R, P, U, X
2
, PT, PN, PU}

End

Fig.4. Generating of XPCFG language model.

The set of non-terminals, N, is of fixed size set, since

non-terminals are predefined by the parser. So, for each

author’s language model, the set, N, will contain the same

non-terminals, but with different probabilities. For a non-

terminal, nt, in a t rain ing document that con tains m

non-terminals in all rules, the probability of nt is given by:

 ()
 ()

 (5)

where count(nt) is the number of occurrences of this non-

terminal in the rules of the train ing document. Following

this process for other training documents that belong to

same author will produce a set of probabilit ies for each

non-terminal. The final non-terminal probability is the

average of all probabilit ies of that non-terminal in all

author’s training documents.

To compute terminals probabilit ies, we follow the

process used when computing the non-terminals

probabilit ies. We start from the set of ru les that are

generated from a train ing document for a specific author.

Using these rules, we count the number of occurrences of

each terminal, and divide it by total number of terminals

in the training document to obtain the terminal

probability. Note that the number of terminals is not fixed;

it depends on the size of the training document. A final

averaged probability of a terminal is computed by

averaging the probabilit ies of this terminal over the

training documents.

The probability of a punctuation mark in a training

document is the number of its occurrences in the

document divided by the total number of punctuation

marks in the document. For a specific author, the final

probability of a punctuation mark is the average of its

probabilities in all training documents.

As shown in Fig. 4, a score is computed, (1), for each

rule to measure the dependency between the rule and its

corresponding author. The score will be high if the rule

occurs few times in training documents. High-score rules

are retained since they capture the author’s style.

C. Computing optimum weights

Using a genetic algorithm, each chromosome

represents a candidate solution to the problem of finding

best weights in (15). For example, a candidate solution

for weights is (0.2 , 0.3 , 0.1 , 0.4 , 0.0), where the

weights sum to 1 and are for , , , , and ,

respectively. The algorithm evaluates each candidate

solution, to find the best one, using a fitness function that

maximizes the log-likelihood of the correct author, while

minimizing it fo r the other authors, which is implemented

as follows:

 ()
 ̈()

∑ ̈()
 (6)

Where is the i
th

 document in the genetic data set,

used only by the genetic algorithm, and is the j
th

 author

that we want to find optimum weights for his

corresponding log-likelihood function. Equation (6) finds

the fitness function of one sample in the genetic data set.

So given a genetic data set of m documents for author aj,

his final fitness function is defined as:

 ()

 ∑ ()

 (7)

34 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

D. Classification

We use a probabilistic classifier to assign an author to

an anonymous text. The classifier maximizes the

probability P(x|a) for a text x to belong to a candidate

author a. Using Bayes rule [30]:

 ()
 () ()

 ()
 (8)

P(x) is the same for the test document, so, it can be

ignored. The prior probability o f an author P(a) is often

treated as uniform across all authors and it can also be

ignored, also. So, we can estimate the probability of a test

document x by finding the probability ().
A test document x can be viewed as a sequence

 of n independent and identically d istributed

observations, where the observations are the rules,

terminals, non-terminals, and punctuation marks in the

test document. To simplify the description here, we will

talk about all observations as one type, then we will

describe the details. By using maximu m likelihood [30],

first we specify the joint probability density for test

document x, by:

 () () () () (9)

Then, the likelihood function is

 () ()

 ∏ (
) (10)

Equation (10) estimates how an author, a, is likely to

produce a test document, x, using the probabilities

computed in author’s XPCFG language model. The log-

likelihood function is:

 ̂() ∑ ()

 (11)

To classify a test document x, we use (11), to compute

the log-likelihood, ̂ , between the test document and

every author’s language model, then we assign the test

document to the author who has the highest log-

likelihood. To do this, we first will parse the test

document to produce an XPCFG language model, which

will contain rules R, the set of terminals Σ, the set of non-

terminals N , and the set of punctuation marks U, but with

no probabilities for these sets.

