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Abstract—Modeling the uncertain aspect of the world in 

ontologies is attracting a lot of interests to ontologies 

builders especially in the World Wide Web community. 

This paper defines a way of handling uncertainty in 

description logic ontologies without remodeling existing 

ontologies or altering the syntax of existing ontologies 

modeling languages. We show that the source of 

vagueness in an ontology is from vague attributes and 

vague roles. Therefore, to have a clear separation 

between crisp concepts and vague concepts, the set of 

roles R is split into two distinct sets     and 

   representing the set of crisp roles and the set of vague 

roles respectively. Similarly, the set of attributes A was 

split into two distinct sets    and    representing the set 

of crisp attributes and the set of vague attributes 

respectively. Concepts are therefore clearly classified as 

crisp concepts or vague concepts depending on whether 

vague attributes or vague roles are used in its 

conceptualization or not. The concept of rough set 

introduced by Pawlak is used to measure the degree of 

satisfiability of vague concepts as well as vague roles. In 

this approach, the cost of reengineering existing 

ontologies in order to cope with reasoning over the 

uncertain aspects of the world is minimal. 

 
Index Terms—Ontologies, Uncertainty, Rough set, 

Approximation. 

 

I.  INTRODUCTION 

Ontologies are explicit representations of 

conceptualizations and are widely used in modelling real 

world domains by defining their shared vocabularies such 

that they can be understood without ambiguity by both 

humans and machines. Classical ontologies contain only 

concepts and relations that describe asserted facts about 

the real world and therefore, lack consistent support for 

uncertainty and imprecision. As a result of that, they 

cannot handle incomplete or partial knowledge about an 

application domain. This is because most languages used 

in modelling ontologies nowadays are derived from 

Description logics(DL) which are crisp logic. In 

modelling the real world using DL, all the knowledge or 

partial knowledge of the domain is captured and 

represented in a crisp manner. According to [1], in doing 

that, the obtained ontology is not uncertain in nature, but 

rather presents an a priori model of the world, which has 

to be taken as true by its users. Such representations 

ignore one of the main characteristics of the real world 

which is vagueness. Vagueness, which could be caused 

by information incompleteness, randomness, limitations 

of measuring instruments, etc. are pervasive in many 

complicated problems in economics, engineering, 

environment, social science, medical science etc., that 

involve data which are not always crisp[2]. However, for 

ontology to reflect the real world domain, its uncertain 

aspects should be modelled as they are, and allow 

reasoning under uncertainty rather than interpreting its 

contents in a restrictive manner. As pointed out in [1], 

such interpretation in a restrictive manner leads to storing 

of erroneous pieces of information. For example, the 

answer to the question ―Is Aristotle the greatest 

philosopher the world has ever had?‖ should depend on 

perceptions rather than being an absolute true or false 

decision. The lack of traditional ontologies formalisms 

including DL to support the representation of 

uncertainties and imprecision limits them in handling 

incomplete, partial knowledge or vagueness about an 

application domain. 

Modelling uncertainty in ontologies has become a 

concern to ontologies builders, especially in the WWW 

community. The need of modelling and reasoning  with 

uncertainty has been found in many different Semantic 

Web contexts  such as matchmaking in Web services, 

classification of genes in bioinformatics,  multimedia 

annotation and ontology learning [3]. In their effort to 

handle uncertainty in the web, the W3C founded the 

Uncertainty Reasoning for the World Wide Web 

Incubator Group. In their final report, they presented 

requirements for better defining the challenge of 

reasoning with and representing the uncertain information 

available through the WWW and related WWW 

technologies[4]. This paper presents an approach of 

representing and interpreting uncertainty in DL 

ontologies based on Pawlak rough set[5]. Rough set is a 

mathematical tool for processing information with 

uncertainty and vagueness and is also a useful soft 
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computing tool in intelligence computing[6]. Rough set 

has been proposed for a variety of computational 

applications, especially machine learning, knowledge 

discovery, data mining, expert systems, approximate 

reasoning, and pattern recognition [7][8][9][10] [11] [12]. 

More specifically, this paper shows that by classifying the 

set of attributes of an ontology into the set of crisp 

attributes and the set of vague attributes, and also 

classifies the set of relations of the same ontology into the 

set of crisp and vague relations, one can easily detect the 

uncertain aspect of the ontology and approximate them 

using rough set. The rest of this paper is organized as 

follow: in the next section, the basic notions of 

description logics as ontologies language and rough set 

are reviewed. Section 3 presents our approach for 

representing uncertainty in ontologies. In section 4, the 

instantiation of vague concepts and vague relations is 

defined. section 5 discusses some issues related to the 

representation of uncertainty in an expressive description 

logic. Section 6 presents some related work and finally, 

section 7 concludes the paper 

 

II.  PRELIMINARIES 

In this section, we present the basic notion of 

description logics and establish the connection between 

DL and the web ontology language (OWL) as DL 

constitutes the formal logic of OWL DL. We also present 

an overview of rough set as defined by Pawlak 

A.  Description Logics 

Description logics are a family of knowledge 

representation formalisms which can be used to represent 

the terminological knowledge of an application domain in 

a structured and formally well-understood way. Well 

understood means that there is no ambiguity in 

interpreting the meaning of terminologies by both 

humans and machines. They are characterized by the use 

of various constructors to build complex concepts from 

simpler ones, an emphasis on the decidability of key 

reasoning tasks and by the provision of sound, complete 

and (empirically) tractable reasoning services[13]. 

