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Abstract—Gestures are natural means of communication 

between humans, and therefore their application would  

benefit to many fields where usage of typical input 

devices, such as keyboards or joysticks is cumbersome or 

unpractical (e.g., in  noisy environment). Recently, 

together with emergence of new cameras that allow 

obtaining not only colour images of observed scene, but 

also offer the software developer rich informat ion on the 

number of seen humans and, what is most interesting, 3D 

positions of their body parts, practical applications using 

body gestures have become more popular. Such 

informat ion is presented in a form of skeletal data. In  this 

paper, an approach to gesture recognition bas ed on 

skeletal data using nearest neighbour classifier with 

dynamic time warping is presented. Since similar 

approaches are widely used in  the literature, a few 

practical improvements that led to better recognition 

results are proposed. The approach is extensively 

evaluated on three publicly availab le gesture datasets and 

compared with state-of-the-art classifiers. For some 

gesture datasets, the proposed approach outperformed  its 

competitors in  terms of recognition rate and time of 

recognition. 

 
Index Terms—Gesture Recognition, Nearest Neighbour 

Classifier, Dynamic Time Warp ing, Kinect, Skeletal Data, 

Matlab. 

 

I.  INTRODUCTION 

The subject of gesture recognition has been widely 

explored through the last two decades. The main reason 

of such interest is omnipresence of gestures in daily life. 

They are mostly used to support verbal communication, 

but, in many cases where spoken language cannot be used, 

they are indispensable. As a natural mean of 

communicat ion, gestures are very demanded in human-

machine interaction field. Their present applications 

involve video games industry or home automation. 

Gesture recognition technology may help people with 

hearing disabilit ies to be understood. Sign language 

recognition, as a challenging example of gesture 

recognition problem, is also the subject of many recent 

approaches, e.g., [1-7]. Here, approaches handle large 

gesture variation, i.e., gesture’s executions from a given 

class can be performed  with d ifferent speeds, and there is 

a dependency of gesture execution on signer’s anatomical 

constraints or intention. Furthermore, each nationality has 

its own sign language.  

Another direction of research is associated with 

recognition of gestures performed by entire body [8, 9], 

with some attention to assistive technology [9-11]. 

There are also works using additional equipment, such 

as gloves [12] or surface electrodes [13]. They provide 

accurate information on hand positions but may interfere 

in the proper gesture execution. 

Other common approaches have turned towards 

computer vision, in  which gesture recognition is based on 

colour information [14]. Neural networks [4, 15], hidden 

Markov models [2, 7, 16, 17], support vector machines 

[16], boosting [14] o r nearest neighbour with dynamic 

time warp ing (DTW) [1, 2, 16, 18] are mostly used as 

classifiers. 

Since DTW with nearest neighbour seems to be one of 

the simplest approaches, which is also able to obtain 

state-of-the-art results, we extended this approach adding 

a few practical improvements and evaluated the resulting 

classifier on three widely used gesture datasets. The 

results were compared with results obtained by state-of-

the-art approaches. 

The rest of the paper is organised as follows. Section II 
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describes related works on gesture recognition. Section 

III gives background informat ion concerning Kinect 

sensor, DTW and nearest neighbour classifier. In Section 

IV, our approach is presented, evaluated and compared 

with  representative approaches. Section V concludes the 

paper.

II.  RELATED WORKS 

The recently developed methods of gesture recognition 

include the use of active depth cameras or sensors, which 

provide substantial data from the observed environment, 

such as three-dimensional informat ion. Kinect sensor [19] 

is an example of such device. It provides colour image, 

depth map, and 3D skeletal data indicat ing the most 

important 20 body joints. Among works with Kinect, Lai 

et al. [20] recognised eight static hand gestures with 

accuracy of 99%, and Ren et al. [21] recognised 14 static 

hand shapes which were controlling an application 

performing arithmetic operat ions, and also three shapes 

for Rock-paper-scissors game. Recognition experiments 

with simple body or hand movements can be found in 

works [22, 23]. In [1-7, 24-25], in turn, sign language 

gestures were recognised using skeletal data. In [26], only  

depth maps obtained from the sensor were used.  