In (9) we v iew x as a set of features , but

since we have four types of features in x , we can v iew the

test document as four sequences of observations, where

the first sequence, , is the set of rules in x, the

second sequence, , is the set of terminals, the

third sequence, , is the set of non-terminal,

and the last sequence, , is the set of

punctuations marks, . The classifier

uses (11) to compute ̂ for each sequence, for example,

the log-likelihood for terminals, ̂ , is given by:

 ̂ () ∑ ()

 (12)

In the same manner, (11) is used to estimate the log-

likelihood for non-terminals, ̂ , punctuation marks, ̂ ,

and rules, ̂ . One variation in computing, ̂ , is that the

classifier incorporates the X
2
 score for each rule in the

log-likelihood, ̂ ; this is done by simply multiply ing

each rule probability with its corresponding X
2
 score

(computed in training phase), so that a log-likelihood for

rules is given by:

 ̂ () ∑ () ()

 (13)

where (), is the chi-square score for i
th

 rule in the

XPCFG language model for author a. Remember that in

the training phase we defined two d ifferent sets of rules,

the first contains the terminal rules, while the other

contains the non-terminal ru les. So, the log-likelihood of

rules is given by ̂ and ̂ , where the first is the log-

likelihood of terminal ru les, and the second is the log-

likelihood of non-terminal rules. Putting all together, the

classifier computes the final log-likelihood ̈ between

test document x and author a using:

 ̈() ̂ () ̂ () ̂ ()

 ̂ () ̂ () (14)

Equation (14) suggests that each part of the XPCFG

model participates in the classification with equal weights.

We can enhance the classificat ion process by assigning a

different weight for each part in (14) as follows:

 ̈() ̂ () ̂ ()

 ̂ () ̂ () ̂ () (15)

Weights values are between 0 and 1 and all sum to one.

For a test document x, the classifier estimates ̈() in

(15) between the document, x, and all availab le authors,

using their XPCFG language models, then assigning the

test document the author who has the maximum ̈()
value, so that the candidate author ̂ for an anonymous

text, x, is:

 ̂ ̈() (16)

IV. EXPERIMENTATION AND RESULTS

Now, we report experimental results of our method.

A. Dataset

We use articles from Felesteen newspaper website [31],

by choosing 9 different authors, and collecting 30 Arabic

articles per author. The average size of art icles is about

700 words, Table 1. The dataset is divided into two sets.

The first set, which consists of 20 documents for each

author, is used in training and testing the classifier using

the leave-one-out method. The second dataset consists of

the remain ing 10 documents for each author and is used

by the genetic algorithm to find the optimum weights for

the different features.

http://en.wikipedia.org/wiki/Independent_and_identically_distributed

 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model 35

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

Table 1. Average Size of Articles of the Datasets

Author No. Average Article Size (words)

1 833

2 641

3 664

4 860

5 607

6 673

7 577

8 835

9 613

B. System software environment

The train ing phase starts by first parsing all authors’

documents, Fig. 1. The Stanford parsing package [32, 33]

is a powerful software that is built using Java language,

and proved to be efficient in parsing Arabic texts [34]. It

can be used as a standalone software by passing input to

it and capturing the output, or it can be used as a module

in any Java application, since it provides an Application

Programming Interface (API) that can be used in custom

Java applications. We use this API to integrate the

Stanford parser in a new application that is built for the

author attribution problem. Stanford parser package

provides three probabilistic parsers:

1) An accurate un-lexicalized probabilistic context-

free grammar (PCFG) parser.

2) Probabilistic lexical dependency parser.

3) A factored, lexicalized probabilistic context free

grammar parser, which does joint inference over

the outputs of the first two parsers.

The first parser is recommended when parsing English

language, because in many cases the lexical preferences

are not available or inaccurate for many domains, thus the

un-lexicalized parser will perfo rm as well as a lexicalized

parser. Also, using un-lexicalized parser is faster and

requires less memory. The dependency parser can be used

alone, but this is usually not useful because its accuracy is

much lower.

The factored lexicalized parser provides greater

accuracy since it combines the features of the other two

parsers. This is done by combining the preferences of the

two parsers using A* algorithm [35], also it is

recommended for other languages such as German,

Chinese, and Arabic. So, this parser is used to parse

authors’ documents.

