
I.J. Intelligent Systems and Applications, 2016, 11, 51-60 

Published Online November 2016 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2016.11.06 

Copyright © 2016 MECS                                                           I.J. Intelligent Systems and Applications, 2016, 11, 51-60 

Application of Intensified Current Search to 

Multiobjective PID Controller Optimization 
 

Auttarat Nawikavatan and Satean Tunyasrirut 
Department of Electrical Engineering, Faculty of Engineering, Pathumwan Institute of Technology,  

Bangkok, 10330, Thailand 

E-mail: {auttarat@hotmail.com, satean@pit.ac.th} 

 
Deacha Puangdownreong* 

Department of Electrical Engineering, Graduate School, South-East Asia University, Bangkok, 10160, Thailand 

*Corresponding Author: E-mail: deachap@sau.ac.th 

 

 

Abstract—The intelligent control system design has been 

changed from the conventional approach to the 

optimization framework solved by efficient 

metaheuristics. The intensified current search (ICS) has 

been recently proposed as one of the most powerful 

metaheuristics for solving optimization problems. The 

ICS, the latest modified version of the conventional 

current search (CS), possesses the memory list (ML) 

regarded as the exploration strategy and the adaptive 

radius (AR) and adaptive neighborhood (AN) 

mechanis ms regarded as the exp loitation strategy. The 

ML is used to escape from local entrapment caused by 

any local solution, while both AR and AN mechanisms 

are conducted to speed up the search process. In this 

paper, the application of the ICS to multiobject ive PID 

controller design optimization for the three-phase 

induction motor (3-IM) speed control system is 

proposed. Algorithms of the ICS and its performance 

evaluation against multiobject ive functions are presented. 

As simulation results, the ICS can provide very  

satisfactory solutions for all test functions and the 3-IM 

control application. Moreover, the simulation results of 

motor control application are confirmed by the 

experimental results  based on dSPACE technology.    

 

Index Terms—Intensified Current Search, Multiobject ive 

PID Controller, Metaheuristics, Control System 

Optimization.  

 

I.  INTRODUCTION 

Over two decades, the intelligent control system design 

has been changed from the conventional paradigm to 

multiobjective design optimization framework [1]. Such 

the multiobjective optimization problems can be 

effectively solved by powerful metaheuristic optimization 

search techniques. By literatures, many metaheuristics are 

consecutively developed and launched to perform their 

effectiveness. Metaheuristics can be classified into 

population-based and single-solution (trajectory-) based 

[2,3,4,5]. The most powerful metaheuristics must has at 

least two major properties, i.e. exploration (or 

diversification) to generate diverse solutions to explore 

the search space on the global scale and exploitation (or 

intensification) to focus on the search in a local region by 

exploiting the information to reach the best local solution 

within this region [2,3,4,5]. Among them, the well-known 

population-based metaheuristics algorithms are such as 

genetic algorithm (GA) [6], ant colony optimization 

(ACO) [7], artificial bee colony (ABC) [8], differential 

evolution (DE) [9], particle swarm optimization (PSO) 

[10], harmony search (HS) [11], firefly search (FS) [12], 

cuckoo search (CuS) [13] and bat-inspired search (BS) 

[14], whereas the single-solution based metaheuristics 

algorithms are such as simulated annealing (SA) [15], 

tabu search (TS) [16] and current search (CS) [17].  

In 2012, the current search (CS) was firstly proposed 

[17,18,19] as one of the single-solution based 

metaheuristics based on the principle of an electric 

current behavior in the electric circuits and networks. The 

CS was successfully applied to control system 

[18,19,20,21] and analog filter design [22] applications. 

However, the search process of the CS may be trapped by 

any local solution. In addition, the search time consumed 

by the CS is depended on the numbers of search 

directions. In 2014, the modified version of the CS named 

the adaptive current search (ACS) was proposed [23]. 

The ACS possesses the memory list (ML) and the 

adaptive radius (AR) mechanism to speed up the search 

process. The ACS was satisfactory applied to assembly 

line balancing problems [23,24] and transportation 

problems [25]. Although both CS and ACS performed 

good performance, their applications are limited by 

single-objective optimization problems.  

Generally, real-world engineering design problems 

often consist of many objectives which conflict each 

other [2,3,4,5]. This leads the multiobjective problems 

much more difficult and complex than single-objective 

ones. The multiobjective problem possesses multiple 

optimal solutions forming the so-called Pareto front 

[2,3,4,5]. The challenge is how to perform the smooth 

Pareto front containing a set of optimal solutions for all 

objective functions. In 2014, the intensified current 

search (ICS) was proposed [26,27,28] as the latest 

modified version of the CS. The ICS possesses the ML 
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regarded as the exploration strategy and the AR and the 

adaptive neighborhood (AN) mechanisms regarded as the 

exploitation strategy. Performance of the ICS has been 

evaluated against several single-objective test functions 

[26]. It was found in [26] that the ICS can provide 

superior results to CS and ACS. In this paper, the ICS is 

applied to multiobjective PID design optimization for the 

three-phase induction motor (3-IM) speed control 

system. Details of the ICS algorithm are revised for 

multiobjective purpose. The performance of the ICS will 

be evaluated against the standard multiobjective test 

functions. The simulation results of 3-IM control 

application will be confirmed by the experimental results.  

This paper consists of six sections. After an 

introduction shown in section I, the related works of 

multiobjective optimization are presented in section II. 

Details of ICS algorithms are illustrated in section III. 

The performance study of the ICS via the standard 

multiobjective test functions  is described in section IV. 