Inference capability of DL makes it possible to use 

logical deduction to infer additional information from the 

facts stated explicitly in an ontology[14]. 

DL are made up of the following components: 

Instances of objects that denote singular entities in our 

domain of interest, Concepts which are collections or 

kinds of things, Attributes which describe the aspects, 

properties, features, characteristics, or parameters that 

objects can have and Relations which describe the ways 

in which concepts and individuals can be related to one 

another. It is customary to separate them into three 

groups: Assertional (ABox) axioms, Terminological 

(TBox) axioms and Relational (RBox) axioms. 

 

 ABox axioms capture knowledge about named 

individuals. For example, Father(peter) is a concepts 

assertion which asserts that peter is an instance of the 

concept Father. hasChild(Peter, Amina) is a role 

assertion which asserts that Peter is the parent of 

Amina. 

 TBox axioms describe relationships between 

concepts. For example, the general concept inclusion 

such as Mother ⊑ Parent which defines Mother as 

subsumed by the concept Parent. Fig.1 defined in 

Baader & Werner [15] shows a sample Tbox 

describing the family relationship. 

 
Woman ≡ Person  Female 

Man ≡ Person ￢Woman 

Mother ≡ Woman  hasChild.Person 

Father ≡ Man  hasChild.Person 

Grandmother ≡ Mother  hasChild.Parent 

MotherWithManyChildren≡ Mother   3 

hasChild.Person 

MotherWithoutDaughter≡ Mother  hasChild. ￢
Woman 

Fig.1.TBox with Concepts about Family Relationships 

 RBox axioms refer to properties of roles. It captures 

interdependencies between the roles of the 

considered knowledge base. For example the role 

inclusion motherOf ⊑ parentOf. 

 

An ontology is said to be satisfiable if an interpretation 

exists that satisfies all its axioms. When an ontology is 

not satisfied in any interpretation, it is said to be 

unsatisfiable or inconsistent. 

An interpretation I = (∆
I
, .

I
) consists of a set ∆

I
 called 

the domain of I, and an interpretation function
.I
 that maps 

each atomic concept A to a set A 
I ⊆ ∆

I
 , every role R to a 

binary relation R
I
, subset of  I

   I
 and each individual 

name a to an element a
I∆

I
. 

There exist several DL and they are classified based on 

the types of constructors and axioms that they allow, 

which are often a subset of the constructors in SROIQ. 

The description logic ALC is the fragment of SROIQ that 

allows no RBox axioms and only  , ⊔, ¬, ∃ and ∀ as its 

concept constructors. The extension of ALC to include 

transitively closed primitive roles is traditionally denoted 

by the letter S. This basic DL is extended in several ways. 

Some other letters used in DL names hint at a particular 

constructor, such as inverse roles I, nominals O (i.e., 

concepts having exactly one instance), qualified number 

restrictions Q, and role hierarchies H. For example, the 

DL named SHIQ is obtained from S by allowing 

additionally the role hierarchies, inverse roles and 

qualified number restrictions. The letter R most 

commonly refers to the presence of role inclusions, local 

reflexivity Self, and the universal role U, as well as the 

additional role characteristics of transitivity, symmetry, 

asymmetry, role disjointness, reflexivity, and 

irreflexivity[14]. 

Although DL have a range of applications, OWL is one 

of its main applications. OWL is based on Description 

Logics but also features additional types of extra-logical 

information such as ontology versioning information and 

annotations. Rudolph
16

. The main building blocks of 

OWL are indeed very similar to those of DL, with the 

main difference that concepts are called classes and roles 
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are called properties[14]. Large parts of OWL DL can 

indeed be considered as a syntactic variant of SROIQ. In 

many cases, it is indeed enough to translate an operator 

symbol of SROIQ into the corresponding operator name 

in OWL. 

B.  Rough Set 

Pawlak [5] defined rough set in the following way: 

Suppose we are given a set of objects U called the 

universe and an indiscernibility relation   ⊆       

representing our lack of knowledge about elements of U. 

Assume that R is an equivalence relation. Let X be a 

subset of U. We want to characterize the set X with 

respect to R. 

 

 R-lower approximation of X is defined by  

 

      * :

x U

R x R x R x X



                    (1) 

 

In other words, The lower approximation of a set X 

with respect to R is the set of all objects, which can 

be for certain classified as X with respect to R (are 

certainly X with respect to R). 

 R-upper approximation of X is defined by  

 

      * :

x U

R x R x R x X



                (2) 

 

In other words, The upper approximation of a set X 

with respect to R is the set of all objects which can 

be possibly classified as X with respect to R (are 

possibly X in view of R). 

 R-boundary region of X is defined by  

 

     *
*RRN X R X R X                       (3) 

 

In other words, the boundary region of a set X with 

respect to R is the set of all objects, which can be 

classified neither as X nor as not-X with respect to 

R. 

 

 

Fig.2. Rough Set Structure 

A Set is rough (imprecise) if it has nonempty boundary 

region; otherwise the set is crisp (precise). Fig. 2 defined 

in Pawlak[17] shows the structure of a rough set. 

