
I.J. Intelligent Systems and Applications, 2016, 3, 26-33 
Published Online March 2016 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2016.03.03 

Copyright © 2016 MECS                                                             I.J. Intelligent Systems and Applications, 2016, 3, 26-33 

Evaluation of Interest Point Detectors in Presence 

of Noise 
 

Adrian Ziomek 
Department of Computer and Control Engineering, Rzeszow University of Technology 

Wincentego Pola 2, 35-959 Rzeszow, Poland 

E-mail: adziomek@gmail.com 

 

Mariusz Oszust 
Department of Computer and Control Engineering, Rzeszow University of Technology 

Wincentego Pola 2, 35-959 Rzeszow, Poland  

E-mail: marosz@kia.prz.edu.pl 

 

 

Abstract—Detection of repeatable keypoints is often one 

of the first steps leading to obtain a solution able to 

recognise objects on images. Such objects are 

characterised by content of image patches indicated by 

keypoints. A given image patch is worth being described 

and processed in further steps, if the interest point inside 

of it can be found despite different image transformations 

or distortions. Therefore, it is important to compare 

keypoint detection techniques using image datasets that 

contain transformed or noisy images. Since most of 

detector evaluations rely on small datasets or are focused 

on a specific application of compared techniques, in this 

paper two large datasets which cover typical 

transformations, as well as challenging distortions that 

can occur while image processing, are used. The first 

dataset contains 200,000 transformed images, and it has 

been prepared for the purpose of this study. The second 

dataset, TID2013, is widely used for perceptual image 

quality assessment; it contains 3,000 images with 24 

distortions. Finally, interest point detectors are evaluated 

on four datasets, and repeatability score and time of 

detection are used as measures of their performance.  

 

Index Terms—Keypoint, interest point detectors, 

distortions, noise, repeatability, evaluation, pattern 

recognition. 
 

I.  INTRODUCTION 

Interest point detectors and descriptors, which 

characterise the detected image region, are fundamental 

concepts in many fields of computer vision and robotics, 

widely used in vision-based object recognition, tracking, 

or localisation. They have been the target of intense 

research activity in the past few years. 

An interest point (a keypoint, or a corner) is a spatial 

location in the image associated with content which can 

be useful for further processing [1-2]. In general, the 

importance of information carried by the local image 

content is application dependent, and therefore many 

different keypoint detection schemes have been proposed. 

Furthermore, there are different approaches trying to 

define what local neighbourhood should contain in order 

to be classified as the interest point. For example, often 

a brightness change or some texture is taken into 

consideration.      

The most desirable property of a detector is its ability 

to find repeatable keypoints, and repeatability is regarded 

as the one of the most important property of keypoint 

detection schemes. This means that a given image patch 

is worth being processed if the interest point inside of it 

can be found despite different image transformations, 

distortions or in presence of noise. 

The remaining part of the paper is organised as follows. 

Section II describes related works on evaluation of 

keypoint detectors. Section III gives background 

information concerning detectors. The evaluation 

framework is presented in Section IV, and performed 

experiments are in Section V.  Finally, conclusions and 

future works are presented in Section VI. 

 

II.  RELATED WORKS 

Many comparative tests have been conducted in order 

to evaluate state-of-the-art keypoint detection schemes 

[1-10]. Among measures of detectors’ performance one 

can find time of detection, repeatability, the number of 

correspondences, matching score, or the number correct 

matches. The first two measures evaluate detectors, while 

other are more focused on descriptors. 

 Many evaluations present results for combination of 

detectors with descriptors, however they admit that such 

combinations are often application dependent. For 

example, authors in [5] tested suitability of algorithms for 

fall detection systems, where orientation invariance is 

taken into account or, as in [6], compared two keypoint 

detectors and descriptors using natural outdoor 

environment images. There are also approaches testing 

suitability of keypoint detection techniques for 3D 

applications [11-13].  

Comparison of interest point detection approaches 

often rely on small datasets with seve ral image 

transformations. Therefore, this paper presents a study in 

which apart from two typically used image datasets,  



 Evaluation of Interest Point Detectors in Presence of Noise 27 

Copyright © 2016 MECS                                                             I.J. Intelligent Systems and Applications, 2016, 3, 26-33 

 
 

 
 

 

Fig.1. Detection results for evaluated detectors: FAST, KitRos, Median, SIFT, KLT, SURF, and Harris (from left to right). Interest points are denoted 
with white crosses. 