Application of the ICS to multiobjective PID controller 

optimization for the 3-IM speed control system is 

provided in section V, while conclusions are given in 

section VI. 

 

II.  RELATED WORKS OF MULTIOBJECTIVE OPTIMIZATION 

Regarding to the optimization context [2,3,4,5], 

multiobjective optimization problem can be expressed in 
(1), where f(x) is the multiobjective function consisting of 

f1(x),…, fn(x), n  2, gj(x), j = 1, 2,…,m, is the inequality 

constraints and hk(x), k  = 1, 2,…,p, is the equality 

constraints. The optimal solutions, x*, are ones can make 

f(x) minimum and make both gj(x) and hk(x) satisfied.  
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All solutions x* are called a non-dominated (optimal) 

solutions if no solutions can be found that dominates 

them. For a given multiobjective optimization problem, 

the Pareto optimal set is defined as  the set containing all 

non-dominated solutions. Finally, the Pareto optimal set 

will be used to perform the Pareto front of a given 

multiobjective optimization problem of interest. 

Engineering design problems can be considered as the 

optimization problems divided into single-objective or 

multiobjective problems [2,3,4,5]. For single-objective, 

an optimization tends to minimize (or maximize) only 

one objective such as minimize loss or maximize profit. 

For multiobjective, it tends to minimize (or maximize) 

several objectives such as minimize loss and minimize 

cost. In fact, both loss and cost are trade-off. The less the 

loss, the higher the cost, and vice versa. Many real-world 

engineering design problems consist of many objectives 

which are conflict each other [2,3,4,5]. This leads the 

multiobjective problems much more difficult and 

complex than single-objective ones such as a problem of 

upgrading to the next generation wireless network 

(NGWN) [29] and structural engineering problems [30]. 

The multiobjective optimization problem possesses 

multiple optimal solutions forming the Pareto front. The 

challenge is how to perform the smooth Pareto front 

containing a set of optimal solutions for all objective 

functions. By literatures, conventional optimization 

methods, such as utility function method, global criterion 

method, bounded objective function method and goal 

attainment method [30,31,32], often face difficulties for 

solving  multiobjective problems. One of the alternative 

approaches developed to solve multiobjective problems is 

the metaheuristics approach [2,3,4,5]. By literatures, the 

efficient metaheuristics has been consecutively launched 

for multiobjective optimization. For example, the vector 

evaluated genetic algorithm (VEGA) [33] is based on the 

GA with non-dominated solution vector, the non-

dominated sorting genetic algorithm II (NSGA-II) [34] is 

based on the GA with multiple layers of non-dominated 

solution set, the differential evolution for multiobjective 

optimization (DEMO) [35] is developed form the 

conventional DE, the multiobjective cuckoo search 

(MOCS) [36] is developed form the conventional CuS 

and the multiobjective multipath adaptive tabu search 

(mMATS) [37] is based on the adaptive tabu search 

(ATS). Some of multiobjective metaheuristics have been 

successfully applied to solve real-world engineering 

problems such as bicycle stem design by NSGA-II [38], 

welded beam design and disc brake design by MOCS 

[36] and PID controller design for the automatic voltage 

regulator (AVR) system by mMATS [37]. In this work, 

VEGA, NSGA-II, DEMO, MOCS and mMATS will be 

conducted for performance comparison with the proposed 

ICS algorithms for multiobjective optimization problems. 

 

III.  INTENSIFIED CURRENT SEARCH ALGORITHMS 

The intensified current search (ICS) was firstly 

proposed in 2014 [26,27,28]. The ICS is latest modified 

version of the CS based on the principle of current 

divider in electric circuits and networks. In its algorithm, 

the ICS possesses the ML, AR and AN mechanisms. The 

ML regarded as the explorat ion strategy is used to store 

the ranked init ial solutions at the beginning of search 

process, record the solution found along each search 

direction, and contain all local solutions found at the end 

of each search direction. The ML is also applied to escape 

the local entrapments caused by local optima. The AR 

and AN mechanis ms regarded as the explo itation strategy 

are together conducted to sped up the search process.  

Algorithms of the ICS can be described by the pseudo 

code as shown in Fig. 1, while some movements of the 

ICS over 2D-search space can be visualized by Fig. 2.  

Once the ICS is applied to solve multiobject ive 

optimization problems, the ICS algorithms need to  be 

modified. The mult iobjective function f(x), consisting of 

f1(x), f2(x),…,fn(x), as stated in (1) will be simultaneously 

minimized accord ing to its inequality gj(x)  0 and 

equality hk(x) = 0 constraints. In each search iterat ion, the 

optimal solution will be evaluated via f(x). If the optimal 
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solution found is a non-dominated solution (there is no 

exist solutions remain ing that are better than it), it will be 

sorted and stored into the Pareto optimal set P*. After the 

search process stopped, all solutions stored in P* will be 

conducted to perform the Pareto front PF*. Finally, every 

solution contained on the PF* are the optimal solutions of 

the mult iobjective problem of interest. The modified 

algorithm of the ICS for multiob jective optimizat ion 

problem is represented by the pseudo code as shown in 

Fig. 3. 