 

III.  MODELING UNCERTAINTY IN ONTOLOGIES 

In this section, we provide a formal definition of 

ontology and then present our approach of modelling 

uncertainty in ontologies which is able to handle both 

crisp and the vague aspect of the world domain. In this 

technique, there is a clear separation between the 

modelling language and the representation of uncertainty 

itself. Such separation is useful in generalising the 

representation of uncertainty in ontologies regardless of 

the modelling language. It is also useful in reengineering 

existing ontologies in order to enable them to cope with 

uncertainty with minimal change. More importantly, 

without modifying the core knowledge base of ontologies. 

 

Definition 1: An ontology system is a 6-tuple O = (D, C, 

R, A, I, ∑) where   ⋃        is the domain of 

discourse of the ontology,                 is a non-

empty finite set of concepts of domain D, 

 

                     is a finite set of relations, 

                   is a finite set of attributes, 

                     is a finite set of instances and ∑ is 

the chosen ontology language. 

 

Real world is made up of crisp elements and imprecise 

elements. Imprecise here represents our lack of having a 

full knowledge of objects. It is intended to cover a variety 

of forms of incomplete knowledge, including 

incompleteness, vagueness, ambiguity, and others. 

Elements in this context refer to either attributes, which 

describes the properties of objects or relations that link 

individuals. Both attributes and relations can either be 

vague or crisp. During the conceptualization, the 

definition of concepts is performed by using attributes, 

roles and already defined concepts. Since roles and 

attributes are either crisp or imprecise, the obtained 

concepts will also be crisp or imprecise depending on the 

types of attributes and relations used in their 

conceptualization.  

To express the degree of knowledge of the domain, we 

introduce the concept of Properties Box (PBox) as part of 

the ontologies knowledge base and also extend the RBox 

to contain more information about roles instead of 

performing only role declaration. PBox and the extended 

RBox express necessary knowledge about the properties 

and relationships between individuals of the domain of 

discourse respectively. To achieve that, the PBox 

classifies the attributes into the crisps attributes and 

vague attributes such that, the set of attributes      
     where    and    represent the set of crisp and the set 

of vague attributes respectively. An attribute           
      is a crisp attribute and                 is a vague 

attribute. Similarly, the role classification of the RBox 

classifies the relations into the crisps relations and vague 
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relations such that, the set of roles           where 

   and    represent the set of crisp and the set of vague 

relations respectively. A relation                 is a 

crisp relation and                 is a vague relation. 

Fig.3 presents our modelling architecture 

An ontology is said to be of a crisp domain if     
  and      , otherwise, it is an ontology of a vague 

domain. Similarly, a concept is crisp if all roles and 

attributes used in its definitions are crisps. Vague 

elements are therefore interpreted using approximate 

techniques while taking into consideration the degree of 

available knowledge about the elements. It is worth 

noting that, crisp elements can still be interpreted in any 

classical way. 

 

Example 1: Assume a DL representation of the following 

statement ―A happy father has a child and all beings he 

cares for are healthy‖ as follow: 

 

Happy Father  ⊑ Man  hasChild.Person  careFor. 

Healthy 

 

The definition of the concept HappyFather contains a 

crisp role hasChild and a crisp concept Man. However, 

the role careFor and the attribute Healthy are vague since 

one cannot quantify them with a true or false membership 

especially when it comes to the boundary region. They 

can be classified as follow:           , hasChild    , 

and             . This makes the concept 

HappyFather vague. 

 

 

Fig.3. Ontologies of Uncertainty Modelling 

 

IV.  INTERPRETING AN ONTOLOGY OF UNCERTAINTY 

Given an ontology, an interpretation function
.I
 maps 

the concept A  C to a set A
I ⊆ ∆

I
. In classical ontologies 

interpretation, the result of such mapping returns the set 

of individual satisfying the concept A. The concept is 

said to be satisfiable if there exists an interpretation for 

which the result does not return an empty set. That is A
I 

  .
otherwise, the concept is not satisfiable. This 

interpretation assumes all concepts to be crisp. 

Consequently, if concept A is not satisfiable, then ￢A is 

satisfiable. Since ￢A
I
=∆

I 
- A

I
.  

A.  Vague Concept Approximation 

In this section, we consider the problem of 

approximating vague concepts over the set of individuals. 

Because of the vagueness in their conceptualization, such 

concepts are perceived only through some subsets of I. 

We use the rough membership to approximate them.  As 

shown in [18], a concept can be represented as attributed 

valued. We therefore construct a decision table based on 

concepts’ attributes to approximate their rough 

membership. Like any information system, an ontology 

can be represented in a tabular form as shown in table 1. 

Table columns are labelled with concepts, table rows 

labelled with instances of interest and entries of the table 

are concepts values. The function         is such 

that          , for every           represents the 

information knowledge of i with respect to c. Where 

   represents the set of values an instance i may have with 

respect to c. 