The output of the parser can be presented in various

forms, such as: (1) Part of Speech Tags (POST), which

presents only the part of speech tag for each word in a

sentence, (2) dependencies, to the grammat ical relat ions

between parts of a sentence; it is only available for

English language, and (3) phrase structure trees for

presenting the structure of the parsed sentence so that we

can see the part of speech tag of each structural unit of

the sentence.

The Stanford parser is a probabilistic parser which is

trained over hand-parsed sentences to parse new

sentences. Stanford Arabic parser is trained over Penn

Arabic Treebank [36], which is a corpus of parsed

sentences, provided by Penn University. The corpus aims

to provide a large Arabic machine-readable text corpus

that is annotated by humans and computer. It provides a

presentation of Arabic language structure at different

levels: word level, phrase level, and sentence level.

The process to make such a corpus consists of two

steps. The first is part-of-speech tagging by tokenizing

the text into lexical tokens and assigning each token a

lexical category. The second step is tree-banking, which

identifies the structures of word sequences, then

assigning categories for each non-terminal node. The first

step is done using Tim Buckwalter's lexicon and

morphological analyzer [37], which generates a candidate

list of POSTs for each word, then a human just selects the

correct POS tag. The analyzer also helps by automatically

assigning some tags such as tagging numerical data and

punctuation marks. At the end of this process, XML files

are produced. In the second step, the data goes through

tree-bank annotation to produce a representation of

language structure. A final bit process is done manually

by annotators (humans), or automatically to check for

inconsistencies between the tree-bank and POS tagging.

The data which is used during these processes is used

from the Agency France Press (AFP) newswire [38],

which is a standard Arabic corpus that includes 734

stories of 140,265 words, and about 168,123 tokens after

segmenting clit ics. The pro ject uses human's annotators

that are native speakers of Arabic language, and have

enough linguistics capabilities to check morphological

syntactic analysis and build syntactic structures. Before

using the parser, we present some of its capabilities and

limitations.

1) Tokenization

The parser assumes that the supplied text is tokenized

as in Penn Arabic Treebank ATB. In general, this set

assumes a whitespace to tokenize words, and does not

split off clitics (A clitic is a linguistic unit that is

pronounced and written like an affix but it is

grammatically independent, for example ―وقال‖). Also, the

parser considers only one character as the end of sentence

which may be a fu ll stop or comma, and it does not

support the two for a single text, but in real documents

authors use the two marks to separate sentences. So, we

define the end of sentence to be a full stop, and replace all

commas to fu ll stops in all art icles before passing them to

the parser.

2) Normalization

The parser was trained on a normalized form of Arabic.

So, we also normalized our Arabic documents before

parsing them using the following steps:

 Delete tatweel characters, for example, (الشمـــــــس)

will be (الشمس).

 Delete diacritics, for example (ُتطَْلع) will be (تطلع).

36 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

 Replace some characters, for example, the vowel

Alef is replaced with hamza (أ), madda (آ) becomes

Alef (ا), and Alef maksura (ى) becomes Yaa (ي).

3) POST

The parser uses Bies tag set [36], which maps

morphological analysis from Buckwalter analyzer to the

subset of POS tags used in Penn English Treebank (some

with different meanings) as shown in Table 2. A lso, the

parser augmented the set to represent words that have the

determiner AL (الـ) cliticized to them. These extra tags

start with "DT", and appear for all parts of speech that

can be preceded by "Al". So, we have DTNN, DTCD, etc.

To find the optimum weights between different parts of

our enhanced PCFG language model (XPCFG), we use

the genetic algorithm package which is a Java based

package named JGAP, version 1.5.0 [39]. The package

provides an API that we used in our author attribution

application.

C. Experiments

The parser only recognizes Arabic texts with UTF-8

encoding. So, we first convert all texts to this encoding,

then apply normalizat ion steps described previously. The

application sends to the parser one sentence at a time.

Any sentence with size of 250 characters or more is

ignored since the parser fails when parsing such long

sentences. All documents in the training and testing data

set, and the genetic data set are parsed. The parser’s result

for each document is stored in a separate binary file, so

that it can be used in different processes without requiring

to re-parse it, which minimizes the computations.

