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Abstract—Author attribution is the problem of assigning 

an author to an unknown text. We propose a new 

approach to solve such a problem using an extended 

version of the probabilistic context free grammar 

language model, supplied by more informative lexical 

and syntactic features. In  addition to the probabilities of 

the production rules in the generated model, we add 

probabilit ies to terminals, non-terminals, and punctuation 

marks. Also, the new model is augmented with a scoring 

function which  assigns a score for each production rule. 

Since the new model contains different features, optimum 

weights, found using a genetic algorithm, are added to the 

model to govern how each feature participates in the 

classification. The advantage of using many features is to 

successfully capture the different writ ing styles of authors. 

Also, using a scoring function identifies the most 

discriminative ru les. Using optimum weights supports 

capturing different authors’ styles, which increases the 

classifier’s performance. The new model is  tested over 

nine authors, 20 Arabic documents per author, where the 

training and testing are done using the leave-one-out 

method. The initial error rate of the system is 20.6%. 

Using the optimum weights for features reduces the error 

rate to 12.8%.  

 
Index Terms—Author attribution, author identification, 

language model, PCFG language model, Chi-square score, 

genetic algorithm. 

 

I.  INTRODUCTION 

Author attribution is the problem of identifying the 

author of an anonymous text, or text  whose authorship is 

in doubt, by studying strategies for discriminating 

between the styles of different authors. Also, it can  be 

defined as the automatic identification of the author of a 

text on the basis of linguistic features of the text. 

Old applications of author attribution include the 

traditional plag iarism detection as settling disputes 

regarding the authorship of old  historical documents. It is 

also applied in criminal law which  includes the 

determination of documents authority in courts and 

forensic linguistics. More recently, author attribution 

gained new importance in cybercrimes which include 

deducing the writer o f inappropriate communications that 

were sent anonymously or under a pseudonym, and in a 

more general search for reliable identification techniques 

[1]. Another area where author identification and 

profiling can provide valuable information is in  deriv ing 

market ing intelligence from the acquired  profiles [2], and 

in the rapid ly growing field  of sentiment analysis and 

classification [3]. Author attribution appears in  specific 

applications as recognizing the author of a program to 

help detect copyright violation of source code as well as 

plagiarism [4]. A lso, it helps the developing of 

applications by identifying the author of non-commented 

source code that we are trying to maintain. It is useful to 

detect the programmer of malicious codes and viruses [5]. 

Due to the growing increase in  the number of documents, 

especially in the web, automated text  categorizat ion by 

their authors is a useful way to organize a large 

documents collection. Author attribution is becoming  an 

important application in web information management, 

and beginning to play a role in areas such as informat ion 

retrieval, information extraction, and question answering. 

The general approach that is  used to solve the author 

attribution problem starts from a set of train ing 

documents, which are documents of known authors, a set 

of features, that are considered to be most informative in  

identifying the author, are extracted, then a machine 

learning algorithm is implemented and learned using 

these features to be able to classify a document of an 

unknown author. 

Researchers assume that all authors have specific style 

characteristics that are outside their conscious control. 

Hence, on the basis of those linguistic patterns and 

markers, the author of a document can be identified. 

Our method will use language models to assign an 

author to a test document of an unknown author [6]. It  

starts by forming a language model for each author from 

his own training documents. This model can effectively  

capture the language syntax of the author, which is 

considered as one of the syntactic features that proved to 

be informative for capturing the author’s style and can be 

used in the author attribution problem. However, this type 
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of features alone is not efficient to discriminate authors. 

Our proposed method tries to enhance the language 

model by involving more syntactic features other than the 

language syntax, such as Part of Speech Tagging (POST) 

feature, where each word will be assigned a tag reflecting 

its corresponding part of speech, such as noun, verb, etc. 

Also, more lexical features will be added. At the end, we 

will have an extended language model that contains a rich 

set of features. 

When classifying an unknown document, the method 

starts to form an uncompleted language model to 

represent the test document. Then, it matches this 

language model with each  author’s language model, so 

that the test document will be assigned the author whose 

language model produces the best match. 

The rest of the paper is organized as follows. Section II 

describes some of the most related works that have been 

done in the author attribution problem. Section III 

describes accurately the proposed extended language 

model to solve the problem. In Section IV, the 

experimental environment and results are described. 

Finally, concluding remarks and future work are 

presented in Section V. 

 

II.  RELATED WORKS 

Researchers tried to categorize the features that can be 

used in author attribution. The basic categorizat ion is 

lexical, character, syntactic, and semantic features: 

A.  Lexical features 

Using this set of features the text is viewed as a 

sequence of tokens, where a token is a word or a 

punctuation mark, which are grouped into sentences. 

From this representation, some features can be computed 

such as the length of sentences and length of words. 

Although these features are basic, they can be applied to 

any language with no additional requirements, but still we 

need a tokenizer tool to detect tokens and sentence 

boundaries. However, these features may not capture the 

style of a written text, especially  for texts containing a lot 

of abbreviations. 

Other features that can be extracted from tokens are 

vocabulary richness features which measure the diversity 

of the vocabulary of a text. A t raditional example is the 

type-token ratio described by V/N, where V is the size of 

the vocabulary which is number o f unique words, and N 

is the total number of tokens. Additional vocabulary 

richness features are the hapax legomenon, and hapax 

dislegomenon, which are words occurring once, and 

words occurring twice, respectively. The vocabulary 

richness features are biased toward text length as they 

increase when the text length increases; so they are 

considered unreliable if used alone.  

A more efficient approach is to measure the frequency 

of each word, where the text is viewed as a set of words 

each having a frequency of occurrence disregarding the 

contextual information. One can  argue that word  

frequencies cannot capture authors’ style since they are 

topic dependent. Actually, this is true but the big 

advantage of using word frequencies is to specify 

function words, which are words that have little  lexical 

meaning but serve to express grammat ical relationships 

with other words. Function words proved to capture the 

style of the authors across different topics. However, the 

selection of specific function words require language 

dependent expertise. There are various researches to find 

the best function words for the author attribution problem 

[7]. 

While word frequencies feature computes the 

frequency of each word irrespective of the contextual 

informat ion, the n-grams  take advantage of contextual 

informat ion. An n-gram is a contiguous sequence of n 

items from a given sequence of text or speech, where an 

item is usually a word, and n is the number of grams that 

controls the level of context. N-grams were used as 

textual features in the author attribution problem [8] and 

can achieve good results but not always, because they 

may capture content specific information rather than 

stylistic information. 