Table 1. Tabular Representation of Ontology Knowledge 

 C 

I 

c1 c2 c3 … cn 

i1 f(i1, c1) f(i1, c2) f(i1, c3) … f(i1,cn) 

i2 f(i2, c1) f(i2, c2) f(i2, c3) … f(i2,cn) 

i3 f(i3, c1) f(i3, c2) f(i3, c3) … f(i3,cn) 

…
 

…
 

…
 

…
 

…
  …
 

ik f(ik, c1) f(ik, c2) f(ik, c3) … f(ik,cn) 

Table 2. Tabular Representation of a Concept Knowledge Based on Its 

Attributes 

 B 

I 

b1 b2 b3 … bn 

i1 f(i1, b1) f(i1, b2) f(i1, b3) … f(i1,bn) 

i2 f(i2, b1) f(i2, b2) f(i2, b3) … f(i2,bn) 

i3 f(i3, b1) f(i3, b2) f(i3, b3) … f(i3,bn) 

…
 

…
 

…
 

…
 

.... 

…
 

ik f(ik, b1) f(ik, b2) f(ik, b3) … f(ik, bn) 

 

Furthermore, since it was proved in [18] that a concept 

can be defined by using attributes and relations with no 

regards to previously defined concepts, we can therefore 

define an attributed table for a specific vague concept say 

c, based on the set of attribute used in it definition as 

shown in table 2. Let B be a subset of the set of attributes 

A such that, the elements of B are the attributes used in 
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the expanded definition of c. let         be a 

function defined such that          , for every 

          represents the information knowledge of i 

with respect to a. 

From table 2, we can now determine the rough 

approximation of a concept. The starting point of rough 

approximation is the indiscernibility relation, which is 

generated by information about objects of interest. 

Elements that exhibit the same information are 

indiscernible (similar) and form blocks that can be 

understood as elementary granules of knowledge about 

the universe. The indiscernibility relation expresses the 

fact that due to the lack of knowledge we are unable to 

discern some objects employing the available information. 

Therefore, we are unable to deal with a single object. 

Nevertheless, we have to consider clusters of 

indiscernible objects.  

Given an ontology O, two individuals x, y   I are said 

to be ci-indiscernible (indiscernible by the concept ci  C) 

if and only if x, y    
 . Since each concept can be 

uniquely defined from union or intersection of the most 

general concept, the set of attributes, the set of relations 

and constructors, we can define the concepts of 

indiscernible objects as follow: 

 

Definition 2: Let O = (D, C, R, A, I, ∑ ) be an ontology 

and let c   C be any concept of O and let B be the subset 

of A    such that the elements of B are the attributes of 

the expanded definition of c. Two individuals x, y   I are 

said to be c-indiscernible (indiscernible by the concept c) 

if and only if f(x, a)=f(y, a) for every a B. where f(x, a) 

denotes the value of the interpretation of x with respect to 

a. 

Obviously, every concept c   C induces a unique 

indiscernibility relation denoted by IND(c), which is an 

equivalence relation. The partition of I induced by IND(c) 

in ontology O is denoted by I/c and the equivalence class 

in the partition containing     , denoted by     . Since 

the vague concept c cannot be characterised by using 

available knowledge, two crisps set are associated to c 

called its lower and upper approximation. 

 

- The c-lower approximation of X, denoted by       

where X is a given subset of I is defined as  

 

                         ⊆   .             (4) 

 

In other words, the c-lower approximation of 

concept c is the set of all individuals    , which 

can be for certain classified as  instances of c
I
 

- The c-upper approximation of X, denoted by       

where X is a given subset of I is defined as 

 

                              .        (5) 

 

In other words, the c-upper approximation of 

concept c is the set of all individuals    , which 

can be possibly classified as instances of c
I
 

- The c-boundary region of X is the set of all 

individuals    , which can be classified neither as 

instances of c
I
 nor as instances of ￢c

I 
by employing 

available knowledge. 

 

The accuracy of approximation of X with respect to c 

is defined as 

 

      
       

       
                                (6) 

 

where |X| denotes the cardinality of X. whenever the 

accuracy of approximation        , then, the concept 

is crisp. 

 

Example 2: Assuming the following concept definition: 

 

HealthyPerson ⊑ Person    MentallyStable   
 EmotionallyStable   MedicallySound 

 

Where Person in this context is assumed to be the most 

general concept and MentallyStable, EmotionallyStable, 

MedicallySound are vague properties 

Let the set of individuals I={A,B,C,D,E,F,G, H,I,J, 

K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y} and the set of 

attributes A={MentallyStable, EmotionallyStable, 

MedicallySound } 

Let Vx denotes the set of attribute values for attribute 

x,defined as follow: 

 

VMentallyStable={High, Low, Mile}  

VEmotionallyStable={High, Low, Mile} 

VMedicallySound={High, Low, Mile}  

VHealthyPerson={High, Low} 

 

Table 3. Decision Table of HealthyPerson 

 

Individu

als 

Properties  

HealthyP

erson Mentally

Stable 

Emotionall

yStable 

MedicallyS

ound 

A Low Low Low Low 

B Low Low Low Low 

C Low Mild Low Low 

D Low Mild Low Low 

E Low Mild Low Low 

F Low Low Low Low 

G Mild Mild Low Low 

H Mild High Mild High 

I Mild High Mild Low 

J Low High Mild Low 

K High Low Low Low 

L High Mild Low Low 

M Mild Mild Mild High 

N Mild High High High 

O Low High High Low 

P Mild Low Low Low 

Q High Low Low Low 

R High Low Mild Low 

S High Low High High 

T Low Low High Low 

U Mild Low Low Low 

V Mild Low Low Low 

W Mild Low Mild Low 

X Mild Low Mild Low 

Y Low Low Mild Low 
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Assuming that, based on available knowledge which 

does not provide enough information to classify boundary 

regions individuals, the decision table of Table3 is 

constructed 

Since the concept Person is crisp and at the same time 

is the most general concept, all individuals     must be 

instances of Person. Therefore, in the approximation of 

HealthyPerson over I, there is no need of bothering about 

the satisfiability of person. 

