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Abstract—Highly-interconnected Hopfield network with 

Content Addressable Memory (CAM) are shown to be 

extremely effective in  constraint optimizat ion problem. 

The emergent of the Hopfield network has producing a 

prolific amount of research. Recently, 3 Sat isfiability (3-

SAT) has becoming a tool to represent a variety 

combinatorial problems. Incorporated with 3-SAT, 

Hopfield neural network (HNN-3SAT) can be used to 

optimize pattern satisfiability (Pattern-SAT) prob lem. 

Hence, we proposed the HNN-3SAT with Hyperbolic 

Tangent activation function and the conventional 

McCulloch-Pitts function. The aim of this study is to 

investigate the accuracy of the pattern generated by our 

proposed algorithms. Microsoft Visual C++ 2013 is used 

as a platform for training, testing and validating our 

Pattern-SAT design. The detailed performance of HNN-

3SAT of our proposed algorithms in doing Pattern-SAT 

will be discussed based on global pattern-SAT and 

running time. The result obtained from the simulat ion 

demonstrate the effectiveness of HNN-3SAT in doing 

Pattern-SAT.  

 

Index Terms—Pattern-SAT, Hopfield Network, 3-

Satisfiability, Hyperbolic Tangent Activation Function, 

McCulloch-Pitts Function. 

 

I.  INTRODUCTION 

Satisfiability problem is a paradigmatic constraint-

satisfaction conundrum with zillions of applications, such 

as in pattern reconstruction and circuit configuration [1, 

16]. Traditionally, the pattern reconstruction deals with 

the geometrical field and implemented the conventional 

technique to verify the pattern v ia neural network [8, 14]. 

Technically, we proposed a paradigm to verify the pattern 

and recall it back after certain  train ing process. So, we 

combine the benefits of 3-Satisfiab ility, Logic 

Programming, Hopfield Neural Network and activation 

function to verify the pattern satisfiability problem. The 

Pattern Satisfiab ility problem (Pattern-SAT) is a brand 

new conundrum that inspires researchers to create model 

verification techniques which help in generating correct 

pattern. For many practical reasons, it is becoming very 

difficult to manually recall the stored pattern because it 

will end up  with a large number o f fault. Hence, the 

generated pattern will be disturbed by monstrous amount 

of noises.  

In order to minimize the problem, Hopfield neural 

network is the perfect network due to the existence of 

remarkable content addressable memory (CAM) [2, 3]. 

Hence, recurrent neural network are essentially  

dynamical systems that feedback signals to themselves 

[6]. Then, the Hopfield neural network is a simple 

recurrent network which can work as an efficient 

associative memory, and it can store certain memories in  

a manner rather analogous to the brain [3, 11]. In addit ion, 

it is a  branch of neural network that assist the researchers 

in constructing the model of our brain. Thus, it is very 

practical to verify the pattern satisfiability problem.  

Hopfield neural network minimizes Lyapunov energy due 

to physical spin of the neuron states  [15, 27]. The 

network produced optimal output by minimizing the 

network energy. Gadi Pinkas  [9] and Wan Abdullah [4] 

defined a bi-d irectional mapping between logic and 

energy function of symmetric neural network. To frame 

their novelty, both methods are applicable to validate the 

solution obtained are models for a corresponding logic 

program. The work of Sathasivam [11, 28] showed that 

the optimized recurrent Hopfield network could be 

possibly used to do logic programming. Furthermore, 

intelligent technique of defining connection strength of 

the logic helps the network to overwhelm spurious state 

[15].  

Basically, logic programming can be treated as a 

problem in combinatorial optimizat ion perspective. [12] 

Therefore, it  can be carried out in a neural network to 

obtain desired solutions. In this paper, we will consider 

logic programming in Hopfield network. The 

conventional paradigm is Wan Abdullah‘s logic 
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programming based on McCulloch-Pitts function [4, 7]. 

Wan Abdullah proposed a paradigm of doing logic 

program on a Hopfield network. We extended the work 

related on the neural-symbolic integration by 

implementing Hopfield network and act ivation function 

in doing logic program. As a result, we proposed the 

Hyperbolic Tangent activation function as the catalyst of 

doing logic programming in Hopfield network. Since, the 

Pattern-SAT is involving 3-Satisfiability problem before 

a pattern can be activated, our proposed hybrid network 

can accelerate the process of recalling the correct  pattern. 