Uncommon lexical features measure various writing  

errors to capture authors writing styles [9]. These features 

are captured using spell checker tools, however, the 

accuracy of spell checkers is problematic for many 

languages, and the available text is almost error-free since 

it is available in electronic form. 

B.  Character features 

In these features, a text is viewed as a sequence of 

characters, so that simple character level measures can be 

defined as alphabetic characters count, digit characters 

count, letter frequencies, and punctuation marks. These 

features are available for any language, and can be easily 

found without needing any extra tools. 

Another effective approach is to extract n-grams on the 

character level [10]. Character based n-grams are also 

computationally simple. The approach is to extract the 

frequencies of each character based on n-grams. This 

approach is able to capture nuances of style including 

lexical informat ion, contextual informat ion, and using of 

punctuation marks. The other advantage of this model is 

its tolerance to noise. In cases that the texts are noisy 

containing grammat ical errors or making strange use of 

punctuations, the character based n-gram model is not 

affected dramat ically. Th is model shows acceptable 

results in author attribution problem, but it requires more 

experiments to find the best value for n. Also, the 

dimensionality of this representation is considerably 

increased in comparison to the word-based approach, 

since many n-grams are needed to represent a single word, 

which may capture redundant information. 

C.  Syntactic features 

The authors tend to use similar syntactic patterns 

which are out of their consciousness. In comparison to 

lexical and character level features, the syntactic features 

are considered more valuable to detect the writing styles 

of authors. The first attempt to use syntactic features was 

done by producing a parse tree for each sentence in a 

document, and then extract ing writ ing rules frequencies 
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[11]. The results of using these rules in author attribution 

problem are acceptable, but syntactic features alone 

performed worse than lexical features. A lso, the syntactic 

features require robust and accurate Natural Language 

Processing (NLP) tools to perform analysis of text. Thus, 

the extraction of such features is language-dependent and 

depends on the efficiency of NLP tools. 

The simple approach of syntactic features is to use Part  

of Speech Tags (POST) so that each word is assigned a 

tag based on contextual information. Then, frequencies of 

tags are computed as features. This type of syntactic 

features provides only a hint of the structural analysis of 

sentences, since it is not clear how the words are 

combined to form phrases, or how the phras es are 

combined into higher-level structures. 

D.  Semantic features 

NLP tools can be applied successfully to low-level 

tasks such as sentence splitting, POS tagging, text  

chunking, and partial parsing, so that relevant features 

can be measured accurately such that the noise in the 

corresponding data sets remains low. On the other hand, 

more complicated tasks such as semantic analysis cannot 

yet be handled adequately by current NLP technology for 

unrestricted text. As a result, very few attempts have been 

made to explo it high level features for stylometric 

purposes. 

An important method used semantic features, by 

estimating information about synonymous and 

hypernyms of the words, and identification of casual 

verbs, in order to detect semantic similarities between 

words [12]. A lso, a more advanced approach tried to 

assign words or phrases semantic information based on 

their meaning and indication. In general, semantic 

features require more advanced NLP tools which are not 

available. 

Most of works, which have been done in the author 

attribution problem, use machine learning algorithms 

with some set of features. In [1], a  set of lexical features 

is used, as word frequency, text  length, punctuation count, 

and average word  length. The features are augmented 

with part of speech tagging (POST), which is a syntactic 

feature. The features are then used to generate a linear 

discriminate function that maximizes the difference 

between authors’ documents groups. This function is 

used to predict the group membership for a given test 

document. Ten documents per author are considered, 

where each document is related to a p redefined topic. The 

achieved accuracy is about 92%. However, using lexical 

features cannot efficiently describe the author’s style, 

even if they were augmented with a syntactic feature 

(POST), since POST is a simple syntactic feature that 

describes the type (syntax) of a single word, and cannot 

reflect the syntax of a phrase. 

Another traditional method is proposed in [13], where 

they gathered a set of 85 features . The features are 

classified as follows: lemma-related features that capture 

the occurrence of specific word lemmas. These lemmas 

are selected as their low ―order of occurrence‖ for at  least 

one author, and high ―order of occurrence‖ for at  least 

one other author. Also, a new type of features is verbal 

features which capture how an author uses verb forms. 

They used a POST feature which captures the frequency 

of occurrence of grammatical category of a word. They 

also implemented many lexical features to capture word 

length, sentence length, punctuation marks frequency, 

and the frequency of occurrence of the most common 

words expressing negation. These 85 features are 

supplied to three classifiers: the first classifier is a mult i-

layer perceptron network, the second is Radial Basis 

Function (RBF), and the last is a Self-Organized Map 

(SOM). They suggested that the accuracy depends on 

model deployment, i.e., the parameters that are used to 

configure the classifiers, but in all classifiers the accuracy 

did not exceed 85% since using too many features may 

degrade the performance of the classifiers. Also, the 

model depends on optimizat ion fo r parameters estimat ion, 

which is a complex and expensive process. 

Another method [14] applied neural networks, and 

Tilburg in Memory Based Learner (TiMBL), which is a 

more advanced version of K Nearest Neighbor (KNN) 

algorithm, over a different set of features. Some of the 

features are lexical features such as word length, n-grams, 

type-token ratio, hapax legomenon, and common word  

frequencies. The syntactic features are POSTs extracted 

for each token in the text, and the rewrite ru les which 

detect some structure of a sentence such as subjects and 

objects. They used shallow text  analysis to extract the 

syntactic features. The best achieved accuracy from the 

two classifiers was about 72%. Although the method 

combined lexical and syntactic features, it did not achieve 

good performance, which may be returned to the 

performance of the shallow text analyzer and the absence 

of optimization to select lexical and syntactic features. 

Another machine learning method in the field of author 

attribution problem was proposed in [15]. They used a 

Support Vector Machine (SVM) classifier over a set of 

features extracted from various documents to identify the 

author of a g iven document. The point in their research is 

that the SVM classifier can handle a very large set of 

features in a better way compared  with other classifiers, 

but also the precision of their method ranged from 60-

80%. The disadvantage of this method is using of too 

many features without selection.  