Let f(HealthyPerson: High)={H, M, N, S} be the 

approximation of ―HealthyPerson” when it 

corresponding attribute value is “ High” over the set of 

individuals, which should be denoted in the remaining of 

this example as f for short. 

The set of equivalent classes can be defined based on 

the possible properties’ values as follow: 

 

[MentallyStable: Low; EmotionallyStable: Low; 

MedicallySound: Low] = {A, B, F} 

[MentallyStable: Low; EmotionallyStable: Mild; 

MedicallySound: Low] = {C, D, E} 

[MentallyStable: Mild; EmotionallyStable: Mild; 

MedicallySound: Low] = {G} 

[MentallyStable: Mild; EmotionallyStable: High; 

MedicallySound: Mild] = {H, I} 

[MentallyStable: Low; EmotionallyStable: High; 

MedicallySound: Mild] = {J} 

[MentallyStable: High; EmotionallyStable: Low; 

MedicallySound: Low] = {K, Q} 

[MentallyStable: High; EmotionallyStable: Mild; 

MedicallySound: Low] = {L} 

[MentallyStable: Mild; EmotionallyStable: Mild; 

MedicallySound: Mild] = {M} 

[MentallyStable: Low; EmotionallyStable: High; 

MedicallySound: High] = {O} 

[MentallyStable: Mild; EmotionallyStable: High; 

MedicallySound: High] = {N} 

[MentallyStable: Mild; EmotionallyStable: Low; 

MedicallySound: Low] = {U, P, V} 

[MentallyStable: High; EmotionallyStable: Low; 

MedicallySound: Mild] = {R} 

[MentallyStable: High; EmotionallyStable: Low; 

MedicallySound: High] = {S} 

[MentallyStable: Low; EmotionallyStable: Low; 

MedicallySound: High] = {T} 

[MentallyStable: Mild; EmotionallyStable: Low; 

MedicallySound: Mild] = {W, X} 

[MentallyStable: Low; EmotionallyStable: Low; 

MedicallySound: Mild] = {Y} 

 

Consequently, the set of partitions of I with respect to 

HealthyPerson is defined as follow: 

 

I/               ={{A, B, F}, {C,D,E}, {G}, {H,I}, 

{J}, {K,Q}, {L}, {M}, {O}, {N}, {U,P,V}, {R}, {S}, 

{T}, {W,X}, {Y}} 

Finally, 

                   ={{M}{N}{S}} 

                   ={{H,I},{M},{N},{S}} 

Because the lower approximation is not empty, one can 

conclude that,              is absolutely satisfiable. 

The accuracy of approximation of f with respect to the 

concept HealthyPerson  is 

 

                  
 

 
 =0.6                    (7) 

 

B.  Instantiating Uncertain Individuals 

Uncertain individuals are approximated as absolute or 

rough instance of a concept. The classification depends 

on whether the individual belongs to the lower 

approximation or boundary region respectively. By 

introducing the notion of absolute and rough instances, 

one clearly shows the degree of satisfiability of vague 

concepts or properties. Given a concept     and an 

individual    , the degree of membership of i with 

respect to a rough interpretation of c denoted by   
     is 

a value in the  range[0,1] defined as 

 

  
     

         

       
                             (8) 

 

Where X is a given subset of I,      the partition of X 

containing i and  |X| denotes the cardinality of X. 

For example, by using the partition of equivalent 

classes I/HealthyPerson obtained in example 2, we can 

compute the degree of certainty of individuals f 

={H ,M,N,S} classified as instances of HealthyPerson as 

follow: 

 

           
                 

                  

       
 

 

 
          (9) 

 

           
                 

                

     
           (10) 

 

           
                 

                

     
           (11) 

 

           
                 

                

     
           (12) 

 

Consequently, H is a rough instance of HealthyPerson 

while M, N and S are absolute instances of HealthyPerson. 

C.  Vague Relations Interpretation 

In this section, we consider the problem of 

approximating vague relations between sets of 

individuals. The conception of rough relations as defined 

by Pawlak
19

 cannot be applied directly in the case of 

ontologies because relations in rough set are assumed to 

be equivalence relations which is not always the case in 

ontologies. It is known that for a relation R to be an 

equivalence relation, it must be reflexive, symmetric and 

transitive. For example, assuming a relation motherOf 

(x,y) which specifies that, x is a mother of y. It is obvious 

that reflexivity e.g. MotherOf(peter, Peter), symmetric 

e.g. MotherOf(Mary, Peter) → MotherOf(Peter, Mary) 

and transitivity e.g.  MotherOf(Amina, Mary) and 
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MotherOf(Mary, Peter)→ MotherOf(Amina, Peter) will 

not hold in this context. 

Because of this limitation, we extend the general 

binary relation based rough set [6][20][21] to derive an 

approximation of ontological rough relations. The general 

binary relation based rough set is defined based on 

general binary relation. 