More importantly, it will be able to retrieve correct 

pattern as the complexity of the pattern increases  [10]. 

This paper has been organized as  follows. Section I, 

formally introduces the important concept of Pattern 

Satisfiability, 3-Satisfiability, Hopfield neural network, 

logic programming and activation function. In section II, 

the important theory of 3-satisfiability (3-SAT) problems 

is discussed briefly. Then, section III covers the building 

block and algorithm for Pattern-SAT. Meanwhile, section 

IV presents the neuro-logic parts, including the 

fundamental concept of Hopfield neural network, logic 

programming and activation function used in our 

proposed network. In section V, theory implementation of 

the networks was discussed briefly. Finally, section VI 

and VII enclose the experimental results, discussion and 

conclusion. 

 

II.  SATISFIABILITY (SAT) PROBLEM 

Satisfiability problem is a well-known constraint-based 

problem in mathemat ics and computer sciences. Besides, 

the satisfiability problem has emerging as an optimizat ion 

problem that can be solved by neural network. In this 

paper, we limit our analysis until 3-Satisfiability (3-SAT). 

A.  Boolean Satisfiability Problem 

Boolean Sat isfiability (SAT) can be demarcated as the 

decision problem since the solution will yield either ―yes‖ 

or ―no‖ response, by implement ing the Boolean formula  

[12, 6]. Hence, SAT involves definitive task of searching 

truth assignments that satisfies a Boolean formula [7]. In  

other words, satisfiability  problem refers to verd ict 

problems based on particular constraints. In this paper, 

we emphasize 3-Satisfiab ility (3-SAT) to be embedded in  

Patter-Satisfiability (Pattern-SAT) problem.  

B.  3-Satisfiability Problem 

In this paper, we emphasize a parad igmatic NP-

complete problem namely 3-Satsifiability (3-SAT). 

Generally speaking, 3-SAT can be defined as a formula 

in conjunctive normal form where each clause is limited 

to at most or strictly three literals  [21, 22]. The problem is 

an example of non-deterministic problem [12]. In our 

analysis, the following 3-SAT logic program which 

consists of 3 clauses and 3 literals will be used. For 

instance: 

 

     A B C A B C A B DP                (1) 

We represent the above 3 CNF (Conjunctive Normal 

Form) formula with P. Thus, the formula can be in any 

combination as the number of atoms can be varied except 

for the literals that are strictly  equal to 3 [5, 24]. Hence, it  

is vital for combinatorial optimization problem. The 

higher number of literal in each clause will increase the 

possibilit ies or chances for a clause to be satisfied [11, 

22].  

The general fo rmula of 3-SAT for conjunctive normal 

form (CNF): 

 

1

n

ii
P Z


                                   (2) 

 

So, the value of k denotes the number of satisfiability. 

In our case, k-SAT is 3-SAT. 
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
                        (3) 

 

III.  PATTERN SATISFIABILITY 

Pattern satisfiability is a brand new topic, combining  

the advantages of Boolean satisfiability concept and 

pattern reconstruction as a single optimizat ion problem.  

Specifically, the pattern satisfiability (Pattern-SAT) 

requires a robust network to optimize the solutions. In 

this paper, the solutions refer to the ability to retrieve the 

correct pattern without noises.    

A.  Pattern Satisfiability (Pattern-SAT) 

Pattern satisfiability is a mathematical model enthused 

by the means of Boolean circu it concept. In this paper, 

we will translate and construct the pattern according to 3-

Satisfiability problem. The building block of our Pattern-

SAT is depend on the particular 3-SAT formula. Strictly  

speaking, Pattern-SAT is a brand new combinatorial 

problem, where we need to consider the satisfied 

assignment in order to produce a correct pattern. We 

introduce the pattern satisfiability problem as Pattern-

SAT. The most imminent fact is the pattern will be stored 

in Hopfield‘s brain as a content addressable memory  

(CAM) [2, 14]. Hence, we combine the advantages of the 

Hopfield neural network and logic programming in  

pattern reconstruction according to 3-SAT. In  our case, 

we proposed the 3-SAT Hopfield neural network to 

verify the correctness of the Pattern-SAT. Since, 3-SAT 

is NP problem, thus this conundrum can be verified 

within the polynomial t ime. So, Pattern-SAT can be 

concluded as NP problem. Note that Pattern-SAT has 

exactly 2n
 consistent truth assignments before a pattern 

be activated, where n   is the number of input points or 

the crucial points. 

