
I.J. Intelligent Systems and Applications, 2016, 1, 60-66
Published Online January 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2016.01.07

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 1, 60-66

A Model for Object-Oriented Software

Maintainability Measurement

Morteza Asadi
Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad, University, Qazvin, Iran

Email: info@asadiweb.ir

Hassan Rashidi
*

Department of Mathematics and Computer Science, Allameh Tabataba'i University,Tehran,Iran

Email: hrashi@atu.ac.ir, hrashi@gmail.com

Abstract—Software maintenance is one of the main

quality characteristics of the software product. The

maintainability of a system is a measure of the ability of

the system to undergo maintenance or to return to normal

operation after a failure. In this paper, a new model to

improve the maintainability of object-oriented software

has been proposed. The proposed model is based on

newer versions of software quality standard and it is

according to the measurement of several new metric. This

model has been evaluated on famous PHP framework and

the results showed that the proposed model is effective

compared with the previous models.

Index Terms—Software maintenance, maintainability,

object-oriented software, PHP framework, PHP.

I. INTRODUCTION

Traditionally, software maintenance includes all

changes of a software system after delivery. Software

maintenance is one of the main quality characteristics of

the software product. According to IEEE 1219 Standard,

software maintenance involves some modifications to a

software product such as correcting faults, improving

performance or other attributes, adapting the product to a

modified environment after its delivery to customers [1].

The maintenance phase of the Software Development

Life Cycle is the most costly of all the phases in terms of

budget and programmer’s effort, these costs can be

included 67% of the total cost of software life cycle [2].

Software maintenance activities are categorized into four

classes: Corrective maintenance, Adaptive maintenance,

Perfective maintenance and Preventive maintenance [1].

Corrective maintenance is reactive modification of a

software product performed after delivery to correct

discovered faults. Adaptive maintenance is reactive

modification of a software product performed after

delivery to make a computer program usable in a changed

environment. Perfective maintenance is Modification of a

software product after delivery to improve performance

or maintainability. Preventive maintenance is

maintenance performed for the purpose of preventing

problems before they occur.

The maintainability of a system is a measure of the

ability of the system to undergo maintenance or to return

to normal operation after a failure, in other words,

Maintainability is the degree to which the software

product can be modified. Modifications may include

corrections, improvements or adaptation of the software

to changes in environment, and in requirements and

functional specifications [3]. According to old versions of

ISO/IEC, sub-characteristics of software maintainability

were analyzability, changeability, stability, and testability;

but in new version of ISO/IEC, modularity and

reusability are added to sub-characteristics [3].

Analyzability is the degree to which the software

product can be diagnosed for deficiencies or causes of

failures in the software, or for the parts to be modified to

be identified. Changeability is the degree to which the

software product enables a specified modification to be

implemented or the ease with which a software product

can be modified. Stability is the degree to which the

software product can avoid unexpected effects from

modifications of the software. Testability is the degree to

which the software product enables modified software to

be validated. Modularity is the degree to which a system

or computer program is composed of discrete components

such that a change to one component has minimal impact

on other components. Reusability is the degree to which

an asset can be used in more than one software system, or

in building other assets.

Maintenance problems are not low, from the external

perspective, the cost of maintenance is too high, the speed

of maintenance service is too slow, and difficulty in

managing the priority of change requests [4]. From the

internal perspective, the work environment forces

maintainers to work on poorly designed and coded

software. Also, software maintainers encounter three

categories of problems: perceived organization alignment

problems, process problems, and technical problems. To

further exacerbate these problems, much less research has

been performed for software maintenance than for

development. There are also fewer books and research

papers on the subject, and many that are commonly cited

may be twenty or more years old. Moreover, a large

number of the more recent software engineering books

only refer to software maintenance marginally, as they

focus on a developers’ point of view.

 A Model for Object-Oriented Software Maintainability Measurement 61

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 1, 60-66

In this paper, a new model to improve the

maintainability of object-oriented software has been

proposed. In the next section related works for Object-

Oriented software maintainability measurement are

studied. In section 3, our proposed model is presented and

in section 4 this model is evaluated. Finally the

conclusion of this article is in section 5, and then section

6 includes paper’s references.