 

IV.  PERFORMANCE STUDY 

To study its performance, the ICS is evaluated against 

three standard multiobjective test functions  [39,40]. The 

first function is the convex front ZDT1 as stated in (2) 

where d is the number of dimensions . The second one is 

the concave front ZDT2 as expressed in (3). Finally, the 

third is the discontinuous front ZDT3 as given in (4). The 

constraints g and control variab les xi in (3) and (4) are the 

same as appeared in (2).  
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Initialized:
- Objective function f(x), x=(x1,…,xd)

T
,             

- Search space W,  
- Memory list ML (Y, Gk, and X),             
- Maximum allowance of solution cycling jmax, 
- Number of initial solutions N,                      
- Number of neighborhood members n,               
- Search radius R, k=j=1.     
- Random initial solution Xi within W.                    
- Evaluate f(Xi) then rank Xi and store in Y.            
- Let x0=Xk as selected initial solution. 
- Xglobal=Xlocal =x0.

while (k<=N or termination criteria: TC);               
     while (j<=jmax);
          Random xi around x0 within R.
          Evaluate f(xi) and set the best one as x*.
          if f(x*)<f(x0); 
                Keep x0 into Gk, update x0=x* and set j=1.
          else 
                Keep x* into Gk and update j=j+1. 
          end
          Activate AR by R=rR, 0<r<1.
          Invoke AN by n=an, 0<a<1.
     end
     Update Xlocal=x0.
     Keep Xglobal into X.
     if f(Xlocal)<f(Xglobal); 
          Update Xglobal=Xlocal.
     end
     Update k=k+1 and set j=1.
     Let x0=Xk as selected initial solution. 
end  

Fig.1. Pseudo code of the ICS algorithm. 

 

 

Fig.2. Some movements of the ICS over 2D-search space. 
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Initialized:
- Multiobjective function f(x)={f1(x), f2(x),…,fn(x)},  
   x=(x1,…,xd)

T
,             

- Pareto optimal set P*,
- Pareto front PF*,
- Search space W,  
- Memory list ML (Y, Gk, and X),             
- Maximum allowance of solution cycling jmax,            
- Number of initial solutions N,                      
- Number of neighborhood members n,                            
- Search radius R, k=j=1.     
- Random initial solution Xi within W.                            
- Evaluate f(Xi) then rank Xi and store in Y.                  
- Let x0=Xk as selected initial solution. 
- Xglobal=Xlocal =x0.

while (k<=N or termination criteria: TC);               
     while (j<=jmax);
          Random xi around x0 within R.
          Evaluate f(xi) and set the best one as x*.
          if ( x*== non-dominated solution);

 Sort and store x* into P*.
          end
          if f(x*)<f(x0); 
                Keep x0 into Gk, update x0=x* and set j=1.
          else 
                Keep x* into Gk and update j=j+1. 
          end
          Activate AR by R=rR, 0<r<1.
          Invoke AN by n=an, 0<a<1.
     end
     Update Xlocal=x0.
     Keep Xglobal into X.
     if f(Xlocal)<f(Xglobal); 
          Update Xglobal=Xlocal.
     end
     Update k=k+1 and set j=1.
     Let x0=Xk as selected initial solution. 
     Sort the current Pareto optima.
End
Perform the Pareto front PF*.
Report Pareto optimal solutions.

 

Fig.3. Pseudo code of the modified ICS algorithm for multiobjective 
optimization problem. 

 


























)10sin(1)(               

,)(:ZDT3

1
11

2

11

f
g

f

g

f
gxf

xxf


       (4) 

 





N

j
t

j
etef PFPFPFPFE

1

2)(                 (5) 

 

The results obtained by the ICS will be compared with  

those obtained by VEGA, NSGA -II, DEMO, MOCS and 

mMATS. In comparison, the error Ef between the 

estimated Pareto front PFe  and its correspondingly true 

front PFt is evaluated via the formulation stated in (5), 

where N is the number of sorted solutions.      

To gain the best performance, the appropriate ICS’s 

search parameters need to be set. The ICS algorithms 

were coded by MATLAB. The search parameters of the 

ICS consist of number of init ial solutions N, number of 

neighborhood member n, number of solution cycling jmax, 

init ial search radius R, AR and AN mechanis ms. 

Different ranges of these parameters are investigated. A 

fixed number of iterations of 2,000 is set as the 

termination criteria (TC). By varying N = 10, 20, 30, 40, 

50,…, 100, n = 10, 20, 30, 40, 50,…, 100, jmax = 5, 10, 

20,…, 50, R = 5%, 10%, 15%,…, 50% of search space,  

AR and AN = 2, 3, 4, 5 states, it was found that the best 

parameters fo r most functions are N = 50, n = 60, jmax = 

10, R  = 20% of search space, AR = 2 states {(i) at 750
th

 

iteration, adjusting R = 0.1R  and (ii) at  1,500
th

 iteration, 

adjusting R = 0.01R} and AN = 2 states {(i) at 750
th

 

iteration, adjusting n = 40 and (ii) at 1,500
th

 iteration, 

adjusting n = 20}. These best parameters will be used for 

all problems in this paper, while the search parameters of 

VEGA, NSGA-II, DEMO, MOCS and mMATS and will 

be set as the recommendations according to their 

corresponding references in [33], [34], [35], [36] and [37],  

respectively. With the identical TC, results obtained by 

the ICS and other selected algorithms are summarized in  

Table 1. The Pareto fronts obtained by the ICS and the 

true fronts of functions ZDT1 – ZDT3 are depicted in Fig.  

4 – Fig. 6, respectively. Referring to Table 1, the ICS 

shows superior results to other algorithms with less error 

Ef. Moreover, Fig. 4 – Fig. 6 reveal that the ICS can 

provide the smooth Pareto fronts very coincide with the 

true fronts of each standard multiobjective test function. 