We use the leave-one-out method to train and test the

system. It starts from the first document in the data set

and considers it as a test document, and the others as

training documents. For example, we start from author 1,

and document 1, an XPCFG model is trained using the

remain ing 19 documents for author number 1, and all the

20 documents per other author. This model is stored in a

binary file with file name Author1_1.pcfg. Also, an

XPCFG language model is trained using the whole 20

documents of author 1 and stored in the file

Author1_full.pcfg. This full-trained language model will

be used in classification. So, for each author we produce

21 XPCFG language models.

In classification, the test document is passed to all

authors XPCFG models to compute the likelihood score.

The document will be assigned to the author whose

model generates the highest score, for example to test

document number 5 for author number 1, the system will

pass the document to XPCFG of author 1 that excludes

the 5
th

 documents (Author1_5.pcfg), and to the full-

trained XPCFGs of other authors. Thus, the system

implements the leave-one-out method in training and

testing.

Using the JGAP package, we configure the

chromosomes to contain 5 genes, each reflects a d ifferent

fractional weight in (15), and with the constraint that all

genes values sum to one. The algorithm starts with

random values for genes. We implement the fitness

function in (7). The algorithm is configured to start from

a population of size 20 samples. To estimate a fitness

function of an author, we average the fitness function

over his genetic data set. To compute such a function we

calculate the log-likelihood between the author’s

language model and each document in the genetic data set,

which belongs to this author, (6). Then, a final estimat ion

is averaged over these documents, (7).

Table 2. English POSTS Which Are Used As Mapped Tags for Arabic

Morphological Analysis

POST Description

JJ Adjective

RB Adverb

CC Coordinating Conjunction

DT Determiner/Demonstrative pronoun

FW Foreign Word

NN Common noun, Singular

NNS Common noun, Plural or Dual

NNP Proper noun, Singular

NNPS Proper noun, Plural or Dual

RP Particle

VBP Imperfect Verb

VBN Passive Verb

VBD Perfect Verb

UH Interjection

PRP Personal Pronoun

PRP$ Possessive Personal Pronoun

CD Cardinal Number

IN
Subordinating Conjunction
(FUNC_WORD) or Preposition (PREP)

WP Relative Pronoun

WRB Wh-Adverb

, Punctuation, token is , (PUNC)

. Punctuation, token is . (PUNC)

: Punctuation, token is : or other (PUNC)

D. Results

We use the error rate to measure the efficiency of the

classifier [25]. The erro r rate is calculated by counting the

number of misclassified documents for a specific author

divided by the number of author’s documents, which

equals 20 documents. An average error rate is computed

for all authors.

We have two data sets; the first consists of 9 × 20 =

180 documents, and the second (genetic) is of size 9 × 10

= 90 documents. Using leave-one-out method, we have

180 documents to be classified. Since PCFG was tested

for English language [26], we retest PCFG performance

over our dataset, which is Arabic, to compare the results

between the PCFG and our XPCFG language model.

Table 3 shows the error rate for each author using the

PCFG language model p roposed in [26]. The system

achieves the best minimum error fo r author 1 (00.0%).

The average error rate of the system is 34.4%. The results

show that the PCFG model cannot capture different

writing styles for all authors. The results of XPCFG

 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model 37

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

model are shown in Table 4. The system could eliminate

the error for four authors: 1, 4, 5, and 6. The average

error rate is decreased to 20.6%. This is a result of adding

more lexical and syntactic informat ion to the traditional

PCFG language model.

Table 3. PCFG Model Results

Author Error Rate

1 0.0

2 0.4

3 0.8

4 0.1

5 0.5

6 0.3

7 0.7

8 0.1

9 0.2

Average 0.344

Table 4. XPCFG Model Results

Author Error Rate

1 0.0

2 0.85

3 0.15

4 0.0

5 0.0

6 0.0

7 0.55

8 0.25

9 0.05

Average 0.206

Remember that the XPCFG contains weights for each

feature, see (15). The results of Table 4 are obtained

using equal weights. To find the best weights, we use the

genetic algorithm and the genetic data set. Since the

fitness function, (7), is estimated using the error rate, the

genetic algorithm will not run for authors who achieve

the minimum, 00.0%, error rate in Table 4. The results

using the optimum weights are shown in Table 5. The

results show that there is an enhancement when using

optimum weights. The averaged error rate of the XPCFG

model is decreased to 12.8%.