II. RELATED WORKS

Antonellis et al. in [5] presented ongoing work on

using data mining to evaluate a software system’s

maintainability according to the ISO/IEC-9126 quality

standard. More specifically their work proposes a

methodology for knowledge acquisition by integrating

data from source code with the expertise of a software

system’s evaluators a process for the extraction of

elements from source code and Analytical Hierarchical

Processing for assigning weights to these data are

provided; K-Means clustering is then applied on these

data, in order to produce system overviews and

deductions. Their methodology is evaluated on Apache

Geronimo (a large Open Source Application Server). The

resulted clusters proved to be representative of the code

artifacts, helping the domain expert to identify relations

between specific metrics and global maintainability as

well as spot individual outlier classes that may need

reconsideration.

Lincke et al. in [6] Tried to answer this question: Do

the differences between general software quality

prediction models matter? The goal of their study is to

answer this question for a selection of quality models that

have previously been published in empirical studies.

They compare these quality models statistically by

applying them to the same set of software systems.

Finally, they calculate a quality trend and compare these

conclusions statistically and they identify significant

differences among the quality models. Hence, the

selection of the quality model has influence on the quality

assessment of software based on software metrics.

The main concern of Losavio et al. in [7] is measuring

the quality of the architectural design. The goal of their

work is to use the architectural design process proposed

in the unified process framework, adapting and detailing

it to include the quality requirements specification at

architectural level. There is general agreement on the fact

that in modern applications the selection of the

architecture must be addressed early in the development

process, to mitigate risks. Moreover, the integration of

enterprise applications is a component-based

development requiring quality values associated to the

services offered by the components. The services depend

mostly on the architecture. In consequence, methods arise

for guiding the selection or for constructing software

architectures. Their approach allows associating the

quality requirements (nonfunctional properties) for the

architecture expressed using the ISO 9126-1 standard

quality model, with the use cases, to facilitate the

selection of the key use cases. Measures for the

architecture’s quality characteristics are specified in

details, précising attributes, units, numerical systems and

scale types. A case study of a real-time application for

monitoring stock exchanges illustrates their approach.

Heitlager et al. in [8] express that the amount of effort

needed to maintain a software system is related to the

technical quality of the source code of that system. Also,

they express the ISO 9126 model for software product

quality does not provide a consensual set of measures for

estimating maintainability on the basis of a system’s

source code. On the other hand, the Maintainability Index

has been proposed to calculate a single number that

expresses the maintainability of a system. They discuss

several problems with the MI, and they identify a number

of requirements to be fulfilled by a maintainability model

to be usable in practice. They sketch anew maintainability

model that alleviates most of these problems, and they

discuss their experiences with using such as system for IT

management consultancy activities.

Chen & Huang in their study in [9] focused on those

software development problem factors which may

possibly affect software maintainability. They classified

twenty-five problem factors into five dimensions; a

questionnaire was designed and 137 software projects

were surveyed. A K-means cluster analysis was

performed to classify the projects into three groups of low,

medium and high maintainability projects. For projects

which had a higher level of severity of problem factors,

the influence on software maintainability becomes more

obvious. The influence of software process improvement

(SPI) on project problems and the associated software

maintainability was also examined in this study. Results

of Their paper suggest that SPI can help reduce the level

of severity of the documentation quality and process

management problems, and is only likely to enhance

software maintainability to a medium level. Finally, they

identified the top 10 list of higher-severity software

development problem factors, and implications were

discussed.

Kanellopoulos et al. in [10] proposed a methodology

for source code quality and static behavior evaluation of a

software system, based on the standard ISO/IEC-9126.

Their methodology uses elements automatically derived

from source code enhanced with expert knowledge in the

form of quality characteristic rankings, allowing software

engineers to assign weights to source code attributes.

Also, it is flexible in terms of the set of metrics and

source code attributes employed, even in terms of the

ISO/IEC-9126 characteristics to be assessed. They

applied the methodology to two case studies, involving

five open source and one proprietary system. Results

demonstrated that the methodology can capture software

quality trends and express expert perceptions concerning

system quality in a quantitative and systematic manner.