Modelling a correct pattern can be treated as 

combinatorial problem. We are required to construct the 

pattern according to the crucial points. First of all, we 

need to create a pattern according to the crucial points. 

We represent the crucial points of the pattern as the 

clause. Each crucial points, ic  are represented by 3 
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neurons. In order to produce the pattern, all the crucial 

points need to be activated. The more the crucial points, 

the more complex the system that we will train [5]. 

During  the learning process, the constructed pattern will 

be checked before being stored to CAM. The concept 

similar to the Boolean circuit that requires all the 

component to activate before fully functioning [14, 17].  

The satisfied pattern will be stored in content 

addressable memory (CAM) by distributing it among 

neurons [13]. After the relaxat ion process, we are going 

to recall the stored pattern the same way as biological 

brain works [26, 27]. Technically, the output is based on 

the correct pattern being recalled by our proposed hybrid 

network. Hence, in order to check the effectiveness of our 

proposed model in retrieving the pattern, we run the 

simulation until 100 trials. Hence, our proposed algorithm 

act as a robust brain model that can be implemented in 

other NP problem. The indicators are the number of 

correct retrieved pattern and time taken to recall all the 

patterns, given the 100 trials. 

In our study, we will consider an alphabet pattern. We 

will increase the number of crucial points in order to 

check whether the retrieval power improve or not. For 

example, the pattern consist of the following crucial 

points 1 2{c , ,..... }iIP c c  . In our study we will consider 

5,10....50.i      

B.  Implementation of Pattern-SAT 

1) Choose any pattern. For our case, we choose the 

alphabet pattern. 

2) Identify the crucial points in the pattern. We 

represent crucial points in the form of iIP  .  

3) Calculate the number of iIP . Each crucial point  

represent by clauses ic  with 2 neurons. 

 

i iIP C                                (4) 

 

4) Train ic  . We used ES, during learning. The network 

was trained 1000 iterations. 

5) Randomize the state of the neurons. 

6) The network relax based relaxat ion equation 

proposed by Sathasivam [27] 

 

i idh dh
R

dt dt


                            (5) 

 

where ih  is the local field and R  relaxat ion rate. The 

relaxation rate R reflects how fast the network relaxed. 

The value of R is an adjustable parameter and can be 

determined empirically. 

 

7) Retrieve iIP  by using Wan Abdullah Method [4]. 

8) Construct the retrieved iIP  and check the 

correctness of the pattern (global pattern).  

 

Fig.1. The alphabet used in Pattern-SAT with crucial points. 

The above example contains 6 crucial points (circled in  

red). Each point represents the number of clauses added. 

Our aim is to ensure all the points are ―activated‖ during 

retrieval phase. If the clause is satisfied, the points will be 

activated. The network also required to store the pattern 

in CAM. The network will be trained 1000 times. 

 

IV.  NEURO-LOGIC IN HOPFIELD NEURAL NETWORK 

Neuro-log ic depicts the integration of Hopfield neural 

network and logic programming as a single hybrid 

network. In this paper, we enhanced the hybrid network 

by introducing the post optimizat ion techniques, by using 

Hyperbolic Tangent activation function to solve Pattern 

satisfiability problem. In order to check the performance, 

we compared the proposed techniques with the 

conventional method, McCulloch-Pitts function.  

A.  Hopfield Model 

In pattern satisfiability, we choose the Hopfield neural 

network because it is distributed and can be hybridized 

with the other algorithm [20, 21]. The pattern 

reconstruction is based on the crucial points  and the 

ability to recall the stored pattern. Specifically, we opt to 

integrate 3-Sat isfiability and the Hopfield neural network 

as HNN-3SAT in  order to solve the pattern satisfiability 

(Pattern-SAT) prob lem [24, 25]. Basically, the Hopfield  

neural network is an ordinary model for content 

addressable memory (CAM). This structures emulates our 

biological brain whereby learning and retriev ing data are 

the building block of content addressable memory (CAM) 

[2, 3]. The main concern is the ability of our proposed 

model to recall the correct pattern from the CAM.  