Table 1. Results of three standard multiobjective test functions   

Methods 
Error Ef 

ZDT1 ZDT2 ZDT3 

VEGA 2.79e-02 2.37e-03 3.29e-01 

NSGA-II 3.33e-02 7.24e-02 1.14e-01 

DEMO 2.08e-03 7.55e-04 2.18e-03 

MOCS 1.27e-04 2.23e-04 2.88e-04 

mMATS 1.14e-04 2.15e-04 2.47e-04 

ICS 1.02e-04 2.01e-04 2.18e-04 

 

V.  MULTIPOBJECTIVE PID OPTIMIZATION 

The ICS will be applied to design the optimal PID 

controller for the 3-IM speed control system based on 

the mult iobjective optimization. Referring to control 

context, the PID feedback control loop is represented by 

the block diagram in Fig. 7, where R(s) is the reference 

input, C(s) is the controlled output, E(s) is the error signal 

between R(s) and C(s), U(s) is the control signal, D(s) is 

disturbance signal, Gp(s) and Gc(s) are the plant and the 

controller transfer functions, respectively. The PID 

controller located at the forward path receives E(s) and 

generates U(s) to control C(s) and regulate D(s) referring 

to R(s). The t ime-domain control signal (output of PID 

controller) is stated in (6), while the s-domain transfer 

function of the PID controller is expressed in (7), where 

Kp, Ki and Kd are the proportional, integral and derivative 

gains, respectively [41,42]. Therefore, the closed loop 
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transfer function with PID controller is given in  (8). Once 

consider the 3-IM as the plant in Fig. 7, R(s) implies the 

reference speed and C(s) stands for the actual speed.  
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Fig.4. Pareto front of ZDT1 (convex front). 
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Fig.5. Pareto front of ZDT2 (concave front). 
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Fig.6. Pareto front of ZDT3 (discontinuous front). 
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Fig.7. PID control loop. 
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The plant model Gp(s) of the 3-IM needs to be 

developed. From our previous work [27,28], the p lant 

model Gp(s) of the 3-IM has been identified by using a 

0.37 kW, 1400 rpm, 50 Hz, 4-pole, delta-connected, 

squirrel-cage 3-IM. Such the motor has been tested to 

record its speed dynamics at 800, 1,000 and 1,200 rpm. 

The third-order transfer function has been identified as 

stated in (9). Good agreement between the model plot and 

the experimental speed can be observed in Fig. 8. The 

plant model Gp(s) in (9) will be used as the plant, Gp(s), 

in Fig. 7.  

 

 

Fig.8. Model plot against experimental speed. 
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The mult iobjective PID design optimizat ion problem is 

classified to optimize the parameters Kp, Ki and Kd in 

order to obtain the satisfactory responses. Applying the 

ICS to design the PID controller of the 3-IM speed 

control system can be represented by the block diagram 

in Fig. 9. Based on the practical requirements, the rise 

time (tr) and the maximum overshoot (Mp) are selected to 

be the multiobjective functions because they conflict each 
other significantly. The tr and Mp are set as f1(x) and f2(x), 

respectively. The multiobjective PID design optimizat ion 

problem can be formulated as  expressed (10). The 
multiobjective  f(x) in  Fig. 9 will be fed back to the ICS 

tuning block to be min imized in order to find the optimal 

PID controller’s parameters which satisfy to its 

corresponding constraints stated in (10). 
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Fig.9. ICS-based multiobjective PID optimization. 
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A.  Simulation Results 

In this sub-section, the ICS coded by MATLAB with  

the same values of the search parameters and TC set in 

the previous section are conducted to the multiobject ive 

PID design optimization problem. Once applying the ICS 

with 40 trials of optimizat ion process to find the best 

solution, 23 sets of optimal PID controllers are 

successfully obtained and summarized in Tab le 2, where 

ts is settling time, Ess is steady-state error and treg is 

regulating time, respectively. The Pareto front plotted 

between f1(x) and f2(x) belonging to those non-dominated 

solutions is depicted in Fig. 10. Simulat ion results 

consisting of the command tracking and load regulating 

responses of the 3-IM speed control system with PID 

controller designed the ICS are depicted in Fig. 11. 

Referring to Table 2 and Fig. 11, it was found that the 

optimal PID controller’s parameters obtained by the ICS 

and their corresponding responses are very satisfactory 

according to the design constraints defined in (10). This 

can be noticed that the ICS can  be successfully applied to 

multiobjective PID controller design optimizat ion 

problem for 3-IM speed control system. Referring to Fig.  

10 and Table 2, the non-dominated solutions shown in 

Fig. 10 are the optimal solution. The Pareto front in Fig. 
10 performs tread-off phenomenal between  the f1(x) and 

f2(x). This leads the user can select these solutions freely. 

For example, once the user prefer the minimum rise t ime, 
the solution min f1(x) in Fig. 10 (PID entry-1 in Table 2) 

should be selected. When the user prefer the min imum 

overshoot, the solution min f2(x) in Fig. 10 (PID entry-23 

in Table 2) should be collected. Finally, if the user prefer 

both minimum rise time and min imum overshoot, the 

compromised solution (min f1(x)&f2(x)) in Fig. 10 (PID 

entry-8 in Table 2) should be considered. 

Table 2. Optimal PID controllers obtained by the ICS and their corresponding responses 

Entry 
PID controllers System responses 

Remark 
Kp Ki Kd tr(ms.) ts(ms.) Mp(%) Ess(%) treg(s.) 