In [16], an SVM classifier is also used for author 

attribution, but instead of building a classifier for each 

author, a multi-class SVM is used. Three types of features 

are used: character features represented by character-level 

n-grams, lexical features represented by word n-grams, 

functional words, and the syntactic feature represented by 

POSTs. The author suggested that the precision of such a 

classifier depends on its configuration, which is a 

disadvantage for this method, since adjusting parameters 

for a classifier is not a trivial problem, and requires 

complex estimations. On the other hand, the mult i-class 

SVM can deal very well with small and large datasets. 

In [8], the authors built and tested four different 

machine learning algorithms, each supplied with a feature 

vector combined of n-grams and additional features. They 

used bi-gram (2-gram), and tri-gram (3-gram), counting 
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the occurrence of each gram to be included in a feature 

vector. The additional features include statistical features 

such as sentence length and word length. Also, they 

included vocabulary richness features such as type-token 

ratio, words occurring once (hapax legomenon), and 

words occurring twice (hapax d islegomenon), POST for 

each word in the text , and function words. Because of the 

high number of features, they categorize features to a four 

sets, and test each set of features independently by 

applying the SVM, KNN, Random Forest, and mult i-

layer perceptron classifiers. The overall results ranged 

from 60% to 84%. Using n-grams has two drawbacks, 

first there is a problem in defining the best value fo r n, as 

this method uses many values for n, in  order to find the 

best solution. Second, n-grams may capture content 

specific information, while we search for stylistic 

informat ion for the author attribution problem. Also, the 

used features are treated equally  in  the classification 

process, which is a problem. 

The basic unit in trad itional n-gram models is a word. 

In [10], a method is proposed based on a character level 

n-gram model, in which the character is the basic unit, 

where the details are the same as word-based n-gram 

models. They suggested that using a character level n-

gram will d iscover useful inter-word and inter-phrase 

features. The advantage of this method is that it avoids 

the need of exp licit word segmentation, so there is no 

need to parse sentences, and the method can be used to 

detect any language. The approach is to learn  a separate 

language model (character level n-gram) for each author, 

which is trained on author’s documents. In classification, 

an unknown document will be supplied to each language 

model, to evaluate the likelihood, and pick the winning 

author. They evaluated the accuracy for three different 

languages data sets, and achieved a result between 70% 

and 90%. The character-based n-gram model still inherits 

the problem of identify ing the best value for n. Also, the 

representation of this model leads to high dimensionality 

space, which requires complex computations, and with 

the probability of capturing redundant information.  

Another variation in using the n-gram model was 

applied in [17], in which  byte n-grams are used to build a 

language model for each author. Clearly, to extract  such 

grams, the text is viewed as a sequence of bytes. A profile 

is built  fo r each  author from the set of most frequent n-

grams, with their normalized frequencies generated from 

training documents. Likelihood classification is used. 

However, v iewing text as a sequence of bytes is not 

effective for the author attribution problem. 

In [18], a classifier based on SVM algorithm is built. 

They used a sequential minimal optimization method to 

speed up the training of the SVM. The algorithm was 

trained using several features: characters, character n-

grams, words, word  n-grams, and rare words. The system 

was trained using only two Arabic documents for each 

author, and the testing was made using only one 

document. Using different combinations of features, the 

best achieved accuracy was 80%. This method used only 

lexical features in order to classify a document and the 

data set is very small, which may exp lain the reason 

behind the low accuracy. 

In [19], the authors introduced a set of Arabic function 

words as features for author attribution. This set of words 

was used by a hybrid classifier, which used an 

evolutionary algorithm and a linear d iscriminant analysis 

classifier. The ro le of the evolutionary algorithm is to 

find a suitable subset of the function words to be used in 

training the linear discriminant analysis. The system 

accuracy did not exceed 93%. The drawback of the 

method is that it depends only on function words to 

discover authors. 

Some methods tried to use different types of features to 

capture authors’ style. In [20], the authors used a set of 

300 features of types: lexical, syntactic, structural, and 

content-specific features. The structural features measure 

the format of online texts written by authors, as font color, 

font size, embedded images, and hyperlinks. They tested 

these large set of features using SVM classifier over 

online texts written both in Arabic and English. The 

classifier accuracy reached 97% and 94% for English 

texts and Arabic texts, respectively. Merging different 

types of features can effectively capture authors’ styles, 

but the method did not perform very well for Arabic texts. 

Machine learning methods may achieve acceptable 

results in author attribution problem, but we notice that 

almost all methods did not benefit from efficient syntactic 

features as sentence structure, although this type of 

features can describe author’s style. This is may be due to 

the difficulty of implement ing such features in machine 

learning algorithms. Even methods that combined 

syntactic features with other features assumed that all 

features have the same importance for the author 

attribution problem. 

In the previous researches, there are many features that 

can be used in the author attribution problem, which can  

be helpful, but in many cases the huge amount of features 

may decrease the performance of a classifier. Because of 

this, many researches were performed in order to select 

the best features that can be used. One of these researches 

was proposed by in [21], where a genetic algorithm [22] 

was used to identify the best features. Here, each gene 

represents a single feature with value 0 or 1 to indicate 

whether a feature is selected or not. The fitness function 

is defined as the accuracy of the corresponding classifier, 

where an SVM algorithm is used to classify an unknown 

text. The method shows that choosing 130 features from 

270 features can increase the accuracy. The problem of 

this method is that one cannot capture all stylometric 

features since they may be very large and require 

complex estimation to detect best features. Also, the 

system depends on a single classifier (SVM) to judge the 

importance of a feature, and the syntactic features were 

not involved in  the method because it is hard to represent 

such features using genetic algorithms. 

Another approach to select best features was proposed 

in [23], in which  features are selected according to their 

predictive values. These values are calculated using the 

chi square metric (X2) which estimates the expected and 

observed frequency for every feature to identify features 

that are able to d iscriminate between authors. The 
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algorithm uses a combination of lexical features, plus 

syntactic features ext racted by a parser to produce POSTs. 

In classification, two d ifferent machine learn ing 

algorithms were used: TiMBL and SOM. 

In [24], the authors tried to depend on similarity  

measurements rather than a machine learning approach. 

They investigated the author attribution problem for large 

candidates (10,000 authors) using similarity-based 

classification derived from informat ion retrieving theory. 