In this paper, we will consider Discrete Hopfield  

Neural Network. Discrete Hopfield neural network is a 

class of recurrent auto-associative network [11, 15]. The 

units in Hopfield models are mostly binary threshold unit. 

Hence, the Hopfield nets will take a binary value such as 

1 and -1.  

The demarcation fo r unit I‘s activation, ia are given as 

follows: 

 

1

1

ij j i

ji

if W S

a

Otherwise

 


 
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                      (6) 
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Where ijW is the connection strength from unit j to i . 

jS is the state of unit j and i is the threshold of unit i . 

The connection in Hopfield net typically has no 

connection with itself 0ijW   and weight connections are 

symmetric or bidirectional.  

Hopfield network work asynchronously with each 

neuron updating their state determin istically. The system 

consists of N  formal neurons, each is described by an 

Ising variable. Neurons are bipolar  1, 1iS   obeying 

the dynamics  sgni iS h where the local field ih [6, 

27]. The connection model can be generalized to include 

higher order connection. This modifies the field to 

 

   2 1

i ij j i

j

h W S J                            (7) 

 

The weight in Hopfield  network is constantly 

symmetrical. The weight in Hopfield network refers to 

the connection strength between the neurons  [4, 11]. The 

updating rule maintains as follows: 

 

   1 sgni iS t h t                               (8) 

 

This property guarantee the energy will decrease 

monotonically even though following the activation 

system [24, 28]. Hence, it will drive the network to hunt 

for the minimum energy. The fo llowing equation 

represents energy for Hopfield network. 

 

   2 11
....

2
ij i j i j

i j i

E W S S W S                  (9) 

 

B.  Logic Programming in Hopfield Network  

Logic programming is user writable, readable  and be 

carried  out in a neural network to obtain desired solutions. 

This can be done by using the neurons to store the truth 

values of the literal and writing a cost function which is 

minimized when all clauses are satisfied [12, 19]. In other 

words, the main task is to find ‗models‘ corresponding to 

the given logic program. The fundamental o f Hopfield  

network in doing logic programming was brought up 

because of its unique content addressable memory  

properties. 

Implementation of HNN-3SAT for Pattern-SAT in Logic 

Programming. 

i. The 3-SAT clauses are translated and transformed  

into Boolean algebra. Basically, the clauses will fo rm a 

formula that will decide the overall satisfiab ility. In  

Pattern-SAT, the clauses are the combination of crucial 

points in that particular pattern. 

ii. Identify a neuron to each ground neuron.  

iii. Initialize all connection s trengths or weights to zero.  

iv. Derive a cost function that is related with negation 

of all 3-SAT clauses. For instance, 

 
1

1
2

XX S  and  
1

1
2

XX S  . 1XS 
 
(True) and  

1XS   (False). Multip licat ion represents CNF and 

addition represents DNF. 

v. Comparing the cost function with energy, E  by 

obtaining the values of the connection strengths. 

(Sathasivam‘s Method) [2, 27] 

vi. Check clauses satisfaction by using exhaustive 

search. Hence, the satisfied clauses will be stored. In 

Pattern-SAT, the satisfied patterns will be stored as 

content addressable memory.   

vii. The states of the neurons are randomized. The 

network undergoes sequences of network relaxation. 

Compute the corresponding local field  ih t  of the state. 

If the final state is stable for 5 runs, we ponder it as final 

state. 

viii. Find the corresponding final energy E of the final  

state by using Lypunov equation (9). Validate whether 

the final energy obtained is a global minimum energy or 

local min ima. In Pattern-SAT, the final energy depicts the 

number of Global Pattern-SAT generated after each 

simulation. Next, the CPU time shows the performance of 

the proposed network to recall the correct pattern. 

C.  McCulloch-Pitts Function 

The McCulloch-Pitts model of a neuron is modest yet 

has considerable computing prospective. The McCulloch-

Pitts function is also having precise mathemat ical 

definit ion and easy to implement. Conversely, this model 

is very simplistic and tends to generate local min ima 

outputs [11, 16]. Many researchers urged the alternatives 

for this function as it is very primitive and leads to slower 

convergence. 