 

Definition 3: Let U be the universe and let R⊆U×U be a 

general binary relation on the universe. For any x ∈ U, 

denote                        then       

consists of pairs (x,y) such that y is called the successor 

neighbourhood of x with respect to R . For any y ∈ U, 

denote                        then       

consists of pairs (x,y) such that x is called the predecessor 

neighbourhood of y with respect to R. 

In other words, given x ∈  U, the successor 

neighbourhood       is consisted of all pairs (x, y) which 

satisfy x R y and, given y ∈  U the predecessor 

neighbourhood      is the set of all pairs (x, y) which 

satisfy xRy. They can both be treated as classes induced 

by the general binary relation R. We can now define an 

approximation of rough ontological relations based on 

rough set theory. 

 

Definition 4: Let O be an ontology and let P and Q be 

two approximations over I, and let r∈ R be any vague 

relation of R. For any X ⊆I×I, The X-lower 

approximation and the X-upper approximation of r with 

respect to     are defined respectively as follows. 

 

                       ⊆               (13) 

 

                                     (14) 

 

The accuracy of approximation of X with respect to r is 

defined as 

 

      
       

       
                             (15) 

 

Example 3: Given I={A,B,C,D,E,F,G,H,I,J,K,L,M,N, 

O,P,Q,R,S,T,U,V,W,X,Y}, assume two arbitrary 

approximations P={A,B,C,E} and Q={B,C,D,E,F} over I. 

let X={(A,B),(A,D),(C,D),(E,D),(E,F)} and let 

⊆P×Q={(A,B),(A,D),(B,C),(B,E),(C,D),(C,E),(E,D),(EF)} 

then, the partition defined by the successors 

neighbourhood with respect to r are the following: 

 

     ={(A,B),(A,D)} 

     ={(B,C),(B,E)} 

     ={(C,D),(C,E)} 

     ={(E,D),(E,F)} 

 

Consequently, the set of partitions of r with respect to 

   is defined as follows: 

 

r/  ={{(A,B),(A,D)},{(B,C),(B,E)},{(C,D),(C,E)},{(E,D)

,(E,F)}} 

 

Therefore, 

 

                                                  
                                    

 

The accuracy of approximation of X with respect to r is  

 

      
 

 
 =0.67                          (16) 

 

D.  Vague Relation Membership 

A pair (x, y) can be approximated as absolute or rough 

member of a relation r depending on whether the (x, y) 

belongs to the lower approximation or boundary region of 

r respectively. The degree of membership of (x, y) with 

respect to r denoted by   
        is defined as 

 

  
     

      
         

       
                         (17) 

 

Where X is a given subset of I, |X| denotes the 

cardinality of X and       the partition defined by the r-

successors of x. 

From Example 3, the following membership value can 

be defined 

 

  
     

      
                                               

               
    

                                                                                       (18) 

 

  
     

      
                                               

               
 

 

 
  

                                                                                       (19) 
 

E.  Vague Relations and Vague Concepts 

The approximation of vague relation r as defined in 

section 4.3. assumes the approximations P and Q over I 

to be crisp approximations. If P and Q are approximation 

of vague concepts, we should have obtained P-upper 

approximation and P-lower approximation for P and Q-

upper approximation and Q-lower approximation for Q. 

In that case, for every pair          , four scenarios 

are possible: 

 

Case1:                      

Case2:                   

Case3:                   

Case4:                

 

In the first three cases, one cannot talk of lower 

approximation of r since for each of them, either   
      or        .  That is the instantiation of at least 

one of the individuals of the pair       is not certain. 

Because of that, it is not possible to establish a certain 

relation, that is   , between x and y  when the instantiation 

of individuals x and y  with respect to  P and Q  

respectively is not certain. 

In case 4, since               , we are certain of 

the instantiation of individuals x and y with respect to  P 

and Q  respectively. Therefore, a lower approximation of 
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r can be defined. The lower and the upper approximation 

of r can now be reformulated as follow: 

 

Definition 5: Let O be an ontology and let P and Q be 

two approximations over I, and let r∈ R be any vague 

relation of R. For any X ⊆I×I, The X-lower 

approximation and the X-upper approximation of r are 

defined respectively as follows: 

 

                               ⊆      (20) 

 

                                       (21) 

 

Where       and       denote the A-lower and A-

upper approximation of P for some A⊆I such that dom(X) 

⊆A.       and       denote the B-lower and B-upper 

approximation of Q for some B⊆I such that Ran(X) ⊆B. 

The rough membership of a pair (x, y) now should take 

into consideration the degree that x belongs to P given A, 

that is   
    , the degree that y belongs to Q given B, that 

is   
    and the degree that (x, y) belongs to X given r 

denoted by   
       . Thus, the degree of membership of 

(x, y) denoted by         is defined as 

 

          
          

     
          

         (22) 

 

Example 4: Assuming the following definition: 

HappyPerson⊑ HealthyPerson    CareFor.Healthy and 

the set of individuals I={A,B,C,D,E,F,G,H,I,J,K,L,M,N,  

O,P,Q,R,S,T,U,V,W,X,Y} where HealthyPerson is a vague 

concept approximated as shown in example 2. That is, 

                 ={{H, I},{M}, {N}, {S}} and 

                  ={{M},{N},{S}} where 

f(HealthyPerson: High)={ H,M,N,S}. 