They represented the text as a vector that includes the 

frequencies of each 4-gram characters, including 

punctuations, numerals, and sundry, to find an author 

from large set of authors. They used cosine similarity 

[25], which is a common metric used in informat ion 

retrieval. The achieved precision is  about 46%, so they 

improved the procedure by repeatedly selecting the top k 

documents, then computing the score for each author 

depending on this set. The algorithm returns the author 

who has the maximum score. The idea is to check if a  

given author proves to be most similar to the test 

document for many different randomly selected feature 

sets of fixed size. The drawback of this method is 

restricting the features on n-grams only, which cannot 

capture the writing style. 

Another approach is used in the author attribution 

problem incorporating language models. This approach 

assumes that each author has writ ing characteristics that 

can be captured using a language model. In  [26], the 

authors used a more advanced language model. They 

applied the Probabilistic Context  Free Grammar (PCFG) 

language model, by training a language model for each 

author from his known text  documents. A test document 

is assigned to the author whose language model gives the 

highest likelihood score. The method achieved a good 

result in the range of 87 to 95%. A PCFG language model 

describes the structure of the sentences that are used in 

text, which is considered as a syntactic feature. The 

research did not use features other than the syntactic ones 

expressed by the PCFG model, and achieved good results. 

Syntactic features give better results in author attribution 

field if they are combined with other features.  

Many of the previous works were tested over 

documents written in English language [1, 8]. Some used 

Greek language [10, 15], Belg ian language [14], 

Germany language [15], and Arabic language [18-20]. In  

this paper, we develop an extended the language model 

for Arabic texts to solve the author attribution problem. 

 

III.  PROPOSED METHOD 

The proposed method is described in detail in this 

section. 

A.  Background 

Context-free grammar (CFG) is considered as the most 

effective grammar formalization for describing language 

syntax [6]. CFG is defined as a tuple G = {Σ, N, S, R}, 

where Σ  is a  set of terminal symbols which  are symbols 

or words actually seen in  the sentences, N is a set of non-

terminal symbols each of which points to further 

production rules. These two sets are disjoint, S ϵ N is the 

start symbol, and R is a fin ite set of production rules that 

define how a string of terminal and non-terminal symbols 

can be immediately produced from a non-terminal 

symbol. A  production rule has the form:  A→α, where A  

is a non-terminal ∈N ,α  is a sequence of terminal and 

non-terminal symbols. So, in a CFG grammar, a phrase 

can be viewed as a sequence of terminals. 

CFG provides a simple and mathemat ically precise 

mechanis m for describing the methods by which phrases 

in some natural languages are built  from s maller blocks. 

CFG can exactly describe the basic recursive structure of 

sentences, the way in which clauses nest inside other 

clauses, and the way in which lists of adjectives and 

adverbs are swallowed by nouns and verbs.  

Most grammar formalizations are derived from CFG, 

one of which is the Probabilistic Context  Free Grammar 

(PCFG), in which each production rule is assigned a 

probability. These probabilities are required to sum up to 

1.0 for each non-terminal. We can view a PCFG as a 

tuple G = {Σ , N, S, R, P}, where P  is a list of probabilities, 

each probability is assigned to one of the rules in R , and 

defines the likelihood with which this rule is used in 

generating a sentence. After generating a PCFG grammar, 

G, and computing a probability for each rule from the 

training data, the probability of generating a string is the 

product of the probabilities of productions taken at each 

branch of its parsing tree. 

In our approach, we will have many rules produced 

from authors’ documents. We need the rules that are most 

efficient to discriminate authors. A popular feature 

selection method is ch i-square (X
2
). In  classification 

problems, the X
2
 score measures the lack of independency 

between a feature, t, and class, c. We will have a rule r 

and a class c, and we want to know the dependency of 

each rule and the class (author). One way to compute X
2
 

is by using the two-way contingency table of a rule r and 

an author c [27]: 

 

  (   )   
  (     ) 

(   ) (   )(   )(   )
                   (1) 

 

where A is the number of times r and  c co-occur, B  is the 

number of t imes the rule r occurs without c, C is the 

number of t imes c  occurs without r, D is the number of 

times neither c nor r occurs, and N is the total number of 

documents. If rule r is independent of author c, then the 

X
2
 score will be zero. The computation of X

2
 scores has a 

quadratic complexity, similar to mutual informat ion (MI), 

and information gain (IG). A major d ifference between X
2
 

and MI is that X
2
 is a normalized value; hence X

2
 values 

are comparable across terms of the same category. A rule 

with small score denotes that the rule is not 

discriminative for that author, while a h igh score denotes 

that it is discriminative and captures the author’s style. 

B.  Details of proposed method 

The PCFG grammar describes the language syntax, but 

this alone cannot be efficiently used to distinguish the 

author of an unknown text  [26], since it focuses on 
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grammar rules and their probabilit ies only. So, our 

contribution is to extend the PCFG language model in  

order to capture addit ional features that can increase the 

efficiency of language models in author attribution. We 

will incorporate some basic features as lexical features to 

the PCFG language model to d istinguish between authors 

[1, 10]. These features proved to be informative [14].  

Recall that we already know the words in each  

sentence (terminals) and their types (non-terminals) from 

the PCFG language model. We will use this to capture 

some lexical features, which will be handled by adding a 

new set, PT, which contains the probabilit ies of terminals, 

to the grammar, G. A lso, a second set, PN, will be added 

to the grammar, G, which includes the probabilities of 

non-terminals. This set is predefined and will be of fixed  

size. PCFG do not consider punctuation marks in  

generating the rules and their probabilit ies. However, 

punctuation marks are considered major features to 

capture the style of a text  [28], so we will add a new third  

set, PU, to grammar, G, which includes the probabilities 

of punctuation marks.  

The other extension to the PCFG model is to compute 

weights for each ru le p robability in  the set, R. These 

weights will be computed using chi-square score (X
2
). So 

the extended weighted PCFG model (we call it XPCFG) 

tuple will be: 

 

G = {Σ, N, S, R, P, U, X
2
, PT, PN, PU}               (2) 

 

where X
2 

is the set of weights for each rule in R, PT is the 

probabilit ies of terminals, PN  is the p robabilities of non-

terminals, U is the set of punctuation marks , and PU is the 

probabilities of punctuation marks. 

Our algorithm will generate an XPCFG model for each  

author from his set of training documents  using a parsing 

tool. After generating the production ru les, a  probability 

is computed for each production rule. Then a score is 

computed for each  rule to compute the dependency 

between this rule and its  corresponding author, which is 

accomplished by computing the X
2
 score for each rule. 