Ping in [11] expressed that software maintainability is

one important aspect in the evaluation of software

evolution of a software product. Due to the complexity of

tracking maintenance behaviors, it is difficult to

accurately predict the cost and risk of maintenance after

delivery of software products. In an attempt to address

62 A Model for Object-Oriented Software Maintainability Measurement

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 1, 60-66

this issue quantitatively, he viewed software

maintainability as an inevitable evolution process driven

by maintenance behaviors, given a health index at the

time when a software product are delivered. He used a

Hidden Markov Model (HMM) to simulate the

maintenance behaviors shown as their possible

occurrence probabilities. And software metrics is the

measurement of the quality of a software product and its

measurement results of a product being delivered are

combined to form the health index of the product. The

health index works as a weight on the process of

maintenance behavior over time. When the occurrence

probabilities of maintenance behaviors reach certain

number which is reckoned as the indication of the

deterioration status of a software product, the product can

be regarded as being obsolete. Longer the time, better the

maintainability would be

Orenyi et al. reviewed the proposed models and

approaches for Object-Oriented Software Maintainability

Measurement in the past Decade [12]. Their review

shows Software Quality Models such as ISO/IEC is

scarcely used in the development of maintainability

models. Majority of reviewed models used the existing

object-oriented metrics without a critical review and

adaptation of these metrics before they are used to

develop the models. This makes the developed models to

inherit the inconsistencies and ambiguities observed in

the object-oriented metrics [12].

The object-oriented metrics used in the

models/methods are mostly measured objectively, but the

methods used for aggregating metrics or predicting

maintainability from the metrics have some element of

subjectivity. Though the models developed using the

different types of regression analysis have their

base/derived metric measured objectively, they are

subjective to the peculiar characteristics of the

empirical/historical data used to develop the regression

equations.

Also, different software products have different

structural properties and complexities; thus using a model

developed from a set of software “A” to evaluated

another software “B”(that is not used in the development

of the model) will yield result that will be partly

determined by the properties of “A”. Hence, the value of

“B” will be subjective to “A” [12]. This form of

subjectivity has not been identified in Software metrics.

This could be one of the fundamental reasons why several

forms of regression models yield different results when

applied to the same software. Also, this is a potential

threat to the wide applicability and acceptability of the

various regression models. Thus, there is the need to

develop maintainability measurement model that will use

objective measurement method to yield consistent result

anytime anywhere and by anybody (in this case software

developer).

III. INTRODUCING THE PROPOSED METHOD

A software quality model includes the measurement of

the properties of sub-characteristics of a software product.

Each sub-characteristic can be measured properly by

many methods of metrics and each method of metrics can

be applied to more than one sub-characteristic. Ping in

[11] provided some metrics for measuring sub-

characteristics maintainability for a software product and

presented a constant for evolution process of a software

product by calculating the summation of ratio of metrics.

But his proposed model has some defects, such that All

new sub-characteristics of maintainability is Not included

in his model and number of implement metrics in his

model are too low; Therefore, in this paper, we try to

review, complete and simulate this model and suggest an

improved model for object-oriented software

maintainability measurement.

Table 1 contains the appropriate metrics to measure

each of the sub-characteristics of software maintainability

that we use for our suggested model.

According to Table 1 for compare Implementation

metrics, we need to threshold values for each metric to

ratio of each metric with respect to the threshold value is

obtained. The threshold value for some metrics in object-

oriented programming has been proposed, such as the

threshold value for Cyclomatic Complexity that

recommended by McCab [13], the threshold value for

DIT that recommended by Cais and Pícha in [14], the

threshold value for WMC that recommended by Chandra

and Linda [15] and the threshold value for Ca that

recommended by Ferreira et al. in [16]. But in most

papers, the threshold values achieved by analysis

software that written in Java or C++ and they not

according to programming language such as PHP that

support object-oriented programming. So, with respect to

the most widely used and most popular open source PHP

frameworks have been compared in this paper, it is better

that compare relative done between them; Because

software maintenance is one of quality characteristics of

software produce and calculating maintainability by using

relative methods instead of quantitative methods, seems

more appropriate. For calculate ratio of each metric the

below equation is used:

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑀𝑒𝑡𝑟𝑖𝑐𝑖 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘𝑗 =

𝑀𝑒𝑡𝑟𝑖𝑐𝑖

∑ 𝑀𝑒𝑡𝑟𝑖𝑐𝑖 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑤𝑜𝑟𝑘𝑗

𝑛

𝑗=1

 (1)

In equation (1), i represent the number of measured

metrics for each framework and n is the total number of

frameworks that have been reviewed in this paper. If a

software product has better analyzability, changeability,

stability, testability, modularity and reusability, it

certainly will cost less for its maintenance after its

 A Model for Object-Oriented Software Maintainability Measurement 63

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 1, 60-66

delivery. These sub-characteristics can compose a perfect

weight on the effect of maintenance behaviors. Therefore,

the method is to forge the measurements of sub-

characteristics into a constant C as a weight on the

evolution process of a software product. The constant

represents the health status of a software product when

delivered. The smaller C represents a better health. This

constant value was calculated from below equation:

𝐶 = 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐵𝐾𝐿𝑂𝐶 + 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶𝐶 + 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑁𝑂𝑀 +

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑊𝑀𝐶 + 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐷𝐼𝑇 + 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶𝑎 +
𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶𝐵𝑂 (2)

Table 1. Implementation metrics for measuring sub-characteristics of Maintainability.