0. ---Plant without PID controller--- 782.25 924.42 0.5402 0.0000   

1. 14.9993 0.0899 989.8136 59.0215 460.5414 15.5009 0.0000 2.0612 min f1(x) 
2. 14.9992 0.0787 966.9804 60.1024 311.1247 14.5065 0.0000 2.0212  
3. 14.9992 0.0597 981.4458 61.0114 300.3626 12.5008 0.0000 1.7492  
4. 14.9390 0.0415 999.9787 62.8457 267.3547 10.5012 0.0000 1.5448  

5. 14.9739 0.0392 956.4697 63.1247 262.0210 9.4072 0.0000 1.3959  
6. 14.4945 0.0392 991.3053 64.3654 267.0017 8.8130 0.0000 1.1803  
7. 13.8479 0.0399 999.9712 65.2147 278.7441 7.5013 0.0000 1.0045  

8. 13.6428 0.0352 974.7195 66.2211 266.1658 7.0416 0.0000 0.9148 min f1(x)& f2(x) 

9. 13.3999 0.0357 999.9725 67.2047 269.9512 6.5049 0.0000 0.9076  
10. 12.9967 0.0352 978.1313 68.3710 275.2351 6.4012 0.0000 0.9005  
11. 12.6486 0.0361 999.9906 69.9854 282.3517 6.0102 0.0000 0.8803  

12. 12.3733 0.0344 999.9089 70.0924 278.2145 5.7019 0.0000 0.8678  
13. 12.1649 0.0337 982.3622 71.1014 280.6985 5.5161 0.0000 0.8357  
14. 11.8031 0.0340 999.9453 72.3033 285.2145 5.2034 0.0000 0.8016  
15. 11.6738 0.0327 976.9918 73.2014 283.2278 5.0391 0.0000 0.7852  

16. 11.1702 0.0313 999.9455 74.4748 275.6214 4.4626 0.0000 0.7545  
17. 10.9003 0.0305 976.4722 76.8426 279.2154 4.0216 0.0000 0.7204  
18. 10.7115 0.0296 986.3490 77.6140 269.6987 3.5068 0.0000 0.6971  
19. 10.3069 0.0291 989.2462 78.6874 266.6536 3.0316 0.0000 0.6705  

20. 10.0011 0.0255 999.7894 80.3251 119.6610 2.7933 0.0000 0.6527  
21. 10.0252 0.0234 990.7593 81.0012 120.1024 2.2349 0.0000 0.6126  
22. 10.0327 0.0229 941.0724 82.7140 199.9578 2.0089 0.0000 0.5979  

23. 10.0015 0.0202 930.1657 83.0124 121.0054 1.4993 0.0000 0.5901 min f2(x) 
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Fig.10. Pareto front between f1(x) and f2(x). 

 

Fig.11. Simulation results: command tracking and load regulating 

responses of 3-IM with PID controller designed by ICS. 

The simulation results of 3-IM speed controlled 

system with mult iobjective PID controller designed by 

the ICS shown in  Fig. 11 will be  confirmed by the 

experimental results  as described in next sub-section.  

B.  Experimental Results 

To confirm the simulation results, the experimentation 

of 3-IM speed control system need to be done. The PID 

controllers designed by the ICS are implemented by the 

dSPACE-DS1104 R&D controller board [43,44] shown 

in Fig. 12 as the real-time embedded control system. The 

dSPACE-DS1104 controller board consists  of the central 

processing unit PPC603e, 250 MHz as the main CPU, the 

digital signal processor TMS320F240 as the slave DSP, 

12- and 16-bit A/D and D/A convertors and PWM-

invertor drive. This dSPACE-DS1104 R&D controller 

board is designed to interface with MATLAB/Simulink 

running on PC. 

 

Fig.12. The dSPACE-DS1104 R&D controller board [44]. 

 

Fig.13. Testing rig of 3-IM speed control system. 

The developed 3-IM system is performed as the V/f 

control manner, while the tachogenerator is employed as 

the speed sensor. With this implementation, the 

developed 3-IM speed control system can be 

communicated and handled via MATLAB/Simulink on 

PC. The 3-IM speed control system is developed as the 

testing rig as displayed in Fig. 13. In this work, the five 
selected cases, i.e. PID controller entry-1 (min f1(x)), 

entry-4, entry-8 (min f1(x)&f2(x)), entry-15 and entry-23 

(min f2(x)) in Table 2,  are performed. The five selected 

cases are tested and depicted in Fig. 14 – Fig. 18, 

respectively.   

For the first case of experimental results with the PID 
controller entry-1 (min f1(x)), the Kp = 14.9993, Ki = 

0.0899 and Kd = 989.8136 are tuned by MATLAB/ 

Simulink interfacing the dSPACE-DS1104 controller 

board. The reference speed, the actual speed, the control 

signal of PID controller and the motor current of the 

developed 3-IM controlled system are measured as 

visualized in Fig. 14. It was found that the actual speed 

provides tr = 75.50 ms., ts = 545.15 ms., Mp = 16.50% and 

Ess = 0.00%. Once the load disturbance is applied and 

released, the actual speed can be efficiently regulated 

with treg = 2.15 s. This case provides the minimum rise 

time according to the simulation results. 

For the second case by using the PID controller entry-

4, the Kp = 14.9390, Ki = 0.0415 and Kd = 999.9787 are 

adjusted by MATLAB/Simulink. The reference speed, 

the actual speed, the control signal and the motor current 

of the 3-IM controlled system are recorded as displayed 

in Fig. 15. It was found that the actual speed provides tr = 

PC with 
MATLAB/Simulink 

3-IM 

Load 

Digital OSC 

dSPACE-DS1104 

Plant without PID controller 
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80.22 ms., ts = 505.14 ms., Mp = 12.25% and Ess = 0.00%. 