Since sign language recognition is very challenging, it  

has attracted many researchers, and therefore some of 

recently developed, significant solutions that are using 

Kinect are worth to be presented. For example, in [1] 

time series characterising isolated Polish Sign Language 

words were classified. In [2], in turn, authors used depth 

data and Viewpoint Feature Histogram as the global 

descriptor of the scene for Polish and American static and 

dynamic hand gestures recognition. An American Sign 

Language was recognised in work of Sun et al. [3], where 

a latent support vector machine model was developed for 

sign classification. Authors utilised colour information, as 

well as depth and skeletal data. Convolutional neural 

network was applied for feature construction process in 

[4]. In that work, 20 Italian gestures were recognised with 

91.7% accuracy. What is important, described approach 

achieved a mean Jaccard index of 0.789 in the ChaLearn  

2014 Looking at People gesture spotting competition. 

Halim and Abbas in [5] presented DTW-based approach 

for Pakistani Sign Language recognition with accuracy of 

91%. Zafrulla et al. in [6] presented American Sign 

Language recognition dataset and an approach based on 

random forest regression. The approach used depth 

images in order to improve Microsoft Kinect Skeleton 

Tracker. Yang in [7] presented hierarchical conditional 

random fields applied for detection of signs’ segments 

and verified hand shapes of the segmented signs using 

BoostMap. Hand shapes have been also used in work [8], 

where a new superpixel earth mover’s distance metric, 

depth and skeletal data together outperformed compared 

approaches in real-life examples. Jiang et al. in [9] 

proposed a mult i-layered gesture recognition method with 

Kinect, which was able to obtain promising results in the 

one-shot learning gesture recognition test on ChaLearn  

gesture dataset.  

Apart from sign language recognition, there are also 

interesting approaches covering other aspects of human 

life. For example, authors in [10] presented a system that 

recognises gestures using Kinect for elderly to call 

service robot for their service request. The approach also 

utilises face detection and skin  colour information, wh ich 

are particularly useful when skeletal data is not available. 

Another approach is applied to automatic diet  

monitoring system for elderly [11]. In [27], authors 

proposed using Kinect for rehabilitation of patients with 

Metachromatic leukodystrophy. For fu rther reading, a 

thorough review of the recent works with Kinect and their 

impact on physical therapy and rehabilitation can  be 

found in [28].  

 

 

Fig.1. Kinect Joints [30] 
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Fig.2. Skeletal Tracking Pipeline in Kinect [19] 

 

III.  BACKGROUND 

This section begins with introduction of a sensor, 

which was used in order to obtain experimental data. 

Since the proposed approach covers a subject of gesture 

recognition, some preliminary information on used 

distance metric and a method of classification with this 

metric is also given.  

A.  Kinect 

As described in  [19, 29], Kinect contains a depth 

sensor (infrared pro jector and a camera) and a colour 

camera. It analyses the deformation of a known speckle 

pattern of infrared laser light when it is projected onto the 

scene and finally constructs a depth map. The one of the 

most appreciated Kinect’s advantages is its ability to 

track skeletal movements in  real t ime. Figure 1 p resents 
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20 jo ints which represent the human body in the skeletal 

tracking. In order to obtain the skeleton, at first body 

parts are recognised, and then the body joints are 

hypothesized and mapped to a skeleton using temporal 

continuity and prior knowledge (see Figure 2). The newly  

developed version of Kinect also offers a neck joint and a 

differentiation of hand tip and thumb joints. 

B.  Dynamic Time Warping 

Dynamic t ime warp ing (DTW) is a dynamic 

programming technique for measuring similarities 

between two time series that may d iffer in speed or 

acceleration. It has its origins in speech recognition. 

In the algorithm, two time series of lengths s and t are 

processed. Here, the s-by-t matrix is generated by 

calculation of distances between their consecutive 

samples. Distances are calculated with either Euclidean 

metric o r city-block metric. Then, a so-called warp ing 

path is created. The path must satisfy three following 

conditions: boundary, continuity and monotonicity. The 

boundary condition constraint requires the warping path 

to start and finish in diagonally opposite corner cells of 

the matrix. The continuity constraint restricts the 

allowable steps to adjacent cells. The monotonicity 

constraint forces the points in the warping path to be 

monotonically  arranged in  time. The su mmed values in  

cells along the shortest path are returned as the DTW 

distance between compared time series. 

To speed up the process, a window constraint (window 

size, W) is introduced. In this case, instead of comparing 

each n-th sample of the first time series to all the samples 

of the second time series, the first one is compared with 

the samples from n-W to n+W of the second time series. 