 

Fig.2. Reference images and their exemplary transformed images from Mikolajczyk and Schmid dataset [2]. The following image sequences are 
presented: Bikes, Trees, Graffiti, Wall, Bark, Boat, Leuven, UBC (from left to right; transformed images are in the second row). 

 

Fig.3. Reference images and their exemplary transformed images form Heinly et al. dataset [3]. The following image sequences are presented: Ceiling, 
Day and night, Rome, Semper, Venice (from left to right; transformed images are in the second row). 

 

Fig.4. Two reference images from TID2013 dataset [24] (in the first column) and their distorted equivalents. 

 

Fig.5. One reference image from [25] and its transformations. 

 

descriptors are evaluated on a large dataset that has been 

prepared for the purpose of this study, and a dataset used 

in the field of image quality assessment. The first dataset 

contains simple image transformations, such as rotation, 

scaling or Gaussian blur, but the large number of testing 

images allows drawing conclusions on the general 

performance of a given detector. The second dataset 

contains 24 different image distortions and their levels. It 

supports examination of compared detectors in presence 

of noise. In this work, the visible lack of such 
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investigation in the literature is addressed. Finally, seven 

widely used interest point detectors are evaluated in terms 

of detection time and repeatability score.  

 

 

Fig.6. Detection results for evaluated detectors on exemplary original image (left column) and its equivalent (right column): FAST, KitRos, Median, 
SIFT, KLT, SURF, and Harris (from top to bottom). Interest points that are present in both images are denoted with yellow crosses. 

 

III.  INTEREST POINT DETECTORS 

The representative interest point detection techniques 

are described in subsections below. Exemplary results of 

their usage can be seen on Fig.1.  

A.  Harris Detector 

In the one of the first attempts to the design of a 

keypoint detector, Moravec [14] proposed to consider an 

interest point, or a corner, to be a point that is 

characterised with a low self-similarity. The similarity is 

computed using sum of squared differences between 

pixels which belong to the considered image patch and 

other image patches in its neighbourhood. Harris and 
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Stevens in [15] used the differential of the corner score, 

and in order to address isotropy issue of Moravec’s 

approach, the score was computed taking into account 

direction of the shift. Authors pointed out that the corner 

is likely to be found if the first two eigenvalues of the 

autocorrelation matrix, characterising a given image 

patch, have large positive values. Instead of calculating 

time consuming eigenvalues, authors used the 

determinant and the trace of the matrix. 

B.  KLT Detector 

KLT (Kanade–Lucas–Tomasi) detector [16, 17] is 

similar to the Harris method. The main difference is 

change in the calculation of the corner response. In KLT, 

two gradient matrices representing two image patches are 

examined in order to determine minimal eigenvalue. This 

technique is often used for tracking, where the difference 

between compared image patches is minimised. 

C.  KitRos Detector 

In an approach proposed by Kitchen and Rosenfeld 

[18], the corner measure is calculated as a product of a 

local gradient magnitude and a rate of change of gradient 

direction.   

D.  Median Detector 

This keypoint detector is based on median filter. 

Median filtration assigns each pixel of the image a 

median value calculated taking into account its 

neighbourhood.  Median-based filter detector works by 

subtracting the filtered image from the original one. 

E.  FAST 

FAST (Features from Accelerated Segment Test) 

detector [19] uses circle of 16 pixels to classify points as 

corners. Points around the pixel are labelled from integer 

number 1 to 16 clockwise. If n adjacent pixels are darker 

or brighter than the centre pixel plus a constant, such 

location is considered an interest point. To make this 

computation faster, only first 1, 5, 9, and 13 pixels are 

checked.   

F.  SIFT 

SIFT (Scale Invariant Feature Transform) is a method 

proposed by Lowe in [20]. The algorithm is both 

keypoint detector and descriptor. The first step in 

keypoint detection is to create scale space representation 

of the image by repeatedly convolving the image with a 

Gaussian filter. Then, Difference of Gaussian (DoG) and 

interpolation over the scale-space are used in order to find 

the locations of stable scale-invariant keypoints. 