When the load disturbance is applied and released, the 

actual speed can be efficiently regulated with treg = 1.75 s.  

For the third case by using the PID controller entry-8 

(min f1(x)&f2(x)), the Kp = 13.6428, Ki = 0.0352 and Kd = 

974.7195 are tuned by MATLAB/Simulink. The 

reference speed, the actual speed, the control signal and 

the motor current of the system are recorded as shown in 

Fig. 16. The actual speed provides tr = 85.65 ms., ts = 

385.45 ms., Mp = 8.50% and Ess = 0.00%. Once the load 

disturbance is applied and released, the actual speed can 

be efficiently regulated with treg = 1.25 s. This case shows 

both minimum rise time and minimum overshoot 

according to the simulation results. 

 

 

Fig.14. Experimental results: command tracking and load regulating 

responses of 3-IM with PID controller entry-1 (min f1(x)). 

 

Fig.15. Experimental results: command tracking and load regulating 

responses of 3-IM with PID controller entry-4. 

 

Fig.16. Experimental results: command tracking and load regulating 

responses of 3-IM with PID controller entry-8 (min f1(x)& f2(x)). 

For the fourth case by using the PID controller entry-

15, the Kp = 11.6738, Ki = 0.0327 and Kd = 976.9918 are 

adjusted. From Fig. 17, the actual speed provides tr = 

91.25 ms., ts = 345.25 ms., Mp = 5.75% and Ess = 0.00%. 

The actual speed is also regulated with treg = 1.05 s.  

For the final case by using the PID controller entry-23 
(min f2(x)), the Kp = 10.0015, Ki = 0.0202 and Kd = 

930.1657 are tuned. From Fig. 18, the actual speed gives 

tr = 102.55 ms., ts = 245.25 ms., Mp = 1.45%, Ess = 0.00% 

and treg = 0.75 s. once load occurred. This case shows the 

minimum overshoot according to the simulation results. 

 

 

Fig.17. Experimental results: command tracking and load regulating 

responses of 3-IM with PID controller entry-15. 

 

Fig.18. Experimental results: command tracking and load regulating 

responses of 3-IM with PID controller entry-23 (min f2(x)). 

From Fig. 14 – Fig. 18, the magnitude of the motor 

current are varied according to load occurrence. Once the 

load is applied, the magnitude of the motor current will 

be increased for compensation. Conversely, the 

magnitude of the motor current will be decreased, when 

the load is released. As overall system performance, it 

can be concluded from simulation and experimental 

results that the 3-IM speed control system with the PID 

controller designed by the ICS can provide very 

satisfactory results both tracking and regulating speed 

responses. 
 

VI.  CONCLUSIONS 

An application of the intensified current search (ICS) 

to mult iobjective PID controller design for the three-
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phase induction motor (3-IM) speed control system has 

been proposed in this paper. The ICS algorithm 

possessing the memory list (ML), the adaptive radius (AR) 

and the adaptive neighborhood (AN) mechanisms, has 

been revised. To study its effectiveness and robustness, 

the ICS has been evaluated against three standard 

multiobjective test functions. Results obtained have been 

compared with those obtained by VEGA, NSGA -II, 

DEMO, MOCS and mMATS. As results, it was found 

that the ICS could provide superior results to other 

algorithms with less error. The ICS has been applied to 

multiobjective PID controller design optimization for 3-

IM speed control system. From results of this application, 

it can be concluded that the ICS can successfully provide 

the optimal PID controllers for 3-IM speed control 

system giv ing very satisfactory responses. Good 

agreement between simulation and experimental results 

has been confirmed. 

ACKNOWLEDGMENT  

The authors wish to thank the anonymous reviewers 

for their constructive comments that greatly contributed 

to improve the final version of the paper. Also, they wish 

to thank the Editors for their generous comments and 

support during the review process. 

REFERENCES 

[1] V. Zakian, Control Systems Design: A New Framework , 

Springer-Verlag, 2005. 

[2] F. Glover and G. A. Kochenberger, Handbook of 

Metaheuristics, Kluwer Academic Publishers, Dordrecht, 

2003. 
[3] E. G. Talbi, Metaheuristics form Design to 

Implementation, John Wiley & Sons, Hoboken, 2009. 

[4] D. T. Pham and D. Karaboga, Intelligent Optimisation 

Techniques, Springer, London, 2000.  

[5] X. S. Yang, Engineering Optimization: An Introduction 
with Metaheuristic Applications, John Wiley & Sons, 

2010. 

[6] J. H. Holland, Adaptation in Natural and Artificial 

Systems, University of Michigan Press, Ann Arbor, 
Michigan, USA, 1975, re-issued by MIT Press, 1992. 

[7] M. Dorigo, ―Optimization, learning and natural 

algorithms,‖ Ph.D. thesis, Politecnico di Milano, Italie, 

1992. 

[8] D. Karaboga, ―An idea based on honeybee swarm for 
numerical optimization,‖ Technical Report TR06, Erciyes 

University, Engineering Faculty, Computer Engineering 

Department, 2005. 

[9] K. V. Price and R. Storn, ―Differential evolution: a simple 

evolution strategy for fast optimization,‖ Dr. Dobb’s J., 
vol. 22(4), 1997, pp. 18–24. 

[10] J. Kennedy and R. Eberhart, ―Particle swarm 

optimization,‖ Proceedings of IEEE International 

Conference on Neural Networks, vol. 4, 1995, pp. 1942–

1948. 
[11] Z. W. Geem, Music-Inspired Harmony Search Algorithm: 

Theory and Applications, Springer, 2009. 