 

g( )x x                                  (10) 

 

Another drawback is the linear activation function will 

only produce positive numbers over the whole real 

number. Thus, the output values are unbounded and not 

monotonic [3]. Hence, the outputs obtained will diverges 

from the global solutions. 

D.  Hyperbolic Tangent Activation Function 

Hyperbolic tangent activation function is proven as the 

most commanding and robust activation function in 

neural network [11, 15]. Therefore , we want to explore  

whether the robustness of this function will apply  to the 

3-SAT logic programming in Pattern-SAT. Commonly, 

this function can be defined as the ratio between the 

hyperbolic sine and the cosine functions expanded as the 

ratio of half-difference and half-sum of two exponential 

functions in the points x and –x [10]. The Hyperbolic 

tangent activation function is written as follows: 

 

sinh( )
tanh( )

cosh( )
( )

x x

x x

x e
g x

e
x

x e e






  


              (11) 

 

The main feature of Hyperbolic tangent activation 
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function is the broader output space than the linear 

activation function. The output range is -1 to 1, similar to 

the conventional sigmoid  function [6, 10]. The scaled 

output or bounded properties will assist the network to 

produce good outputs. Hence, the outputs will converge 

to the global solutions.   

 

V.  IMPLEMENTATION 

For implementation, we assigned any pattern for the 

network. The crucial po ints of the pattern will be 

determined. Each crucial points will generate random 

program 3-SAT clauses. From there, we in itialized init ial 

states for the neurons in the clauses. The network will 

evolve until final state reached. Once the program has 

reached the final state, the neuron state is updated via 

equation (7). As soon as the network relaxed to an 

equilibrium state, test the final state obtained for the 

relaxed neuron whether it  is a  stable state. Stable state 

will be considered provided the state remains unchanged 

for five runs. According to Pinkas  [9], letting an ANN to 

evolve that lead to stable state where the energy function 

obtained does not change further. In this case, the 

corresponding final energy for the stable state will be 

calculated. If the difference between the final energy and 

the global min imum energy is within the given tolerance 

value, then consider the solution as global pattern. 

 

VI.  RESULTS AND DISCUSSION 

In this paper, Microsoft Visual C++ 2013 was used in 

simulating the results. In order to validate our proposed 

network, we carried out the simulations by using different 

number of crucial points. The main aspect in  our analysis 

are the global Pattern-SAT and the CPU t ime for the 

enhanced network in pattern satisfiability optimization.   

A.  Global Pattern-SAT 

To begin with, global Pattern-SAT is the percentage of 

correct pattern retrieved after 100 trials. The term ‗g lobal‘ 

here depicts the global solutions obtained in the form of 

correct pattern.   

Table 1 elucidates the number of correct pattern 

retrieved after 100 trials for d ifferent number o f crucial 

points. The capability to recall the correct pattern by 

implementing our proposed paradigm is the core impetus 

of our research. In this paper, we limit our number of 

crucial points to 50 as the training part consumes more 

time as we need to run until 100 t rials. After that, we 

applied the recalling algorithm and undergo a systematic 

relaxation process. The results demonstrate that, if we 

increase the number of crucial points to be stored in 

CAM, a significant decrease in the number o f correct 

pattern generated at the end of the simulations. However, 

the correct pattern is still with in 85% to 100 % as the 

number of crucial points are being increased for every 

simulation.  This implies that our proposed technique is 

efficient and consistent in retrieving the output after the 

training process.    