Orientation invariance is achieved by assigning to each 

point its orientation. Keypoint descriptor is formed as a 

normalised vector of 128 elements obtained from gradient 

orientations and magnitudes.  

G.  SURF 

SURF (Speeded Up Robust Features) [21] approach is 

inspired by SIFT. Like SIFT, it is also both interest point 

detector and descriptor, able to find features invariant to 

scale and rotation. For detecting keypoints, SURF uses an 

integer approximation of the determinant of Hessian blob 

detector (DoH), which can be computed with three 

integer operations using a precomputed integral image. 

Sum of Haar wavelet response around the keypoint is 

used to create the descriptor. SURF runs faster than SIFT 

due to approximations and usage of integral image 

technique. 

 

IV.  EVALUATION FRAMEWORK 

For evaluation of compared interest point detectors, we 

used two measures of their quality, i.e., repeatability and 

time of detection. In some works, (e.g., in [3, 7]), 

detectors are also coupled with descriptors and keypoint 

matching is performed or other related task, such as 

image recognition. The results of the latter tests are 

mostly application dependent and different detectors are 

recommended as being the best. Therefore, in this work 

we will focus on repeatability, since it is highly 

demanded, and time of detection, which often determines 

the practical usage of the detector.  

A.  Repeatability 

A keypoint is said to be repeatable if the distance d 

between its location and the location of the nearest 

keypoint (in pixels) that was found after introducing a 

distortion to the image is less than ε [11, 12, 19]. 

Benchmark datasets often provide homography between 

images used in order to determine expected keypoint 

location. Repeatability score is calculated as the 

percentage of points simultaneously present in two 

images, taking into account ε.  

B.  Detection Time 

Detection time, td, can be considered as the one of the 

most practical evaluation measures, since it may 

influence the choice of the detector for real-time 

applications.  

C.  Datasets 

We used four datasets for the evaluation of compared 

approaches. Mikolajczyk and Schmidt [2] and Heinly et 

al. [3] datasets are typically used for evaluation of interest 

point detectors and descriptors. The first one contains 

eight images with gradually introduced following image 

transformations (six distorted images for each reference 

image): blur, viewpoint, zooming with rotation, 

brightness change and JPEG compression. Reference 

images and exemplary distortions from this dataset can be 

seen on Fig 2. Heinly et al. dataset contains five reference 

images and from six to nine their corresponding 

transformed images. In this dataset, only rotation, 

illumination and scale changes are taken into account. 

Reference images along with some of their distorted 

images are presented on Fig. 3.  

Since these popular datasets allow evaluating only 

a limited number of distortions and the number of 

distorted images is small, we decided to use a dataset that 

contains distorted images for the purpose of perceptual 
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quality assessment [22, 23]. Tampere Image Database 

2013 [24] (TID2013) contains 25 reference images, 24 

types of distortions and five levels of distortions (3,000 

images in total). The dataset is prepared for evaluation of 

image visual quality assessment metrics; however we 

used it to evaluate keypoint detectors in presence of most 

popular distortions. Two images and their exemplary 

distorted equivalents are shown on Fig. 4. Furthermore, in 

order to provide evaluation using distortions that are not 

present in TID2013, i.e., scaling and rotation of the image, 

we have created our own large scale dataset on the basis 

of MIRFLICKR25000 dataset [25]. The original dataset 

contains 25,000 Flickr images, we have altered them 

introducing rotation (45º and 90º) and scale (x, y ={0.6, 

0.6}, x, y = {0.3, 0.3}, x, y = {1, 0.6}, x, y = {0.6, 1}). To 

the resulting dataset we also added images distorted with 

Gaussian blur (σ = 2, σ = 4). Similar transformations can 

be found in [10]. Finally, 200,000 images have been 

obtained. One reference image and its transformed 

equivalents are presented on Fig. 5. 