Also, the probabilities of terminals, non-terminals, and 

punctuation marks are computed. Fig. 1 illustrates the 

process of generating author’s XPCFG language model. 

 

 

Fig.1.The process of generating the extended language model, XPCFG, 
for a specific author using a set of training documents belonging to that 

author. 

We use different types of features: grammatical 

features represented by rules, lexical features represented 

by probabilit ies of terminals, non-terminals, and 

punctuation marks (actually, non-terminals are 

considered syntactic features). A  genetic algorithm is 

used to find the best weights for these features, as shown 

in Fig. 2. The algorithm uses a new corpus called genetic 

data set, which is used only for the purpose of finding the 

best weights of different features for a specific author. 

The weights depend on maximizing the classification 

accuracy for documents in the genetic set. 

Finally, in the classification process, Fig. 3, a test 

document is passed to the classifier, with all authors’ 

models and optimum weights for each author as inputs. 

The classifier estimates a score between the test 

document and each model so that the test document is 

assigned to the author who has the maximum score. 

As shown in Fig. 1, the first step in train ing an XPCFG 

language model for a specific author is parsing his 

training documents. Parsing is the process of analyzing a 

text, made of a sequence of tokens (words), to determine 

its grammat ical structure with respect to a given formal 

grammar [29]. So, any document in training, testing, or 

genetic corpuses is parsed before it can be used. We use a 

probabilistic parser, also called statistical parser, which is 

a parser that uses knowledge of the language gained from 

previously hand-parsed sentences. The result of the 

parsing process is a set of grammatical rules. 

 

 

Fig.2.Estimation of optimum weights of different features in XPCFG 

model for a specific author. 

 

Fig.3. Classification of a test document. 

In training phase, Fig. 4, we produce a full XPCFG 

language model for each author. The language model 

includes the rules produced in the parsing phase, with 

their probabilities and scores, and three lists of terminals, 

non-terminals, and punctuation marks, with their 

probabilit ies. The following subsections explain the 

training steps in details. 

After parsing each document in the training data set , 

and producing the rules, the probability for each rule is 

computed. For example, the probability  (     ) of a 
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rule       is computed by: 

 

 (     )   
     (       )

     (            )
                  (3) 

 

If   is the number of train ing documents for a specific 

author, and   (       )  is the probability of rule 

      in the  th training document for that author, then 

the average probability  ̅(     ) is given by: 

 

 ̅(     )   
∑   
 
   

(       )

 
                (4) 

 

Following this procedure, each author language model 

contains non-duplicated rules, and a rule has a probability 

that reflects the average probability of that rule in all 

training documents that belong to that author. 

When rules are generated from training documents by 

the parser, the right side of a ru le contains either non-

terminals, or terminals. In a t raditional PCFG language 

model, there is no difference when dealing with these sets 

of ru les, but in  our p roposed model, XPCFG, we have 

two different sets of rules, the first is non-terminal ru les, 

and the other is terminal rules. For example, rules such as 

S → VP, VP →VBP NP PP, NP → DTNN, PP → IN NP, 

and NP → DTNN are categorized as non-terminal ru les, 

while the rules VBP → تطلع, DTNN → الشمس, IN → من, 

and DTNN → الشرق are categorized as terminal rules. The 

goal of this categorization of the ru les is to  measure the 

efficiency of each set of ru les in the classification process. 

Note that for the simplicity of notation we did not 

mention this categorization of rules in (2). 

 

Purpose: Produce a complete XPCFG model for a 

specific author from his training documents  

Input: Training document for a specific author 

Output: Complete XPCFG language model for the 

author 

Procedure: 

Begin 

For each training document dj  

Parse document dj to generate the set of rules 

R. 

Compute rules probabilities  P. 

Compute terminals probabilities PT. 

Compute non-terminals probabilities  PN. 

Compute punctuation marks probabilities  PU. 

End loop 

Compute the average probabilities for P, PT, PN, 

and PU  , over all training documents. 

Compute the X
2
 score for each rule in R. 

Return XPCFG = {Σ, N, S, R, P, U, X
2
, PT, PN, PU} 

End 

Fig.4. Generating of XPCFG language model. 

The set of non-terminals, N, is of fixed size set, since 

non-terminals are predefined by the parser. So, for each 

author’s language model, the set, N, will contain the same 

non-terminals, but with different probabilities. For a non- 

terminal, nt, in  a t rain ing  document that  con tains  m  

 

non-terminals in all rules, the probability of nt is given by: 

 

 (  )   
     (    )

 
                          (5) 

 

where count(nt) is the number of occurrences of this non-

terminal in the rules of the train ing document. Following 

this process for other training documents that belong to 

same author will produce a set of probabilit ies for each 

non-terminal. The final non-terminal probability is the 

average of all probabilit ies of that non-terminal in  all 

author’s training documents. 

To compute terminals probabilit ies, we follow the 

process used when computing the non-terminals 

probabilit ies. We start from the set of ru les that are 

generated from a train ing document for a specific author. 

Using these rules, we count the number of occurrences of 

each terminal, and divide it by total number of terminals 

in the training document to obtain the terminal 

probability. Note that the number of terminals is not fixed;  

it depends on the size of the training document. A final 

averaged probability of a terminal is computed by 

averaging the probabilit ies of this terminal over the 

training documents. 

The probability of a punctuation mark in a training  

document is the number of its occurrences in the 

document divided by the total number of punctuation 

marks in the document. For a specific author, the final 

probability of a punctuation mark is the average of its 

probabilities in all training documents. 

As shown in Fig. 4, a score is computed, (1), for each  

rule to measure the dependency between the rule and its 

corresponding author. The score will be high if the rule 

occurs few times in training documents. High-score rules 

are retained since they capture the author’s style. 

C.  Computing optimum weights 

Using a genetic algorithm, each chromosome 

represents a candidate solution to the problem of finding 

best weights in (15). For example, a  candidate solution 

for weights is (0.2 , 0.3 , 0.1 , 0.4 , 0.0), where the 

weights sum to 1 and are for    ,    ,   ,   , and   , 

respectively. The algorithm evaluates each candidate 

solution, to find the best one, using a fitness function that 

maximizes the log-likelihood of the correct author, while 

minimizing it fo r the other authors, which is implemented 

as follows: 

 

       (       )   
 ̈(     )

∑   ̈(     )   
                   (6) 

 

Where    is the i
th

 document in the genetic data set, 

used only by the genetic algorithm, and    is the j
th

 author 

that we want to find optimum weights for his 

corresponding log-likelihood function. Equation (6) finds 

the fitness function of one sample in the genetic data set. 