If the specified window size is s maller than the difference 

between lengths of the time series (W < |s–t|), then W is 

set equal to this difference  

C.  K-Nearest Neighbour Classifier 

K-nearest neighbour classifier (KNN) is used to assign 

tested objects comparing them with labelled classes’ 

representatives. The tested object obtains the label of the 

closest K representatives from a given class. In our case, 

DTW is the distance used to compare time series 

composed of frames of skeletal data.  

 

IV.  THE APPROACH AND EXPERIMENTAL EVALUATION 

Since DTW and KNN have already been applied to 

gesture recognition with Kinect, we introduce several 

practical improvements starting from find ing appropriate 

W in DTW, as well as experimenting with reduced 

number of processed joints. The proposals have a 

practical nature and, as it is shown in the experimental 

part of this section, they allow obtaining better results 

than some of the state-of-the-art techniques. In 

experiments, we reduced the number of jo ints leaving 

only arm joints (right and left elbow, wrist and hand), as 

they are thought to be the only ones that contribute. The 

experiments presented in this section were executed using 

Matlab R2014a on a machine with i7-4510U CPU and 

8GB RAM. 

 

 

Fig.3. Skeletal images that belongs to two exemplary gestures from VISAPP2013 dataset [30] (one gesture in a row) 

Table 1. 10-fold cross-validation tests on Visapp2013; DTW parameters: metric and window size (W); KNN parameter: K; 

Inf denotes infinity; results in [%] 

 Arm Joints All Joints 

DTW Euclidean metric City-block metric City-block metric 

K W=1 W=3 W=5 W=10 W=Inf W=1 W=3 W=5 W=10 W=Inf W=10 W=Inf 

1 95.45 95.45 95.45 95.45 95.45 95.91 95.91 95.91 95.91 95.91 92.73 92.73 

3 94.55 94.55 94.55 94.55 94.55 95.45 95.45 95.45 95.45 95.45 93.64 93.64 

5 94.55 94.55 94.55 94.55 94.55 96.36 96.36 96.36 96.36 96.36 93.64 93.64 

7 96.36 96.36 96.36 96.36 96.36 97.27 97.27 97.27 97.73 97.73 98.18 98.18 

9 99.09 99.09 99.09 99.55 99.55 99.09 99.09 99.55 100 100 96.82 96.82 
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Table 2. Confusion matrix for gesture classification for Visapp2013 dataset, with the best DTW and KNN parameters 

 1 2 3 4 5 6 7 8 Recognition rate, in [%] 

LH Pull D - 1 17    3    85 

LH Push U - 2  17    3   85 

LH Swipe R - 3   14  6    70 

LH Wave - 4 2   18     90 

RH Pull D - 5     20    100 

RH Push U - 6      20   100 

RH Swipe Lt - 7 2      18  90 

RH Wave - 8     1   19 95 

 

In experiments, we have performed 10-fold cross-

validation tests with KNN and DTW. In these tests, the 

benchmark dataset is divided into ten subsets, and then 

nine of them are used as a training test, while the 

remaining subset is used as a test set.  

We used three datasets for evaluation; the first one 

comes along with predefined train ing and test sets. 

Visapp2013 dataset [30] contains eight gestures, each 

performed eight times in the original training set and 20 

times in  the original test set. On the whole, eight gestures 

were performed 28 t imes, resulting in  the total number of 

gestures equal to 224. Two exemplary gestures are 

presented on Figure 3. In 10-fold cross-validation test, the 

last four realisations were not used.  

For the first set of tests, fifty 10-fold cross-validation 

tests were performed changing metrics in DTW between 

Euclidean and city-block, as well as the window size  

W = 1, 3, 5, 10 or infinite. KNN requires determination of 

K parameter; therefore it was set to 1, 3, 5, 7, and 9.  

The approach was tested using the remaining  datasets 

and the best set of parameters (city-block metric, W = 10 

or infinite, and K = 9). The usage of arm joints yielded 

faster and more accurate recognition. The results for 

Visapp2013 can be found in Table 1. 

The test considering arm jo ints not only lead to better 

results but also turned out to be much less time 

consuming (548s) than the one involving all jo ints 

(1815s). 

For the following tests, the DTW  was used with  the 

city-block metric and W = 10. The results of the test 

matching the original test set with the orig inal training set 

offer best results for K = 9, reaching 89.38% accuracy. 