Suppose in the similar way, the vague concept Healthy 

is approximated to            = {{B}, {D, E}} and 

          = {{B}, {D, E}, {A, F}} where h(Healty) 

={B, D, E, F} 

The approximation of the concept HappyPerson is 

resumed to the approximation of the relation CareFor 

over     such that 

 

                                   

            

 

Let g⊆     ={(H,A),(H,B),(I,D),(I,E),(M,E),(N,F)} 

and let CareFor={(H,A),(I,D),(I,E),(M,E)} then, the 

partitions defined by the successors neighbourhood with 

respect to g are the following: 

 

     ={(H,A),(H,B)} 

     ={(I,D),(I,E)} 

     ={(M,E)} 

     ={(N,F)} 

 

Consequently, the set of partitions of g with respect to 

   is defined as follows: 

 

g/  ={{(H,A),(H,B)},{(I,D),(I,E)},{(M,E)},{(N,F) }} 

Therefore, 

 

            

                                       
                      

 

The degree of membership, 

 

  (     )             
                   

     
(     )   

          
                                       (23) 

 

where 

 

           
                 

                  

       
 

 

 
           (24) 

 

          
           

                  

       
 

 

 
                  (25) 

 

  
     

        
                                         

               
 

 

 
  

                                                                                       (26) 

 

thus, 

 

          
 

 
   

 

 
    

 

 
 

 

 
                  (27) 

 

Finally, the approximation of HappyPerson, that is 

f(HappyPerson)=dom(g(careFor)) 

 

                                 
                                     

 

The degree of membership                 
 

 
. The 

degree of membership of other individuals can be 

computed similarly. 

 

V. DISCUSSION 

The key features of DL ontologies are the richness of 

the available constructors and their inference capability. 

As pointed out in Keet
22

, it would be a severe under-

usage of DL knowledge bases if one only were to deal 

with rough ontology by copying the Pawlak’s information 

system essentials without taking into consideration the 

richness of DL constructors as well as the flexibility of 

how to represent ontologies elements. For example, 

consider the definition of a vague concept HappyFather 

as follow: HappyFather ⊑ Man  hasChild.Person 

 careFor.Healthy where careFor and Healthy are 

vague role and vague attribute respectively. Because of 

the uses of the constructors ∀  and ∃ , this definition 

cannot be interpreted in the standard Pawlak conception 

of information system. However, for the universal and 

existential quantification (∀ ∃) as well as the number 

restrictions (   ), their rough interpretation can be easily 

defined. Let r be a vague relation, C a given concept and 

 ⊆     then, 
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- If ∀        (     )          
   then ∀    is 

satisfiable 

- If ∀        (     )             then ∀    is 

roughly satisfiable 

- If  ∃        (     )                  
   then 

∃    is satisfiable 

- If ∃        (     )                    then 

∃    is roughly satisfiable 

- If    (     )    where      denotes the cardinality 

of h, then       is satisfiable 

- If    (     )    and    (     )   then both 

     and       are roughly satisfiable 

- If   (     )    then      is satisfiable 

 

A general solution to this limitations on rough 

ontology based on Pawlak rough set is to define  a rough 

interpretation of all constructors of an expressive DL as 

well as defining a rough tableau reasoning procedure. 

 

VI.  RELATED WORK 

Several techniques of handling uncertainty in 

ontologies have been proposed. A good survey of early 

works in that direction is presented [3]. Although some 

techniques based on rough set have been proposed, most 

techniques are based on probability and the fuzzy logic. 

They differ mostly on the ontological language 

considered, the supported forms of fuzzy knowledge, and 

the underlying fuzzy reasoning formalism. 

[22] augments SROIQ(D) and their application 

infrastructures together with rough set. The author shows 

that rough concepts can be dealt with in the mapping 

layer that links the concepts in the ontology to queries 

over the data source. He experimented his approach with 

rough concepts and vague instances using the HGT 

ontology with the HGT-DB database and septic patients. 

[23] is the same as [24]  except that the language 

considered is OWL2. 

A probabilistic generalization of RDF, which allows 

for representing terminological probabilistic knowledge 

about classes and assertional probabilistic knowledge 

about properties of individuals was presented in[24]. The 

authors provide a technique for assertional probabilistic 

inference in acyclic probabilistic RDF theory, which is 

based on the notion of logical entailment in probabilistic 

logic, coupled with local probabilistic semantics.  

[25] suggested an extension of the OWL called PR-

OWL, that provides a consistent framework for building 

probabilistic ontologies. The probabilistic semantics of 

PR-OWL is based on multi-entity Bayesian networks. 

PR-OWL combines the expressive power of OWL with 

the flexibility and inferential power of Bayesian logic. 

BayesOWL [26] is a probabilistic generalization of 

OWL which is based on standard Bayesian networks. 

BayesOWL is used to quantify the degree of overlap or 

inclusion between two concepts. It provides a set of rules 

and procedures for the direct translation of an OWL 

ontology into a Bayesian network, and it also provides a 

method for incorporating available probability constraints 

when constructing the Bayesian network. The generated 

Bayesian network preserves the semantics of the original 

ontology and is consistent with all the given probability 

constraints. 