Maintainability
sub-characteristics

Metrics Implemented Result Analysis

Analyzability

1. Line of Code (LOC)

2. Cyclomatic Complexity

(CC)
3. Number of Method (NOM)

4. Weighted Methods per Class

(WMC)

1. LOC directly has impact on the time and effort required to diagnose errors

or faults, and the modules related to them and needed to be modified.

2. Analyzability declines when Cyclomatic Complexity increases, which
means the higher complexity of the control flow.

3. Increasing the number of methods in a class indicates that the class does

not have a high cohesion, it may indicate the need for further object-oriented
decomposition and it causes reducing analyzability.

4. If number of weighted methods increases, classes or modules becomes

more complex and and it causes reducing analyzability.

Changeability

1. Line of Code (LOC)
2. Cyclomatic Complexity

(CC)

3. Depth of Inheritance Tree
(DIT)

1. Changing requires understanding of an entire software entity. The
difficulty increases naturally when LOC increases.

2. Cyclomatic Complexity computes the number of the linearly independent

paths and each modification must be correct for all execution paths.
Therefore, changeability declines when Cyclomatic Complexity increases.

3. Increasing depth of inheritance tree cases compromise encapsulation and

increase complexity and it cases reducing changeability.

Stability

1. Coupling Between Object

(CBO)

1. Modules with a high coupling can affect the stability. So stability

decreases when the coupling between objects increases.

Testability

1. Line of Code (LOC)
2. Cyclomatic Complexity

(CC)

1. Complete testing requires coverage of all possible codes. The difficulty
increases when LOC increases.

2. Complete testing requires coverage of all execution paths. So testability

declines when Cyclomatic Complexity increases.

Modularity

1. Coupling Between Object
(CBO)

2. Depth of Inheritance Tree

(DIT)

1. High coupling cases more dependencies between modules, So modularity
decreases when coupling between objects increases.

2. Increasing depth of inheritance tree causes increasing dependencies and

complexity and reducing modularity.

Reusability

1. Coupling Between Object

(CBO)

2. Afferent Coupling (Ca)
3.Weighted Methods per Class

(WMC)

1. High coupling cases more dependencies between modules, So reusability

decreases.

2. Afferent coupling For a module increases By increasing the number of
modules that’s associated to it and it cases reducing reusability.

3. If number of weighted methods increases, classes or modules becomes

more complex and and it causes reducing reusability.

IV. DEFINITION OF HIDDEN MARKOV MODEL

An atomic event is an assignment to every random

variable in the domain. For example, "it is raining today"

and "it is not raining today" are two atomic events. We

can use a binary variable raining to describe these two

events. If it is raining, we assign raining to 1. Apparently

for n random variables, there are 2
n
 possible atomic

events.

States are atomic events that can transfer from one to

another [17]. Suppose a model has n states {s1, s2 , …, sn},

we can describe how a system behaves with a state-

transition diagram.

Fig.1. State-transition diagram [17]

In Fig. 1, 𝑃(𝑆𝑖|𝑆𝑗), (1 ≤ 𝑖 , 𝑗 ≤ 𝑛) are called transition

probabilities. Transitions among the states are governed

by these transition probabilities. If we consider that time

moves in uniform, discrete increments, 𝑃(𝑆𝑖|𝑆𝑗) represent

the probability that in time t+1, the system is in state Si,

given that in time t, the system is in state Sj. For example

in the Fig. 1, in a time interval t if the system is in stat S1,

then in time t+1, there is a ¾ probability that the system

is in state S2, and a ¼ probability that the system is still in

state S1. Notice that transition probabilities should also

satisfy the normal stochastic constraints.