 

V.  EXPERIMENTS 

Experiments were performed on i5-4300U CPU, using 

JAVA implementations of keypoint detectors that are 

available in BoofCV library [26]. The choice of this 

computer vision library was motivated by the quality of 

obtained results reported in [26] and lack of comparison 

of interest point detection techniques implemented in 

JAVA. All compared methods were run with their default 

parameters. Repeatability score was calculated with 

threshold ε = 5 pixels. Since the score favours approaches 

that detect more keypoints, we used 500 keypoints with 

the strongest response in experiments. If the number of 

detected keypoints was smaller for one technique, the 

same number of keypoints for other techniques was used. 

The detailed presentation of the results for every pair 

of compared images is not possible for larger datasets; 

therefore our discussion will be supported with mean 

values of obtained repeatability scores on TID2013 and 

modified MIRFLICKR25K datasets. The comparison of 

detectors for smaller datasets is presented using mean 

values as for large datasets but also on a level of results 

obtained while matching reference image with its 

transformed images. For the first two datasets, testing 

images are numbered starting from two. 

Table 1 contains repeatability scores for Mikolajczyk 

and Schmidt dataset. Here, the best result is written in 

b o ld face .  Ha rr i s  d e t ec to r  to ge ther  wi th  KL T 

outperformed other detectors on this dataset. It is worth 

noting that the dataset contains only several types of 

transformations. As one can see, for image sequences 

with blur and light changes SURF was better than other 

counterparts. However, this advantage was only clear for 

Trees sequence. Similar results have been obtained on 

Heinly et al. dataset; they are presented in Table 2. This 

dataset contains mostly sequences of images with rotation, 

and in their case Harris and KLT detectors were superior 

to other techniques. It happened also for Day and night 

 

sequence, where illumination changes are present (see 

Fig. 6).  

Table 1. Repeatability Scores (in %) Obtained on Mikolajczyk and 

Schmidt Dataset. The Best Approach for Each Transformation is 
Written in Boldface 

Transformation: scaling+rotation, image sequence: Bark 

Image 
no 

SURF KLT SIFT KitRos Median FAST Harris 

2.0 44.8 37.4 36.6 27.4 31.2 28.8 39.2 

3.0 22.6 17.0 9.6 19.0 17.6 16.0 22.0 

4.0 25.2 48.2 14.4 38.2 41.2 22.0 47.6 
5.0 24.0 45.0 18.4 38.6 48.8 25.2 51.0 

6.0 16.6 33.6 11.8 34.0 39.0 18.0 41.8 

Mean 26.6 36.2 18.2 31.4 35.6 22.0 40.3 

Transformation: blur, image sequence: Bikes 

Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 77.6 75.2 60.0 64.8 63.4 54.6 78.2 

3.0 77.2 72.2 54.8 59.8 54.8 54.2 74.2 
4.0 65.2 63.0 40.8 53.4 47.8 44.8 66.4 

5.0 60.8 61.0 33.8 48.8 44.0 35.7 61.0 

6.0 31.2 43.4 19.4 36.2 36.0 30.6 46.0 

Mean 62.4 63.0 41.8 52.6 49.2 44.0 65.2 

Transformation: scaling+rotation, image sequence: Boat 

Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 70.2 81.6 47.6 65.0 69.4 55.2 83.8 
3.0 62.8 81.2 28.4 59.0 70.6 45.2 84.8 

4.0 51.8 79.8 15.6 70.4 70.2 32.8 82.0 

5.0 46.2 85.6 14.0 70.8 72.2 29.8 85.4 
6.0 39.8 68.8 14.6 54.2 56.0 20.4 67.8 

Mean 54.2 79.4 24.0 63.9 67.7 36.7 80.8 

Transformation: viewpoint, image sequence: Graffiti 

Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 24.8 18.4 17.4 15.4 18.0 14.6 19.4 
3.0 16.0 15.4 14.4 15.0 16.6 13.0 18.4 

4.0 11.4 13.4 13.6 11.8 11.6 11.0 15.4 

5.0 10.8 10.0 9.4 8.8 9.8 11.8 12.0 
6.0 11.2 6.0 11.4 7.6 6.2 8.8 6.6 

Mean 14.8 12.6 13.2 11.7 12.4 11.8 14.4 

Transformation: light, image sequence: Leuven 
Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 24.8 20.4 11.6 20.2 19.0 14.2 20.6 