The confusion matrix associated with this dataset can be 

found in Table 2. From there we obtain gestures 

involving right arm that were better classified than those 

performed with the left arm. 100% of accuracy is reached 

for gestures 5 and 6 (right hand pull down and right hand 

push up), but three out of the 20 testing executions for 

those same gestures performed  with the left  hand were 

wrongly classified as the right hand. Also left hand swipe 

right has found to be similar to right hand pull down in 

six cases.  

In Table 3 the comparison of the results with different 

K in  the KNN classifications is given, as well as the 

results for other methods from the literature [30]. It is 

worth noticing that in these works only six out of the 

eight gestures were considered. 

 

Table 3. Recognition rate comparison for Visapp2013 dataset; 
results in [%] 

Method Recognition rate 

Classical DTW [30] 60.0 

Weighted DTW 1 [30] 62.5 

Weighted DTW 2 [30] 96.7 

DTW & 1-NN Classifier 88.7 

DTW & 3-NN Classifier 86.9 

DTW & 5-NN Classifier 86.2 

DTW & 7-NN Classifier 88.7 

DTW & 9-NN Classifier 89.4 

 

The approach presented in this paper outperformed the 

results obtained with  classical DTW by 29%, and the 

weighted DTW by 27%, all with K = 9. The second 

approach with DTW is ca. 7% more accurate. 

MSR Action Screen Coordinates and MSR Action Real 

World Coordinates are the remaining gesture databases. 

They contain the same realisations of gestures but they 

are stored with screen and real world coordinates, 

respectively. The gestures involve all body movements, 

not just arms. From this reason, we take into 

consideration all recorded jo ints. For these two databas es, 

the subsamples for the 10-fo ld cross-validation were 

organised in the same way and equivalently to the first 

database. They contain 20 act ions performed by ten 

subjects and they were executed three t imes. There are 

600 realisations in total. However, in some actions, one 

or more subjects are missing and also in some few cases 

there are only two executions, what reduces the total 

number o f realisations to 567. In cross -validation, the last 

seven executions were skipped, and thus, each subset 

contains 56 realisations.  

The 10-fold cross-validation results for MSR Action 

Screen Coordinates and Real World Coordinates are 

given in Table 4. 

Table 4. 10-fold cross-validation tests on MSR Action dataset; 
results in [%] 

DTW City-block metric, window size (W) = 10 

K Screen Coordinates Real World Coordinates 

1 94.11 95.71 

3 88.93 91.43 

5 85.71 90.00 

7 87.14 90.00 

9 85.71 88.57 



 An Approach to Gesture Recognition with Skeletal Data Using Dy namic Time Warping and  5 

Nearest Neighbour Classifier 

Copyright © 2016 MECS                                                                 I.J. Intelligent Systems and Applications, 2016, 6, 1-8 

In all the cases, the usage of the real world coordinates 

led to better results. Opposite to the first dataset, the best 

result of MSR Action database is obtained with 1-nearest 

neighbour classifier (95.71% correctly recognised 

gestures) and the precision of the classificat ion results 

tend to decrease while increasing the K in KNN. The 

confusion matrix for the best performance is presented in 

Table 5 for Screen Coordinates and Table 6 for Real 

World Coordinates. 

Table 5. Confusion matrix for 10-fold cross-validation tests on MSR Action Screen Coordinates dataset; K = 1 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total 
Recognition 
rate, in [%] 

High Arm Wave - 1 23 3          1         27 85 

Horizontal Arm Wave - 2  25 1 1                 27 93 

Hammer - 3   27                  27 100 

Hand Catch - 4   1 20 3  1     1         26 77 

Forward Punch - 5     25 1               26 96 

High Throw - 6    2  21     1       2   26 81 

Draw X - 7       25 1 1    1        28 89 

Draw Tick - 8        30             30 100 

Draw Circle - 9 1        29            30 97 

Clap Front - 10          30           30 100 

Two Hand Wave - 11      2    1 27          30 90 

Side Boxing - 12            30         30 100 

Bend - 13       1     1 26       2 30 87 

Front Kick - 14             1 28       29 97 

Side Kick - 15               19      19 100 

Jogging - 16                29     29 100 

Tennis Swing - 17            1     27 1   29 93 

Tennis Serve - 18      1      1      27   29 93 

Golf Swing - 19                   29  29 100 

Pick up And Throw - 20             1       28 29 97 

Table 6. Confusion matrix for 10-fold cross-validation on MSR Action Real World Coordinates dataset; K = 1 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total 
Recognition 
rate, in [%] 