Table 1. Global Pattern-SAT 

Number of 

Crucial 
Points 

The Global Pattern-SAT (%) 

Pattern-SAT (HNN-
3SAT With 

McCulloch-Pitts 

Function) 

Pattern-SAT (HNN-
3SAT with 

Hyperbolic Tangent 

Activation Function) 

5 99 100 

10 99 100 

15 96 100 

20 95 100 

25 92 99 

30 90 99 

35 87 96 

40 85 95 

45 82 95 

50 82 90 

 

Based on Table 1, Pattern-SAT with Hyperbolic 

Tangent activation function outperforms Pattern-SAT 

without any activation function in term of the number of 

correct pattern retrieved. When the number of neurons 

increased, Pattern-SAT with Hyperbolic Tangent 

activation is able to sustain more neurons. Thus, we can 

clearly observe from the result that the number of correct 

recalled pattern is consistently 100 until 20 crucial points 

and maintain 90 % of correctness when the 50 crucial 

points are used. The limit for our proposed model is until 

50 neurons. After 50 neurons, the network is stuck in  trial 

and error state in a long period of time. The whole 

patterns in exhaustive search method will be inactivated 

when one of the crucial points is not satisfied. In addition, 

it might take a  longer t ime for the network to search the 

correct neuron states and proceed with the relaxation state, 

as the network spends more time in training state. 

However, the introduction of Hyperbolic Tangent 

activation function, which is well-known as a robust 

function by Sathasivam [28], will help the network to 

relax and be able to recall more patterns correctly.   This 

method will g ive more time for the network to relax and 

retrieve the correct states systematically. On the contrary, 

less relaxation time will create spurious minima which 

will cause the retrieved solution to achieve local min ima 

and produce wrong pattern. Hence, our proposed 

technique performs consistently in recalling  the stored 

pattern in CAM under higher complexity and larger 

circumstances. Thus, the HNN-3SAT WITH Hyperbolic 

Tangent activation function outperformed McCulloch-

Pitts function.   

B.  CPU Time 

In this paper, the CPU t ime can be defined as the time 

taken for a logic program to generate and retrieve the 

correct patterns. Thus, it is  an indicator to test the 

robustness of our proposed algorithm in pattern 

reconstruction involving 3-Satisfiability cases. 

Theoretically, our biological brain  requires more t ime to 

store and retrieve any informat ion if the complexity  

increases. 
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Table 2. CPU Time for the Pattern-SAT 

Number of 

Crucial 
Points 

CPU Time 

Pattern-SAT  
(HNN-3SAT 

without Activation 

Function) 

Pattern-SAT (HNN-
3SAT with Hyperbolic 

Tangent Activation 

Function) 

5 5 2 

10 19 8 

15 230 56 

20 783 122 

25 1982 456 

30 3400 723 

35 6200 1169 

40 13488 3204 

45 25684 6422 

50 66250 10450 

 

Table 2 portrays the CPU time for the Pattern-SAT. 

According to the results obtained, it can be clearly seen 

that CPU time increases when the number of crucial 

points increases. For instance, the complexity of the 

network increased as the number of crucial points gets 

massive. We can see that the computational time 

increased when the number of neuron was getting higher. 

This is due to the condition when the network was getting 

larger and complex, the network was probably to get 

stuck in local minima and devour more computation time. 

As a result, extra t ime was needed to relax to  global 

solution as the number of neurons increased. Moreover, 

the neurons needed to jump enormous energy barrier to 

reach the global solutions. On separate note, the pattern 

generation process whereby all the crucial points need to 

be activated usually consumes more computational time 

due to the trial and error process in hunting the satisfied 

interpretation.  

The computation time obtained for Pattern-SAT with  

Hyperbolic Tangent activation function outperformed the 

McCulloch-Pitts in term of computation time. When we 

applied the Hyperbolic Tangent activation function to our 

network, the fixed bound allowed the network to retrieve 

the correct state much faster. Hence, the correct pattern 

can be obtained due to less computation burden for each 

number of crucial points. The traditional parad igm, 

McCulloch-Pitts function will retrieve the correct  states 

in slower pace due to the comple xity and computation 

burden. 

 

VII.  CONCLUSION 

The direct implementation of logic programming in  

Hopfield network by implementing activation function in 

verify ing the pattern satisfiability had been explored  in  

this research. The number of correct pattern recalled and 

CPU t ime indicated that our proposed network, HNN-

3SAT with Hyperbolic Tangent activation outperformed 

the HNN-3SAT with McCulloch-Pitts function in 

Pattern-SAT. From the theory and experimental results, 

the proposed network with Hyperbolic Tangent activation 

function enhanced the chance of retrieving more correct 

patterns as the complexity is getting higher. The 

performance analysis is supported by the very good 

agreement of the global pattern and CPU time obtained.  
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