So given a genetic data set of m documents for author aj, 

his final fitness function is defined as: 

 

       (  )  
 

 
 ∑        (       )
 
                (7)
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D.  Classification 

We use a probabilistic classifier to assign an author to 

an anonymous text. The classifier maximizes the 

probability P(x|a) for a text  x to belong to a candidate 

author a. Using Bayes rule [30]: 

 

 (   )   
 (   )  ( )

 ( )
                        (8) 

 

P(x) is the same for the test document, so, it can  be 

ignored. The prior probability o f an  author P(a) is often 

treated as uniform across all authors and it can also be 

ignored, also. So, we can estimate the probability of a test 

document x by finding the probability  (   ). 
A test document x can be viewed as a sequence 

          of n independent and identically d istributed 

observations, where the observations are the rules, 

terminals, non-terminals, and punctuation marks in the 

test document. To  simplify  the description here, we will 

talk about all observations as one type, then we will 

describe the details. By using maximu m likelihood [30], 

first we specify the joint probability density for test 

document x, by: 

 

 (            )   (    )  (    )    (    )   (9) 

 

Then, the likelihood function is  

 

 (            )   (            )   

                                            ∏  ( 
       )                          (10) 

 

Equation (10) estimates how an author, a, is likely to 

produce a test document, x, using the probabilities 

computed in  author’s XPCFG language model. The log-

likelihood function is: 

 

 ̂(   )   ∑     (    )
 
                       (11) 

 

To classify a test document x, we use (11), to compute 

the log-likelihood,  ̂ , between the test document and 

every author’s language model, then we assign the test 

document to the author who has the highest log-

likelihood. To do this, we first will parse the test 

document to produce an XPCFG language model, which 

will contain rules R, the set of terminals Σ, the set of non-

terminals N , and the set of punctuation marks U, but with 

no probabilities for these sets.  

In (9) we v iew x  as a set of features           , but  

since we have four types of features in x , we can v iew the 

test document as four sequences of observations, where 

the first sequence,           , is the set of rules in x, the 

second sequence,           , is the set of terminals, the 

third sequence,              , is the set of non-terminal, 

and the last sequence,            , is the set of 

punctuations marks,          . The classifier 

uses (11) to compute  ̂ for each sequence, for example, 

the log-likelihood for terminals,   ̂ , is given by: 

 

  ̂  (   )   ∑     (    )
 
                          (12) 

In the same manner, (11) is used to estimate the log-

likelihood for non-terminals,   ̂ , punctuation marks,  ̂ , 

and rules,  ̂ . One variation in  computing,   ̂ , is that the 

classifier incorporates the X
2
 score for each rule in  the 

log-likelihood,   ̂ ; this is done by simply multiply ing 

each rule probability with its corresponding X
2
 score 

(computed in training phase), so that a log-likelihood for 

rules is given by: 

 

  ̂  (   )  ∑   (    )       (    )
 
                 (13) 

 

where   (    ), is the chi-square score for i
th

 rule in  the 

XPCFG language model for author a. Remember that in  

the training phase we defined two d ifferent sets of rules, 

the first contains the terminal rules, while the other 

contains the non-terminal ru les. So, the log-likelihood of 

rules is given by   ̂   and   ̂  , where the first is the log-

likelihood of terminal ru les, and the second is the log-

likelihood of non-terminal rules. Putting all together, the 

classifier computes the final log-likelihood  ̈  between 

test document x and author a using: 

 

 ̈(   )     ̂   (   )    ̂   (   )    ̂  (   )   

                ̂  (   )   ̂  (   )                   (14) 

 

Equation (14) suggests that each part of the XPCFG 

model participates in the classification with equal weights. 

We can enhance the classificat ion process by assigning a 

different weight for each part in (14) as follows: 

 

 ̈(   )         ̂   (   )       ̂   (   )   

            ̂  (   )      ̂  (   )     ̂  (   )       (15) 

 

Weights values are between 0 and 1 and all sum to one. 

For a test document x, the classifier estimates  ̈(   ) in 

(15) between the document, x, and all availab le authors, 

using their XPCFG language models, then assigning the 

test document the author who has  the maximum  ̈(   ) 
value, so  that the candidate author  ̂ for an anonymous 

text, x, is: 

 

 ̂          ̈(   )             (16) 

 

IV.  EXPERIMENTATION AND RESULTS 

Now, we report experimental results of our method. 

A.  Dataset 

We use articles from Felesteen newspaper website [31], 

by choosing 9 different authors, and collecting 30 Arabic 

articles per author. The average size of art icles is about 

700 words, Table 1. The dataset is divided into two sets. 

The first set, which consists of 20 documents for each 

author, is used in training and testing the classifier using 

the leave-one-out method. The second dataset consists of 

the remain ing 10 documents for each author and is used 

by the genetic algorithm to find the optimum weights for 

the different features. 

http://en.wikipedia.org/wiki/Independent_and_identically_distributed
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Table 1. Average Size of Articles of the Datasets 

Author No. Average Article Size (words) 

1 833 

2 641 

3 664 

4 860 

5 607 

6 673 

7 577 

8 835 

9 613 

 

B.  System software environment 

The train ing phase starts by first parsing all authors’ 

documents, Fig. 1. The Stanford parsing package [32, 33] 

is a powerful software that is built using Java language, 

and proved to be efficient in parsing Arabic texts [34]. It  

can be used as a standalone software by passing input to 

it and capturing the output, or it can be used as a module 

in any Java application, since it provides an Application 

Programming Interface (API) that can be used in custom 

Java applications. We use this API to integrate the 

Stanford parser in a new application that is built for the 

author attribution problem. Stanford parser package 

provides three probabilistic parsers:  

 

1) An accurate un-lexicalized probabilistic context-

free grammar (PCFG) parser. 

2) Probabilistic lexical dependency parser. 

3) A factored, lexicalized probabilistic context free 

grammar parser, which  does joint inference over 

the outputs of the first two parsers. 

 

The first parser is recommended when parsing English 

language, because in many cases the lexical preferences 

are not available or inaccurate for many domains, thus the 

un-lexicalized parser will perfo rm as well as a lexicalized 

parser. Also, using un-lexicalized parser is faster and 

requires less memory. The dependency parser can be used 

alone, but this is usually not useful because its accuracy is 

much lower. 