Table 5. XPCFG Model Results Using Different Weights

Author Error Rate

1 0.0

2 0.4

3 0.1

4 0.0

5 0.0

6 0.0

7 0.35

8 0.25

9 0.05

Average 0.128

A comparison of error rates for the three models:

PCFG, XPCFG, and XPCFG with weights, per author is

shown Fig. 5. The figure shows that the PCFG model

achieves acceptable results for some authors, the XPCFG

model achieves acceptable overall performance, and

XPCFG model with optimum weights achieves the best

results. Comparing the results obtained by the XPCFG

language model, and the results of machine learn ing

methods, we notice that the former achieves better results

than those methods [1, 10, 13-15].

Fig.5. Comparison of error rates of the three models: PCFG, XPCFG,
and XPCFG with optimum weights, per author. Some authors have zero

error rate for some of their models.

V. CONCLUSIONS

We proposed a new method to solve the author

attribution problem. It depends on language model theory.

The proposed system is an extension of the PCFG. The

proposed language model, XPCFG, separates the

production rules into two sets, where the first is the set of

non-terminal rules and the second is the set of terminal

rules. Also, the XPCFG model adds lexical and syntactic

features by capturing the non-terminals, terminals, and

punctuation marks. These features are annotated with

probabilit ies, in addition to probabilit ies of production

rules inherited from the PCFG model. Adding such

informat ion reflects the writing style of authors since the

rules describe the structure of sentences, and non-

terminals capture the POS tags that are used by authors.

The terminals describe the richness of words used by the

author, and punctuation marks capture his format style.

Another enhancement implemented in the XPCFG

model is assigning scores to rules to quantify the

importance of each rule. These scores are calculated

using chi-square score. This helps to find the most

discriminative rules for each author.

The system is trained using a set of documents for each

author, and produces an XPCFG language model for each

author. In the classification phase, an unknown document

is assigned to the author whose language model yields the

maximum log-likelihood. The log-likelihood is computed

for each part of the XPCFG (ru les, non-terminals,

terminals, and punctuation marks), and a final log-

likelihood is computed by summing the log-likelihood

parts. Summing the log-likelihood parts is governed by

weights which describe the importance of each part in the

38 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

final log-likelihood function. The best weights are

computed using a genetic algorithm by optimizing a

predefined function.

The proposed system is tested over Arabic texts. The

error rate o f the system is about 20.6%. Hence, the

XPCFG outperforms the traditional PCFG language

models in the author attribution problem. The system

error rate is reduced to 12.8% when the optimum weights

are used.

The proposed system depends on the rules generated

by the parser. The used parser has some limitations as it

cannot split clit ics resulting in inaccuracy for some

sentences. So, splitting clitics before parsing may result

in more accurate rules.

We have calculated the ch i-square score for each rule

of the XPCFG language model. We can apply this

approach to terminals, non-terminals, and punctuation

marks, so that the system can automatically quantify their

importance.

The system achieved acceptable results over a small set

of candidate authors and small datasets. We may increase

the number of authors and the size of datasets for more

reliable results.

ACKNOWLEDGMENT

We thank anonymous referees for their constructive

comments.

REFERENCES

[1] C. Chaski, ―Who’s At The Keyboard? Authorship

Attribution in Digital Evidence Investigations‖,

International Journal of Digital Evidence, vol. 4, no. 1,

2005.

[2] N. Glance, M. Hurst, K. Nigam, M. Siegler, R. Stockton,
and T. Tomokiyo, ―Deriving marketing intelligence from

online discussion‖, in ACM SIGKDD international

conference on knowledge discovery in data mining,

Chicago, USA, August 2005, pp. 419–428.