0 ≤ 𝑃(𝑆𝑖|𝑆𝑗) ≤ 1 , (1 ≤ 𝑖 , 𝑗 ≤ 𝑛) (3)

And

∑ 𝑃(𝑆𝑖|𝑆𝑗) = 1, (1 ≤ 𝑗 ≤ 𝑛) 𝑛
𝑖=1 (4)

In the state-transition diagram (Fig. 1), there are three

assumptions: First, Transition probabilities are stationary

and they do not change over times (the stationary

assumption). Second, the event space does not change

64 A Model for Object-Oriented Software Maintainability Measurement

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 1, 60-66

over time and we will not get a new state as time goes on.

Third, probability distribution over next states depends

only on the current state (Markov assumption) [17].

Table 2. Results of calculated ratio of each metric and C constant for each framework

codeigniter

cakephp

Yii framework

Symfony

laravel

zend

CBO 0.510 1.867 2.538 3.182 2.270 3.247

NOM 10.812 3.521 3.596 5.829 7.296 5.931

DIT 1.299 1.224 2.148 1.298 1.098 1.205

WMC 40.352 10.294 12.396 11.021 10.621 17.336

Ca 0.119 0.422 0.772 1.645 0.886 1.958

CC 3.393 2.615 2.664 2.037 1.345 2.521

KLOC 64.104 14.316 18.013 367.789 42.456 293.617

BKLOC 8.065 28.150 42.358 3.276 8.573 2.448

C 1.222 1.036 1.436 1.114 0.938 1.251

Actually, Markov assumption is a special kind of

conditional independence. It shows that given the current

state, future state is independent of all past states. It

seems that this assumption is very limited, but actually

most cases of the real world can satisfy this assumption

given our states are well defined. Target tracking, patient

monitoring and speech recognition are all this kind of

applications.

A system with states that obey the Markov assumption

is called a Markov Model. A sequence of states resulting

from such a model is called a Markov Chain. Markov

model has a very nice property that its description can be

maintained within quadratic space (as to the number of

states in the model). Potentially we can get an infinite

time sequence.

In the Markov Model we introduce Et as the outcome

or observation at time t. Observations are generated

according to the associated probability distribution. Given

the current state S, the probability we have the

observation E is defined as emission probability P(E|S).

Here we also make the stationary assumption that

emission probabilities do not change over time. Besides,

very similar to the Markov assumption, we assume that

the current observation is only depended upon the current

state. Or in another word, observations are conditionally

independent of other variables given the current state.

Mathematically this assumption is represented as

𝑃(𝐸𝑡|𝑆𝑡 , 𝑆𝑡−1, … , 𝑆0) = 𝑃(𝐸𝑡|𝑆𝑡) (5)

V. EVALUATION PROPOSED MODEL

In the first part of this section, our proposed model is

evaluated on some PHP frameworks and by equation (2)

constant value for each framework is calculated. In the

next part, the Hidden Markov Model is used to show the

probability of maintenance behaviors.

5.1. Metrics Measurement

The metrics that were reviewed in the previous section

are commonly used for object-oriented systems and we

choose PHP frameworks for evaluation our proposed

model, because these PHP frameworks are object-

oriented and PHP language always has received less

attention than Java, C++, etc. in evaluation of object-

oriented programming language; so we choose PHP

frameworks to evaluation our proposed model. We select

the most widely used and popular PHP frameworks on

GitHub
1

 website that a repository for open source

projects in different programming languages. By

searching for PHP frameworks with most participants and

high popularity, finally we find the six well-known PHP

which include: Zend framework, Symfony, Yii

framework, cakephp, codeigniter and laravel.

After downloading source code of frameworks from

GitHub and import them in Eclipse IDE, we used PHP

Depend
2
 as a plugin for Eclipse for metric measurement.

PHP Depend after analysis source code of each

framework, returns measured metrics as an xml file, we

have write a program in c # to process these xml files. For

calculating the number of Bugs in Kilo Lines of Code

(BKLOC), first we wanted to use change log file of each

framework, but in some frameworks (such as cakephp)

this file is not released; so we decided to use issue’s page

for each project on GitHub website and we consider all

issues with bug’s label as the number of bugs for each

framework. Also, since the equation (2) is in general form

and it more suitable for one class or method, so for use it

on PHP frameworks that contain many package, class and

method, first, we calculate average of each metric per

module and then calculate average for total of each

framework. Table 2 shows result of calculate ratio of

each metric for each PHP frameworks.