3.0 23.0 19.0 13.0 20.8 17.4 11.6 19.0 

4.0 22.6 18.4 15.2 19.0 18.6 14.6 18.4 
5.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 

6.0 18.0 17.0 14.6 15.8 16.6 16.7 18.4 

Mean 17.7 15.0 10.9 15.2 14.4 11.4 15.3 

Transformation: blur, image sequence: Trees 
Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 51.0 46.4 38.8 31.8 39.6 35.4 54.8 

3.0 41.8 39.6 25.2 22.2 27.4 23.4 38.8 

4.0 33.4 30.2 25.2 18.4 19.0 21.4 32.0 

5.0 42.0 27.2 22.8 15.0 13.0 18.4 23.6 

6.0 34.6 23.2 12.8 12.4 9.4 12.2 20.2 

Mean 40.6 33.3 25.0 20.0 21.7 22.2 33.9 

Transformation: JPEG compression, image sequence: UBC 

Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 93.4 92.8 76.0 76.2 86.6 70.2 97.4 

3.0 88.8 92.0 56.6 69.8 78.0 62.6 93.8 
4.0 82.4 89.4 56.0 66.0 71.2 57.4 91.2 

5.0 74.4 85.4 39.6 59.4 65.0 43.6 83.4 

6.0 67.4 80.8 31.0 58.0 57.8 40.3 78.4 

Mean 81.3 88.1 51.8 65.9 71.7 54.8 88.8 

Transformation: viewpoint, image sequence: Wall 

Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 19.6 19.6 18.8 17.8 16.6 20.4 21.4 
3.0 15.8 17.6 15.0 15.2 16.4 17.2 19.0 

4.0 12.6 13.0 10.6 13.4 12.8 12.4 14.6 

5.0 10.6 18.0 10.6 13.6 11.8 13.4 16.0 
6.0 8.6 9.6 8.6 7.8 8.4 10.8 8.4 

Mean 13.4 15.6 12.7 13.6 13.2 14.8 15.9 
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Table 2. Repeatability Scores (in %) Obtained on Heinly et al. Dataset. 
The Best Approach for Each Transformation is Written in Boldface 

Transformation: rotation, image sequence: Ceiling 

Image 
no 

SURF KLT SIFT KitRos Median FAST Harris 

2.0 74.4 77.4 69.6 53.2 67.2 55.4 78.8 

3.0 66.8 67.4 61.2 39.0 59.8 53.2 69.4 
4.0 70.0 71.6 60.2 51.8 61.0 53.2 74.2 

5.0 71.6 70.0 55.2 52.8 59.2 53.6 73.4 

6.0 70.2 70.4 52.2 53.2 61.2 49.6 73.8 
7.0 71.0 69.4 52.2 43.4 58.6 52.2 70.8 

8.0 74.2 75.6 58.0 55.8 62.8 59.2 81.2 

9.0 79.6 87.8 62.4 66.8 74.0 67.8 91.0 

Mean 70.6 71.4 59.7 50.0 61.7 53.0 73.9 

Transformation: illumination, image sequence: Day and night 

Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 45.6 72.0 30.0 62.2 60.8 41.4 70.8 

3.0 28.4 50.6 25.2 46.0 44.8 34.1 47.2 
4.0 24.6 39.2 19.0 41.8 40.4 28.1 38.8 

5.0 29.4 35.6 21.0 34.4 28.2 26.4 35.2 

6.0 22.4 19.8 19.8 22.4 20.6 29.5 20.6 
7.0 15.8 15.0 14.2 17.2 20.2 27.1 15.4 

Mean 30.1 43.4 23.0 41.4 39.0 31.9 42.5 

Transformation: rotation, image sequence:  Rome 
Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 58.6 74.4 75.4 52.4 59.6 53.6 73.6 

3.0 57.6 72.2 61.4 55.2 55.8 49.4 72.4 

4.0 63.8 74.6 48.4 57.4 62.0 52.4 76.6 
5.0 68.4 81.4 48.6 59.0 65.0 51.6 85.4 

6.0 68.4 84.0 55.4 58.4 64.8 55.6 85.4 

7.0 75.4 84.8 59.0 63.0 68.4 67.4 86.8 
8.0 56.6 75.4 64.8 52.2 60.2 55.8 74.2 

Mean 63.4 77.3 57.8 56.5 61.4 52.5 78.7 

Transformation: rotation, image sequence: Semper 

Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 71.2 83.8 65.0 52.8 64.8 63.0 83.4 