[12] X. S. Yang, ―Firefly algorithms for multimodal 

optimization‖, Stochastic Algorithms: Foundations and 
Applications (SAGA 2009), Lecture Notes in Computer 

Sciences, vol. 5792, 2009, pp. 169 – 178. 

[13] X. S. Yang and S. Deb, ―Engineering optimisation by 

cuckoo search,‖ International Journal of Mathematical 

Modelling and Numerical Optimisation, vol. 1(4), 2010, 

pp. 330–343. 

[14] X. S. Yang, ―A new metaheuristic bat-inspired 

algorithm,‖ Nature Inspired Cooperative Strategies for 
Optimization (NISCO 2010) (Eds. J. R. Gonzalez et al.), 

Studies in Computational Intelligence, Springer Berlin, 

284, Springer, 2010, pp. 65–74. 

[15] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, 
―Optimization by simulated annealing,‖ Science, vol. 

220(4598), 1983, pp.671–680. 

[16] F. Glover and M. Laguna, Tabu Search, Kluwer 

Academic Publishers, 1997. 

[17] A. Sukulin and D. Puangdownreong, ―A novel meta-
heuristic optimization algorithm: current search,‖ The 11th 

WSEAS International Conference on Artificial 

Intelligence, Knowledge Engineering and Data Bases 

(AIKED '12), Cambridge, UK, 2012, pp.125–130. 

[18] A. Sukulin and D. Puangdownreong, ―Control synthesis 
for unstable systems via current search,‖ The 11th WSEAS 

International Conference on Artificial Intelligence, 

Knowledge Engineering and Data Bases (AIKED '12), 

Cambridge, UK, 2012, pp.131–136. 

[19] A. Sukulin, D. Puangdownreong and S. Suwannarongsri, 
―Design of PID controllers for unstable systems using 

current search,‖ The 4th KKU International Engineering 

Conference 2012 (KKU-IENC 2012), 2012, pp.141–146.  

[20] D. Puangdownreong, ―Application of current search to 
optimum PIDA controller design,‖ Intelligent Control and 

Automation, vol. 3(4), 2012, pp. 303–312. 

[21] D. Puangdownreong, ―Current search: performance 

evaluation and application to DC motor speed control 

system design,‖ Intelligent Control and Automation, vol. 
4(1), 2013, pp. 42–54. 

[22] D. Puangdownreong and A. Sukulin, ―Current search and 

applications in analog filter design problems,‖ Journal of 

Communication and Computer, vol. 9(9), 2012, pp. 1083–

1096. 
[23] S. Suwannarongsri, T. Bunnag and W. Klinbun, ―Energy 

resource management of assembly line balancing problem 

using modified current search method,‖ International 

Journal of Intelligent Systems and Applications (IJISA), 
vol. 6(3), 2014, pp. 1 – 11. 

[24] S. Suwannarongsri, T. Bunnag and W. Klinbun, 

―Optimization of energy resource management for 

assembly line balancing using adaptive current search,‖ 

American Journal of Operations Research, vol. 4(1), 
2014, pp. 8–21. 

[25] S. Suwannarongsri, T. Bunnag and W. Klinbun, 

―Traveling transportation problem optimization by 

adaptive current search method,‖ International Journal of 

Modern Education and Computer Science, vol. 6(5), 
2014, pp. 33–45. 

[26] A. Nawikavatan, S. Tunyasrirut and D. Puangdownreong, 

―Application of intensified current search to optimum PID 

controller design in AVR system,‖ Lecture Notes in 

Computer Science, 2014, pp. 255–266.  
[27] A. Nawikavatan, S. Tunyasrirut and D. Puangdownreong, 

―Optimal PID controller design for three-phase induction 

motor speed control by intensified current search,‖ The 

19th International Annual Symposium on Computational 
Science and Engineering (ANSCSE19), 2015, pp.104–109. 

[28] C. Thammarat, D. Puangdownreong, A. Nawikavatan and 

S. Tunyasrirut, ―Multiobjective optimization of PID 

controller of three-phase induction motor speed control 

using intensified current search,‖ Global Engineering & 
Applied Science Conference 2015, 2015, pp. 82–90. 



60 Application of Intensified Current Search to Multiobjective PID Controller Optimization  

Copyright © 2016 MECS                                                           I.J. Intelligent Systems and Applications, 2016, 11, 51-60 

[29] D-N. Le, ―Improving genetic algorithm to solve multi-

objectives optimal of upgrading infrastructure in NGWN,‖ 

International Journal of Intelligent Systems and 

Applications (IJISA), vol. 5(12), 2013, pp.53-63. 

[30] S. S. Rao, Engineering Optimization: Theory and 
Practice, John Wiley & Sons, 2009. 

[31] C. L. Hwang and A.S.M . Masud, Multiple Objective 

Decision Making: Methods and Applications, Springer-

Verlag, Berlin, 1979. 
[32] S. S. Rao and H. R. Eslampour, ―Multistage 

multiobjective optimization of gearboxes,‖ ASME Journal 

of Mechanisms, Transmissions, and Automation in 

Design, vol. 108, 1986, pp. 461–468. 

[33] J. D. Schaffer, “Multiple objective optimization with 
vector evaluated genetic algorithms,” The 1st International 

Conference on Genetic Algorithms, 1985, pp. 93–100. 