The factored lexicalized  parser provides greater 

accuracy since it  combines the features of the other two  

parsers. This is done by combining the preferences of the 

two parsers using A* algorithm [35], also it is 

recommended for other languages such as German, 

Chinese, and Arabic. So, this parser is used to parse 

authors’ documents. 

The output of the parser can be presented in various 

forms, such as: (1) Part of Speech Tags (POST), which 

presents only the part of speech tag for each word in a 

sentence, (2) dependencies, to the grammat ical relat ions 

between parts of a sentence; it is only  available for 

English language, and (3) phrase structure trees for 

presenting the structure of the parsed sentence so that we 

can see the part of speech tag of each structural unit of 

the sentence.  

The Stanford parser is a probabilistic parser which is 

trained over hand-parsed sentences to parse new 

sentences. Stanford Arabic parser is trained over Penn 

Arabic Treebank [36], which is a corpus of parsed 

sentences, provided by Penn University. The corpus aims 

to provide a large Arabic machine-readable text  corpus 

that is annotated by humans and computer. It  provides a 

presentation of Arabic language structure at different 

levels: word level, phrase level, and sentence level. 

The process to make such a corpus consists of two 

steps. The first is part-of-speech tagging by tokenizing 

the text into lexical tokens and assigning each token a 

lexical category. The second step is tree-banking, which 

identifies the structures of word sequences, then 

assigning categories for each non-terminal node. The first 

step is done using Tim Buckwalter's lexicon and 

morphological analyzer [37], which  generates a candidate 

list of POSTs for each word, then a human just selects the 

correct POS tag. The analyzer also helps by automatically  

assigning some tags such as tagging numerical data and 

punctuation marks. At the end of this process, XML files 

are produced. In the second step, the data goes through 

tree-bank annotation to produce a representation of 

language structure. A final bit process is done manually 

by annotators (humans), or automatically  to check for 

inconsistencies between the tree-bank and POS tagging. 

The data which is used during these processes is used 

from the Agency France Press (AFP) newswire [38], 

which is a standard Arabic corpus that includes 734 

stories of 140,265 words, and about 168,123 tokens after 

segmenting clit ics. The pro ject uses human's annotators 

that are native speakers of Arabic language, and have 

enough linguistics capabilities to check morphological 

syntactic analysis and build syntactic structures. Before 

using the parser, we present some of its capabilities and 

limitations. 

1)  Tokenization 

The parser assumes that the supplied text is tokenized  

as in Penn Arabic Treebank ATB. In general, this set 

assumes a whitespace to tokenize words, and does not 

split off clitics (A clitic  is a linguistic unit that is 

pronounced and written like an affix but it is 

grammatically  independent, for example ―وقال‖). Also, the 

parser considers only one character as the end of sentence 

which may be a fu ll stop or comma, and it does not 

support the two for a single text, but in real documents 

authors use the two marks to separate sentences. So, we 

define the end of sentence to be a full stop, and replace all 

commas to fu ll stops in all art icles before passing them to 

the parser. 

2)  Normalization 

The parser was trained on a normalized form of Arabic. 

So, we also normalized our Arabic documents before 

parsing them using the following steps: 

 

 Delete tatweel characters, for example, (الشمـــــــس) 

will be (الشمس). 

 Delete diacritics, for example (ُتطَْلع) will be (تطلع). 
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 Replace some characters, for example, the vowel 

Alef is replaced  with hamza (أ), madda (آ) becomes 

Alef (ا), and Alef maksura (ى) becomes Yaa (ي). 

 

3)  POST 

The parser uses Bies tag set [36], which maps 

morphological analysis from Buckwalter analyzer to the 

subset of POS tags used in Penn English Treebank (some 

with  different meanings) as shown in Table 2. A lso, the 

parser augmented the set to represent words that have the 

determiner AL (الـ) cliticized to them. These extra tags 

start with "DT", and appear for all parts of speech that 

can be preceded by "Al". So, we have DTNN, DTCD, etc. 

To find the optimum weights between different parts of 

our enhanced PCFG language model (XPCFG), we use 

the genetic algorithm package which is a Java based 

package named JGAP, version 1.5.0 [39]. The package 

provides an API that we used in our author attribution 

application. 

C.  Experiments 

The parser only recognizes Arabic texts with UTF-8 

encoding. So, we first convert all texts to this encoding, 

then apply normalizat ion steps described previously. The 

application sends to the parser one sentence at a time. 

Any sentence with size of 250 characters or more is 

ignored since the parser fails when parsing such long 

sentences. All documents in the training and testing data 

set, and the genetic data set are parsed. The parser’s result 

for each document is stored in a separate binary file, so 

that it can be used in different processes without requiring 

to re-parse it, which minimizes the computations. 

We use the leave-one-out method to train and test the 

system. It starts from the first document in the data set 

and considers it as a test document, and the others as 

training documents. For example, we start from author 1, 

and document 1, an XPCFG model is trained using the 

remain ing 19 documents for author number 1, and all the 

20 documents per other author. This model is stored in a 

binary file with file  name Author1_1.pcfg. Also, an 

XPCFG language model is trained using the whole 20 

documents of author 1 and stored in the file  

Author1_full.pcfg. This full-trained language model will 

be used in classification. So, for each author we produce 

21 XPCFG language models. 

In classification, the test document is passed to all 

authors XPCFG models to compute the likelihood score. 

The document will be assigned to the author whose 

model generates the highest score, for example to test 

document number 5 for author number 1, the system will 

pass the document to XPCFG of author 1 that excludes 

the 5
th

 documents (Author1_5.pcfg), and to the full-

trained XPCFGs of other authors. Thus, the system 

implements the leave-one-out method in training and 

testing. 

Using the JGAP package, we configure the 

chromosomes to contain 5 genes, each reflects a d ifferent 

fractional weight in  (15), and with the constraint that all 

genes values sum to one. The algorithm starts with 

random values for genes. We implement the fitness 

function in (7). The algorithm is configured to start from 

a population of size 20 samples. To estimate a fitness 

function of an author, we average the fitness function 

over his genetic data set. To compute such a function we 

calculate the log-likelihood between the author’s 

language model and each document in the genetic data set, 

which belongs to this author, (6). Then, a final estimat ion 

is averaged over these documents, (7). 