3.0 63.8 78.4 61.8 48.0 62.4 54.0 79.4 

4.0 63.6 80.0 56.4 51.2 61.4 52.8 79.6 
5.0 59.6 73.8 50.0 51.0 55.0 50.0 73.6 

6.0 56.0 72.8 46.0 47.8 50.4 49.0 73.4 

7.0 52.2 67.0 51.4 37.4 50.8 50.4 66.6 
8.0 56.8 66.2 54.4 44.2 55.0 57.2 67.4 

9.0 82.0 90.0 64.8 62.8 69.4 70.8 91.6 

Mean 62.8 77.8 55.8 50.2 58.8 53.8 77.9 

Transformation: scaling+viewpoint, image sequence: Venice 
Im. no SURF KLT SIFT KitRos Median FAST Harris 

2.0 61.6 80.4 48.8 63.0 67.2 62.2 81.2 

3.0 38.2 62.2 17.2 48.0 48.2 42.2 64.0 
4.0 20.8 45.6 2.0 33.2 34.0 25.0 46.4 

5.0 6.6 32.6 1.0 20.6 23.6 12.2 34.2 

6.0 3.0 23.0 0.4 13.4 15.8 10.4 23.0 
7.0 1.0 14.8 0.8 10.0 11.6 8.0 15.8 

Mean 26.0 48.8 13.9 35.6 37.8 30.4 49.8 

 

In presence of rotation, scaling or viewpoint change, 

Harris and KLT are top performing methods.  However, 

small datasets reveal good performance of SURF and 

SIFT techniques on blurred images, or images with 

exposure changes. These results have been confirmed 

using large modified MIRFLICKR25K dataset. They are 

presented in Table 3. Here, simple approaches were better 

under scaling and rotation transformations, and more 

developed solutions outperformed other detectors in 

presence of Gaussian blur.  

Results for TID2013 dataset reveal that SURF, 

followed by SIFT, clearly outperformed other techniques. 

SURF also obtained better results for JPEG compression, 

what is more interesting since for such type of distortion 

present in Mikolajczyk and Schmidt dataset Harris 

technique was better. Here, more images with this 

distortion have been used in the evaluation and therefore 

more general conclusions can be drawn.  Results for SIFT 

on this dataset are in many cases better than for Harris. 

FAST detector turned out to be significantly better than 

other detectors in presence of noneccentricity pattern 

noise or local block-wise distortions of different intensity. 

Apart from these results, FAST for most image sequences 

in used datasets obtained worst repeatability scores. 

Median and KitRos detectors in most tests were better 

than FAST, and for image sequences without noise 

Median was often better than SIFT.  

Table 5 contains comparison of detection time.  It can 

be seen that KLT and Harris detectors are among fastest 

techniques. FAST is also faster than Median, SURF and 

SIFT. The difference in detection time between datasets 

can be explained by different image sizes.  

 

VI.  CONCLUSION 

Since fast detection of stable regions on an image plays 

important role in development of intelligent vision based 

applications, it is crucial to evaluate state-of-the-art 

interest point detectors using large image benchmarks. 

Literature studies reveal that there is lack of such 

examination, especially in presence of wider spectrum of 

distortions. Performed experiments showed that simple 

detectors such as Harris or KLT are characterised by 

several times shorter time of detection and higher 

repeatability scores than widely used SURF and SIFT 

approaches. The use of any of compared approaches 

depends on application and in cases where image 

transformations, such as rotation or scaling take place, 

aforementioned simple detectors could be successfully 

used only if an appropriate descriptor is provided. 

However, in more advanced tests, in which various levels 

and types of distortions were taken into account, SURF 

outperformed other approaches, but its robustness comes 

with worse detection time. 