High Arm Wave - 1 23 3          1         27 85 

Horizontal Arm Wave - 2  25 1  1                27 93 

Hammer - 3   27                  27 100 

Hand Catch - 4   1 22 1  1     1         26 85 

Forward Punch - 5     26                26 100 

High Throw - 6    1  25               26 96 

Draw X - 7       25 1 1    1        28 89 

Draw Tick - 8        30             30 100 

Draw Circle - 9 1        29            30 97 

Clap Front - 10          30           30 100 

Two Hand Wave - 11          1 29          30 97 

Side Boxing - 12            30         30 100 

Bend - 13       1     1 27       1 30 90 

Front Kick - 14             1 28       29 97 

Side Kick - 15               19      19 100 

Jogging - 16                29     29 100 

Tennis Swing - 17            1     27 1   29 93 

Tennis Serve - 18            1      28   29 97 

Golf Swing - 19                   29  29 100 

Pick up And Throw - 20             1       28 29 97 

 

It is worth noting that those two datasets contain 

informat ion of the same gestures executions stored in a 

different way, as the confusion matrices obtained hold a 

great similarity with slight improvements in the second 

one. Both present a high recognition rate, reaching 100% 

in many cases. High arm wave is found similar to 

horizontal arm wave in three out of the 27 executions.  

Hand catch is confused with other four act ions: three 

times in particular with forward punch in screen 

coordinates and once in real world coordinates. 

Other works [31, 32] have been using raw depth maps 

from these databases. In [31], an action graph was used to 
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model each action. It was constructed using the concept 

of bag of points. They perform experiments splitting the 

whole dataset into three different sets containing eight 

gestures each (some were repeated) and three tests were 

performed: (1) using 1/3 of the samples as training set, (2) 

having 2/3 of the samples as training, and (3) doing a 

cross-subject test using 1, 3, 5, 7, 9 subjects as training 

and 2, 4, 6, 8, 10 as testing. Results are given in Table 7.  

In [32], a novel features and actionlet ensemble model 

for human gestures recognitions from depth map were 

proposed. The results for the average of the 252 possible 

5-5 cross-subject tests are compared with other state-of-

the-art methods in Table 8. Cross-subject tests were also 

performed with our proposed approach using the 

following subjects for training: 1, 3, 5, 7, 9, and subjects:  

2, 4, 6, 8, and 10 for testing. The approach correctly  

recognised 68% of gestures with K = 1, and 68.4% with 

K = 9. The proposed method using city-block metric,  

W = 10 and K = 9 in  KNN y ielded better results than 

previously obtained with DTW by 14.4%. The obtained 

results are not better than state-of-the-art approaches, e.g., 

the ones using actionlets [32], however, some of the 

proposed improvements led to better results with DTW 

than the results with DTW reported in the literature.  

Table 7. Results on MSR Action dataset [31] (in [%]) 

 Test 1 Test 2 Test 3 

Set 1 89.5 93.4 72.9 

Set 2 89.0 92.9 71.9 

Set 3 96.3 96.3 79.2 

Overall 91.6 94.2 74.7 

Table 8. Cross-subject tests with state-of-the-art methods on MSR 
Action dataset; results in [%] 

Method Recognition rate 

Recurrent Neural Network [33] 42.5 

Dynamic Temporal Warping [34] 54.0 

Hidden Markov Model [35] 63.0 

Action Graph on Bag of 3D Points [31] 74.7 

Actionlet Ensemble [32] 88.2 

Proposed Approach, K=1 68.0 

Proposed Approach, K=9 68.4 

 

V.  CONCLUSION 

Recent development of new sensors that allow tracking  

important parts of the human body resulted in  

proliferation of different approaches to gesture 

recognition and their practical applications. Therefore,  

any improvement of existing solutions towards better 

recognition accuracy or shortening recognition time is 

very important. In this paper, we proposed several 

improvements: reducing processed number of joints, 

investigating the K in KNN, or W in DTW. The proposed 

approach turned out to be better than some of the 

compared state-of-the-art techniques.   

In future works, we plan to reduce training sets 

choosing appropriate classes’ representatives in order to 

reduce the recognition time. Here, proximity matrices that 

contain DTW distances could be in use [1]. Another 

research direction could involve comparing accuracy of 

the presented approach with results of other classifiers, 

such as neural networks or support vector machines [36]. 
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