[3] J. Oberlander, and S. Nowson, ―Whose thumb is it
anyway? Classifying author personality from weblog text‖,

in COLING/ACL 2006 Main Conference Poster Sessions,

Sydney, Australia, 2006, pp. 627–634.

[4] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S.

Katsikas, ―Effective identification of source code authors
using byte-level information‖, in International

Conference on Software Engineering, New York, USA,

2006, pp. 893-896.

[5] S. Burrows, A. Uitdenbogerd, and A. Turpin,

―Application of Information Retrieval Techniques for
Source Code Authorship Attribution‖, in International

Conference on Database Systems for Advanced

Applications, Berlin, 2009, pp. 699 – 713.

[6] N. Indurkhya, and F. Damerau, ―Syntactic Parsing,‖ in

Handbook of Natural Language Processing, 2nd ed., USA,
2010.

[7] S. Argamon, C. Whitelaw, P. Chase, S. Hota, N. Garg,

and S. Levitan, ―Stylistic text classification using

functional lexical features‖, Journal of the American

Society for Information Science and Technology, vol. 58,
pp. 802-822, 2007.

[8] F. Türkoğlu, B. Diri, and M. Amasyal, ―Author

Attribution of Turkish Texts by Feature Mining‖, in

Intelligent computing international conference on

Advanced intelligent computing theories and applications,

Heidelberg, Berlin, 2007, pp. 1086-1093.

[9] M. Koppel, and J. Schler, ―Exploiting stylistic

idiosyncrasies for authorship attribution‖, In IJCAI

Workshop on Computational Approaches to Style Analysis
and Synthesis, Acapulco, Mexico , 2003, pp. 69-72.

[10] F. Peng, D. Schuurmans, V. Keselj, and S. Wang,

"Language Independent Authorship Attribution using

Character Level Language Models", in Tenth conference

on European chapter of the Association for
Computational Linguistics, USA, 2003, pp. 267-274.

[11] R. Baayen, H. Halteren, and F. Tweedie, ―Outside the

cave of shadows: Using syntactic annotation to enhance

authorship attribution‖, Literary and Linguistic

Computing, vol. 11, pp. 121–131, 1996.
[12] P. McCarthy, G. Lewis, D. Dufty, and D. McNamara,

―Analyzing writing styles with coh-metrix‖, in Florida

Artificial Intelligence Research Society International

Conference, 2006, pp. 764-769.

[13] N. Tsimboukakis, and G. Tambouratzis, "Neural
Networks for Author Attribution", in Fuzzy Systems

Conference, London, 2007.

[14] K. Luyckx, and W. Daelemans, ―Shallow Text Analysis

and Machine Learning for Authorship Attribution‖, in

Computational Linguistics, Netherlands, 2005, pp. 149-
160.

[15] J. Diederich, J. Kindermann, E. Leopold, and G. Paass,

"Authorship Attribution with Support Vector Machines",

Applied Intelligence Journal, vol. 19, no. 1-2, 2003.

[16] K. Luyckx, ―Authorship Attribution of E-mail as a Multi-
Class Task‖, in CLEF 2011 Labs and Workshop,

Netherlands, 2011.

[17] V. Keselj, F. Peng, N. Cercone, and C. Thomay, ―N-

Gram-Based Author Profiles for Authorship Attribution‖,

in Pacific Association for Computational Linguistics,
Canada, August 2003, pp. 255-264.

[18] S. Ouamour, and H. Sayoud, ―Authorship Attribution of

Ancient Texts Written by Ten Arabic Travelers Using a

SMO-SVM Classifier‖, in International Conference on

Communications and Information Technology,
Hammamet, June 2012, pp. 44-47.

[19] K. Shaker, and D. Corne, ―Authorship Attribution in

Arabic using a Hybrid of Evolutionary Search and Linear

Discriminant Analysis‖, in Computational Intelligence,

Colchester, September 2010, pp. 1-6.
[20] A. Abbasi, and H. Chen, ―Applying Authorship Analysis

to Extremist-Group Web Forum Messages‖, Intelligent

Systems IEEE, vol. 20, no. 5, September, 2005.