Feature work will consider experiments with coupling 

feature detectors and descriptors on large image 

benchmarks. However, it may require additional effort; 

since some approaches do not provide scale information. 
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Table 3. Mean Repeatability Scores (in %) Obtained on Modified MIRFLICKR25K Dataset. The Best Approach for Each Transformation is Written 
in Boldface 

Transformation SURF KLT SIFT KitRos Median FAST Harris 

Gaussian blur, σ = 2 78.4 71.6 76.1 59.4 65.5 50.8 71.2 
Gaussian blur, σ = 4 76.6 68.4 70.5 56.0 63.4 46.1 67.7 

Scale, x, y = {0.6, 0.6} 98.0 92.9 98.4 96.3 95.6 84.4 91.3 

Scale, x, y = {0.3, 0.3} 100.0 100.0 99.6 100.0 100.0 99.6 100.0 

Scale, x, y = {1, 0.6} 80.9 91.7 85.1 92.4 92.0 71.7 91.0 

Scale, x, y = {0.6, 1} 81.2 92.0 84.1 92.8 92.5 72.9 91.3 

Rotation, 45º  64.3 83.3 82.8 71.1 82.9 55.4 82.6 
Rotation, 90º 82.3 91.3 91.1 90.7 90.1 72.7 91.4 

 

Table 4. Mean Repeatability Scores (in %)  Obtained on TID2013 Dataset. The Best Approach for Each Distortion is Written in Boldface 

Distortion SURF KLT SIFT KitRos Median FAST Harris 

Additive Gaussian noise             57.0 40.0 43.1 40.5 45.2 34.4 45.9 

Additive noise, colour and  luminance  61.2 44.4 47.8 43.9 48.3 39.4 49.9 

Spatially correlated noise             34.9 41.6 19.3 45.0 50.7 34.7 46.4 
Masked noise              72.7 30.0 81.0 26.3 32.4 37.7 33.6 

High frequency noise             60.7 36.2 52.4 33.8 39.2 29.6 40.4 

Impulse noise              54.0 33.9 42.0 36.9 34.1 23.1 37.7 
Quantization noise              52.2 39.0 35.1 41.0 37.7 42.3 44.4 

Gaussian blur              47.7 18.8 49.4 17.0 22.1 28.1 23.2 

Image denoising              38.9 24.0 28.8 23.7 25.9 27.2 26.7 
JPEG compression              42.6 20.7 32.8 18.7 21.9 21.6 25.5 

JPEG2000 compression              32.1 14.6 28.4 13.3 17.0 16.7 16.2 

JPEG transmission errors             49.2 35.1 48.8 38.1 38.5 43.1 37.1 
JPEG2000 transmission errors             32.2 28.4 26.2 32.8 37.9 30.2 33.4 

Non eccentricity pattern noise            54.4 42.4 61.3 45.4 47.1 71.7 43.1 
Local block-wise distortions of different intensity          82.9 66.0 85.8 59.9 62.2 93.1 63.7 

Mean shift (intensity shift)            90.2 69.8 90.8 63.7 67.2 93.8 69.5 

Contrast change              89.4 66.1 87.4 61.2 62.9 80.7 64.8 

Change of colour saturation            85.2 68.4 75.7 62.4 64.5 89.2 64.5 

Multiplicative Gaussian noise             57.9 39.3 45.9 38.5 42.5 32.9 43.8 

Comfort noise              44.3 22.2 37.8 17.2 19.9 20.2 23.4 
Lossy compression of noisy images           32.3 22.0 21.9 23.2 26.8 19.4 25.0 

Image colour quantization with dither           55.6 30.0 50.5 29.3 28.0 27.5 33.1 

Chromatic aberrations              42.6 18.4 43.9 17.9 22.7 28.5 25.1 
Sparse sampling and reconstruction  28.6 13.9 23.2 11.1 13.7 13.7 15.7 

 

Table 5. Comparison of Detection Time, Time in [ms] 

 

SURF KLT SIFT KitRos Median FAST Harris 

 

Mikolajczyk and Schmidt dataset 

td 147 41 1049 25 88 37 21 

 
Heinly et al. dataset 

td 695 135 2189 106 271 200 210 

 

TID2013 dataset 

td 93 11 315 15 45 23 22 

 
Modified MIRFLICKR25K dataset 

td 63 9.2 247 7.7 35 12 9.2 
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