[34] K. Deb, A. Pratap, S. Agarwal and T. Mayarivan, “A fast 

and elitist multiobjective algorithm: NSGA-II,” IEEE 

Transactions on Evolutionary Computation, vol. 6, 2002, 
pp. 182–197. 

[35] T. Robicˇ and B. Filipicˇ, “DEMO: differential evolution 

for multiobjective optimization,” Lecture Notes in 

Computer Sciences, vol.  3410(2005), 2005, pp. 520–533. 

[36] X. S. Yang and S. Deb, “Multiobjective cuckoo search for 
design optimization,” Computers & Operations Research, 

vol. 40, 2013, pp. 1616–1624. 

[37] D. Puangdownreong, “Multiobjective multipath adaptive 

tabu search for optimal PID controller design,” 
International Journal of Intelligent Systems and 

Applications (IJISA), vol. 7(8), 2015, pp. 51–58, 2015.  

[38] H. Ghiasi, D. Pasini and L. Lessard, ―A non-dominated 

sorting hybrid algorithm for multi-objective optimization 

of engineering problems,‖ Engineering Optimization, vol.  
43(1), 2011, pp. 39–59. 

[39] E. Zitzler and L. Thiele, ―Multiobjective evolutionary 

algorithms: a comparative case study and the strength 

Pareto approach,‖ IEEE Transactions on Evolutionary 

Computation, vol. 3, 1999, pp.257–271. 
[40] E. Zitzler, K. Deb, and L. Thiele, ―Comparison of 

multiobjective evolutionary algorithms: empirical results,‖ 

Evolution Computing, vol. 8, 2000, pp.173–195. 

[41] K. Ogata, Modern Control Engineering, Prentice Hall, 
New Jersey, 2010. 

[42] R. C. Dorf and R. H. Bishop, Modern Control Systems, 

Prentice Hall, Upper Saddle River, New Jersey, 2005. 

[43] N. Quijano, K. Passino and S. Jogi, A Tutorial 

Introduction to Control Systems Development and 
Implementation with dSPACE, Dept. of Electrical 

Engineering, The Ohio State University, 2002. 

[44] http://www-personal.umich.edu/~aghaffar/dSPACE_ 

tutorial .pdf, access on 31 March, 2016. 

 
 

 

Authors’ Profiles 

 
Auttarat Nawikavatan received his 
B.Eng. degree in electrical engineering 

from South-East Asia University (SAU), 

Bangkok, Thailand, in 2001, B.A. degree 

in political science from Ramkhamhaeng 

University, Bangkok, Thailand, in 2002 
and M.Eng. degree in electrical 

engineering from King Mongkut's 

Institute of Technology Ladkrabang (KMITL), Bangkok, 

Thailand, in 2005, respectively. Now, he is a Ph.D. candidate in 
electrical engineering, faculty of engineering, Pathumwan 

Institute of Technology (PIT), Bangkok, Thailand.  

Since 2006, he has been an the lecturer at Department of 

Electrical Engineering, Faculty of Engineering, South-East Asia 

University, Bangkok, Thailand. His research interests include 

system identification, intelligent control, power electronics and 
motor drives. 

 

 

Satean Tunyasrirut received his B.S.I.Ed. 
in electrical engineering and M.S. Tech.Ed. 

in electrical technology from King 

Mongkut’s Institute of Technology North 

Bangkok (KMITNB), Bangkok, Thailand 

in 1986 and 1994, respectively. He 
received the B.Eng in electrical 

engineering from Rajamangala University 

of Technology Thanyaburi (RMUTT), Thailand, in 2003 and 

D.Eng in electrical engineering from King Mongkut’s Institute 

of Technology Ladkrabang (KMITL), Bangkok, Thailand, in 
2007. 

In 1995, he was awarded with the Japan International 

Cooperation Agency (JICA) scholarship for training the 

Industrial Robotics at Kumamoto National College of 

Technology, Japan. Since 2005, he has been an associated 
professor at Department of Instrumentation Engineering, 

Pathumwan Institute of Technology (PIT), Bangkok, Thailand. 

His research interests include modern control, intelligent 

control, power electronics, electrical machine and motor drives. 
 

 

Deacha Puangdownreong received his 

the B.Eng. degree in electrical engineering 

from South-East Asia University (SAU), 
Bangkok, Thailand, in 1993, M.Eng. 

degree in control engineering from King 

Mongkut's Institute of Technology 

Ladkrabang (KMITL), Bangkok, 

Thailand, in 1996, and Ph.D. degree in 
electrical engineering from Suranaree University of Technology 

(SUT), Nakhon Ratchasima, Thailand, in 2005, respectively. 

Since 1994, he has been with the Department of Electrical 

Engineering, Faculty of Engineering, South-East Asia 
University, where he is currently an associated professor of 

electrical engineering. He has authored 4 books and published 

as authors and coauthors of more than 120 research and 

technical articles in peer-reviewed journals and conference 

proceedings nationally and internationally. He has been listed in 
Marquis Who's Who in the World, Marquis Who's Who in 

Science and Engineering, and Top 100 Engineers-2011 in 

International Biographical Center, Cambridge, UK. His research 

interests include control synthesis and identification, 

metaheuristics and search algorithms as well as their 
engineering applications. 

 

 

 

How to cite this paper: Auttarat Nawikavatan, Satean 
Tunyasrirut, Deacha Puangdownreong, "Application of 

Intensified Current Search to Multiobjective PID Controller 

Optimization", International Journal of Intelligent Systems and 

Applications (IJISA), Vol.8, No.11, pp.51-60, 2016. DOI: 
10.5815/ijisa.2016.11.06 