[21] J. Li, R. Zheng, and H. Chen, ―From Fingerprint to

Writeprint‖, Communications Of The Acm, vol. 49, no. 4,
April, 2006.

[22] T. Mitchell, ―Genetic Algorithms‖, in Machine Learning,

1st ed., USA, 1997.

[23] K. Luyckx, and W. Daelemans, ―Authorship Attribution

and Verification with Many Authors and Limited Data‖,
in International Conference on Computational Linguistics,

Manchester, August 2008, pp. 1086–1093.

[24] M. Koppel, J. Schler, and S. Argamon, ―Authorship

attribution in the wild‖, Language Resources and

Evaluation, vol. 45, no. 1, March, 2011.
[25] C. Manning, P. Raghavan, and H. Schütze, ―Scoring, term

weighting and the vector space model,‖ in An Introduction

to Information Retrieval, 1st ed., England, 2009.

[26] S. Raghavan, A. Kovashka, and R. Mooney, ―Authorship

Attribution Using Probabilistic Context-Free Grammars‖,
in ACL Conference Short Papers, Sweden, 2010, pp. 38-

42.

 Author Attribution of Arabic Texts Using Extended Probabilistic Context Free Grammar Language Model 39

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 6, 27-39

[27] Y. Yang, J. Pedersen, ―A comparative study on feature

selection in text categorization‖, in Machine Learning-

International Workshop, USA, 1997, pp. 412-420.

[28] C. Chaski, "Empirical Evaluations of Language-Based

Author Identification Techniques", International Journal
of Speech Language and the Law, vol. 8, no. 1, 2001.

[29] Parsing [online], Available:

http://en.wikipedia.org/wiki/Parsing

[30] R. Duda, P. Hart, and D. Strok, ―Maximum likelihood and

Bayesian estimation‖, Pattern Classification, 2nd ed.,
Wiley Publication, 2001.

[31] Felesteen newspaper [online], Available:

http://www.felesteen.ps.

[32] The Stanford Parser. (2012, November). [Online].

Available: http://nlp.stanford.edu/software/lex-
parser.shtml.

[33] GNUGP License. (2007, June 29) [Online]. Available:

http://www.gnu.org/licenses/gpl.

[34] S. Green, and C. Manning, ―Better Arabic parsing:

baselines, evaluations, and analysis‖ in International
Conference on Computational Linguistics, USA, 2010.

[35] S. Theodridis, and K. Koutroumbas, ―Template

Matching‖, in Pattern Recognition, 4th ed., USA, 2009.

[36] Penn Treebank Project. (1999, February 2). [Online].

Available: www.cis.upenn.edu/~treebank/
[37] T. Buckwalter, ―Buckwalter Arabic Morphological

Analyzer Version 1.0‖, Linguistic Data Consortium,

catalog number LDC2002L49, ISBN 1-58563-257-0,

2002.

[38] Agency France Press. (2012, November). [Online].
Available: http://www.afp.com

[39] Java Genetic Algorithms Package. (2012, November).

[Online]. Available: http://jgap.sourceforge.net

Authors’ Profiles

Ibrahim S. I. Abuhaiba is a professor at

the Islamic University of Gaza, Computer

Engineering Department. He obtained his

Master of Philosophy and Doctorate of

Philosophy from Britain in the field of
document understanding and pattern

recognition. His research interests include

artificial intelligence, computer vision,

image processing, document analysis and understanding, pattern

recognition, information security, and computer networks. Prof.
Abuhaiba published tens of original contributions in these fields

in well-reputed international journals and conferences.

Mohammad F. Eltibi received his B.Sc.
degree in computer engineering, Islamic

University of Gaza, and master degree in

computer engineering, Islamic University

of Gaza, in 2013. He research interests

include artificial intelligence.

How to cite this paper: Ibrahim S. I. Abuhaiba, Mohammad F.

Eltibi, "Author Attribution of Arabic Texts Using Extended

Probabilistic Context Free Grammar Language Model",

International Journal of Intelligent Systems and Applications

(IJISA), Vol.8, No.6, pp.27-39, 2016. DOI:

10.5815/ijisa.2016.06.04