OntoBayes [27] is an ontology-driven model, which 

integrates Bayesian networks (BN) into the OWL to 

preserve the advantages of both. It defines additional 

OWL classes which can be used to markup probabilities 

and dependencies in OWL files. From the perspective of 

ontologies, the OntoBayes model preserves the ability to 

express meaningful knowledge in very large complex 

domains and extent ontologies to probability annotated 

OWL to facilitate meaningful knowledge representation 

in uncertain systems. From the perspective of 

probabilistic modelling, the model takes the advantage of 

powerful knowledge representation ability from 

ontologies, to scale up the ability to do uncertain 

reasoning. 

Pronto[28][29] is a non-monotonic probabilistic 

reasoner for expressive DL developed in order to perform 

a probabilistic reasoning in the semantic web. Pronto 

reason about uncertainty in OWL ontologies by 

establishing the probabilistic relationships between OWL 

classes and probabilistic relationships between an OWL 

class and an individual.  One of the principal 

requirements for pronto is that the uncertainty could be 

introduced into OWL ontologies and that existing OWL 

reasoning services should be retained. To meet that 

requirement, Pronto is designed on top of the OWL 

reasoner to provide routines for higher level probabilistic 

reasoning procedures. 

A fuzzy extensions of an expressive classical DL SHIN 

which improves the knowledge expressiveness of ALC 

by allowing constructors including number restriction, 

inverse role, transitive role, and role hierarchy was 

presented in [30]. The authors provide a tableaux calculus 

for fuzzy SHIN without fuzzy general concept inclusions. 

Its semantics is based on Zadeh logic. 

FuzzyDL [31] is an expressive is a DL reasoner 

supporting fuzzy logic reasoning. The reasoning 

algorithm uses a combination of a tableaux algorithm and 

a Mixed-integer linear programming (MILP). fuzzyDL 

extends the classical DL SHIF(D) to the fuzzy case. But 

in addition to the constructs of SHIF(D) it allows some 

new concepts constructs such as weighted concepts (n C), 

weighted sum concepts (n1C1 + · · · + nkCk) and threshold 

concepts (C[  n]) and (C[  n]) where C is a concept and 

n the weight. The degrees of the fuzzy axioms may not 

only be numerical constants, but also variables, thus 

being able to deal with unknown degrees of truth. The 

most interesting feature of fuzzyDL is the expressivity of 

the representation language. 

An algorithm to perform a query-specific reasoning 

method for inconsistent and uncertain ontologies without 

revising the original ontologies was proposed in [32]. 

Their reasoning method adopts a selection function, 

which is capable of selecting elements related to a 

specific query. Thus, the elements necessary for the 

reasoning could be obtained fast and the query results 
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could be returned efficiently.  Apart from the true or false 

answer, the results of the query achieved by their method 

also include the specific reasoning route (path) and 

certainty degree of each answer. In this way, the user may 

obtain more useful information to facilitate his selection 

of the most credible query result according to the 

certainty degree of each result. 

An extension of description logics using possibilistic 

logics to reason with inconsistent and uncertain 

knowledge was proposed in [33]. The authors define the 

semantics and syntax of possibilistic description logics. 

The authors also define two inference services in 

possibilistic description logics named possibilistic 

inference and a variation, named linear order inference. 

The algorithms for possibilistic inference of the proposed 

logics is independent of DL reasoner.  

An approach of addressing the problem of representing 

uncertainty based on the Dempster–Shafer theory was 

proposed in [1]. The authors modelled a Dempster-Shafer 

upper level ontology that can be merged with any specific 

domain ontology and to instantiate it in an uncertain 

manner. To reason about the uncertain objects contained 

in the ontology, the authors implement a Java application 

based on Jena framework. The Jena framework is a tool 

to retrieve the instances associated to each individual 

uncertain concept, and the Dempster-Shafer information 

collected. This information is then transmitted to a 

common basic Dempster-Shafer library which then 

performs calculations in the Dempster-Shafer theory. 

Finally, decision criteria can be applied to extract the 

chosen hypothesis, either based on the maximum of 

plausibility or belief function or either on probability 

criteria, etc. 

A tableaux algorithm for computing the inconsistency 

degree of a knowledge base in possibilistic DL ALCIR+, 

which extends possibilistic DL ALC with inverse roles 

and transitive roles was proposed in [34]. The authors 

proposed a blocking condition to ensure the termination 

of their algorithm.  

 

VII.  CONCLUSION 

This paper has presented an approach of modeling 

uncertainty in ontologies as a result of the shortcoming of 

classical ontologies not being able to represent vague or 

incomplete knowledge of an application domain. Since 

the source of vagueness in ontologies is from vague 

attributes and vague relations, concepts are therefore 

clearly classified as crisp or vague concepts depending on 

whether  vague attributes or vague relations are  used in 

their conceptualization or not. The approximation of the 

degree of instance of individuals with respect to a given 

concept or relation is therefore evaluated based on the 

rough membership as defined in Pawlak rough set. 

Subsequent works look into achieving a satisfiability 

reasoning of complex construct of expressive description 

logic language. This will be based on providing an 

extension of the tableau-based algorithm with a rough 

interpretation of various constructors defined in SROIQ 

which is an expressive description logics in which the 

core logic of OWL is based upon. 
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