Table 2. English POSTS Which Are Used As Mapped Tags for Arabic 

Morphological Analysis 

POST Description 

JJ Adjective 

RB Adverb 

CC Coordinating Conjunction 

DT Determiner/Demonstrative pronoun 

FW Foreign Word 

NN Common noun, Singular 

NNS Common noun, Plural or Dual 

NNP Proper noun, Singular 

NNPS Proper noun, Plural or Dual 

RP Particle 

VBP Imperfect Verb  

VBN Passive Verb  

VBD Perfect Verb 

UH Interjection 

PRP Personal Pronoun 

PRP$ Possessive Personal Pronoun 

CD Cardinal Number 

IN 
Subordinating Conjunction 
(FUNC_WORD) or Preposition (PREP) 

WP Relative Pronoun 

WRB Wh-Adverb 

, Punctuation, token is , (PUNC) 

. Punctuation, token is . (PUNC) 

: Punctuation, token is : or other (PUNC) 

 

D.  Results 

We use the error rate to measure the efficiency of the 

classifier [25]. The erro r rate is calculated by counting the 

number of misclassified documents for a specific author 

divided by the number of author’s documents, which 

equals 20 documents. An average error rate is computed 

for all authors. 

We have two data sets; the first consists of 9 × 20 = 

180 documents, and the second (genetic) is of size 9 × 10 

= 90 documents. Using leave-one-out method, we have 

180 documents to be classified. Since PCFG was tested 

for English language [26], we retest PCFG performance 

over our dataset, which is Arabic, to compare the results 

between the PCFG and our XPCFG language model. 

Table 3 shows the error rate for each author using the 

PCFG language model p roposed in [26]. The system 

achieves the best minimum error fo r author 1 (00.0%). 

The average error rate of the system is 34.4%. The results 

show that the PCFG model cannot capture different 

writing styles for all authors. The results of XPCFG 
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model are shown in Table 4. The system could eliminate 

the error for four authors: 1, 4, 5, and 6. The average 

error rate is decreased to 20.6%. This is a result of adding 

more lexical and syntactic informat ion to the traditional 

PCFG language model. 

Table 3. PCFG Model Results 

Author Error Rate 

1 0.0 

2 0.4 

3 0.8 

4 0.1 

5 0.5 

6 0.3 

7 0.7 

8 0.1 

9 0.2 

Average 0.344 

Table 4. XPCFG Model Results 

Author Error Rate 

1 0.0 

2 0.85 

3 0.15 

4 0.0 

5 0.0 

6 0.0 

7 0.55 

8 0.25 

9 0.05 

Average 0.206 

 

Remember that the XPCFG contains weights for each  

feature, see (15). The results of Table 4 are obtained 

using equal weights. To find the best weights, we use the 

genetic algorithm and the genetic data set. Since the 

fitness function, (7), is estimated using the error rate, the 

genetic algorithm will not run  for authors who achieve 

the minimum, 00.0%, error rate in Table 4. The results 

using the optimum weights are shown in Table 5. The 

results show that there is an enhancement when using 

optimum weights. The averaged error rate of the XPCFG 

model is decreased to 12.8%.  

Table 5. XPCFG Model Results Using Different Weights 

Author Error Rate 

1 0.0 

2 0.4 

3 0.1 

4 0.0 

5 0.0 

6 0.0 

7 0.35 

8 0.25 

9 0.05 

Average 0.128 

 

A comparison of error rates for the three models: 

PCFG, XPCFG, and XPCFG with weights, per author is 

shown Fig. 5. The figure shows that the PCFG model 

achieves acceptable results for some authors, the XPCFG 

model achieves acceptable overall performance, and 

XPCFG model with optimum weights achieves the best 

results. Comparing the results obtained by the XPCFG 

language model, and the results of machine learn ing 

methods, we notice that the former achieves better results 

than those methods [1, 10, 13-15]. 

 

 

Fig.5. Comparison of error rates of the three models: PCFG, XPCFG, 
and XPCFG with optimum weights, per author. Some authors have zero 

error rate for some of their models. 

 

V.  CONCLUSIONS 

We proposed a new method to solve the author 

attribution problem. It  depends on language model theory. 

The proposed system is an extension of the PCFG. The 

proposed language model, XPCFG, separates the 

production rules into two sets, where the first is the set of 

non-terminal rules and the second is the set of terminal 

rules. Also, the XPCFG model adds lexical and syntactic 

features by capturing the non-terminals, terminals, and 

punctuation marks. These features are annotated with 

probabilit ies, in  addition to probabilit ies of production 

rules inherited from the PCFG model. Adding such 

informat ion reflects the writing style of authors since the 

rules describe the structure of sentences, and non-

terminals capture the POS tags that are used by authors. 

The terminals describe the richness of words used by the 

author, and punctuation marks capture his format style. 

Another enhancement implemented in  the XPCFG 

model is assigning scores to rules to quantify the 

importance of each rule. These scores are calculated 

using chi-square score. This helps to find the most 

discriminative rules for each author. 

The system is trained using a set of documents for each 

author, and produces an XPCFG language model for each 

author. In the classification phase, an unknown document 

is assigned to the author whose language model yields the 

maximum log-likelihood. The log-likelihood is computed 

for each part  of the XPCFG (ru les, non-terminals, 

terminals, and punctuation marks), and a final log-

likelihood is computed by summing the log-likelihood 

parts. Summing the log-likelihood parts is governed by 

weights which describe the importance of each part in the 
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final log-likelihood function. The best weights are 

computed using a genetic algorithm by optimizing a 

predefined function. 

The proposed system is tested over Arabic texts. The 

error rate o f the system is about 20.6%. Hence, the 

XPCFG outperforms the traditional PCFG language 

models in the author attribution problem. The system 

error rate is reduced to 12.8% when the optimum weights 

are used. 

The proposed system depends on the rules generated 

by the parser. The used parser has some limitations as it 

cannot split clit ics resulting in inaccuracy for some 

sentences. So, splitting clitics before parsing may result 

in more accurate rules. 

We have calculated the ch i-square score for each rule 

of the XPCFG language model. We can  apply this 

approach to terminals, non-terminals, and punctuation 

marks, so that the system can automatically  quantify their 

importance. 

The system achieved acceptable results over a small set 

of candidate authors and small datasets. We may increase 

the number of authors and the size of datasets for more 

reliable results. 
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