5.2. Create a Hidden Markov Model

A Hidden Markov Model is a matrix with cells

representing the states of a matter in different timestamps

displaying a process of a matter’s status evolution. Ping

in [11] categories user’s request after delivery software

product in four type of maintenance in percentage:

Corrective maintenance 12.4%, Adaptive maintenance

65.4%, Perfective maintenance 9.5% and Preventive

1 www.github.com
2 www.pdepend.org

 A Model for Object-Oriented Software Maintainability Measurement 65

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 1, 60-66

maintenance 9.3%, also small percentage of requests

from users outside of the four type and not considered. To

display the status evolution of software maintainability, a

Hidden Markov Model is set up and in this matrix, the

row items indicate the probabilities of each kind of

maintenance behaviors occurring individually and the

column items are the probabilities of a software product

switching from one kind of maintenance behavior to

another. Since four type of maintenance behavior is

available, the matrix has four rows and four columns.

For initialization of the matrix, mentioned percentages

is set to each column, because each row indicate the

probabilities of each kind of maintenance behaviors

occurring individually. As required by a HMM, the sum

of each row should be 1, so the model is normalized by:

𝑎𝑖𝑗 = 𝑠𝑖 × 𝑠𝑗/ ∑ 𝑠𝑖 × 𝑠𝑗 , 1 ≤ 𝑖 ≤ 4
4

𝑗=0
 (6)

And the model becomes as below,

For calculate the time period for threshold of each

maintenance type is reached, Ping in [5] proposed below

algorithm. In this algorithm C is the constant value that

obtained from the ratio of metric according to equation (1)

and using this constant value caused that each software

product have own evolution rate. In other words, the

constant C as a weight on the evolution process of a

software product indicates the quality of software product

and it can be applied to influence the process of software

maintainability.

Algorithm 1.Calculate the time period for reached threshold

𝟏. 𝒑𝟎(𝟏) = 𝑷(𝒒𝟎 = 𝒔𝟏) = 𝟏 × 𝑪

𝟐. 𝒑𝒕+𝟏(𝒋) = 𝑷(𝒒𝒕+𝟏 = 𝒔𝒋) = (∑ 𝒂𝒊𝒋 × 𝒑𝒕(𝒊)

𝟒

𝒊=𝟎

) × 𝑪

3. If the threshold is reached, the time t shows the time period.

Otherwise, go to step 2.

By applying the algorithm 1 on the PHP frameworks,

table 3 shows that results were obtained for each type of

maintenance.

According to Table 3, time period to reach the

threshold for each type of maintenance behavior in each

of the PHP framework is obtained. For example, the time

period of cakephp and laravel, for reaching the threshold

for all four types of maintenance behavior is 2 and that

this value is very appropriate. Also maximum value for

time period for all PHP frameworks is 3, which means

reaching the all type of maintenance behavior after the

third time period, which is a good value.

Table 3. Results of applying the algorithm 1 on the PHP frameworks

Frameworks

Time period

Codeigniter cakephp Yii framework Symfony laravel zend

Corrective maintenance 2 2 2 2 2 2

Adaptive maintenance 3 2 3 3 2 3

Perfective maintenance 2 2 3 3 2 2

Preventive maintenance 3 2 3 3 2 3

VI. CONCLUSION

In this paper, a new model to improve the

maintainability of object-oriented software has been

proposed and this model has been evaluated on famous

PHP frameworks. Our proposed model is more accurate

than other existing models due to using of more metrics

and for calculating ratio of metric use relative methods

instead of quantitative methods. Also, proposed model for

criticisms of the regression analysis, use summation for

aggregating metrics. To show the possibility of

maintenance behaviors Hidden Markov Model was used.

The results show the appropriate time period to reach

threshold values for maintenance behaviors and that

means maintainability of PHP framework is desirable in

terms of cost and effort.

REFERENCES

[1] IEEE P14764, http://ieeexplore.ieee.org/servlet/opac?

punumber=4040502

[2] Lee R., Tepfenhart M., 2005, UML and C++: A Practical

Guide to Object-Oriented Development, Pearson Prentice

Hall, second edition.

[3] ISO/IEC 25010:2011, http://www.iso.org/iso/catalogue_

detail.htm?csnumber=35733

[4] April, A., Huffman Hayes, J., Abran, A., Dumke, R.:

Software Maintenance Maturity Model (SMmm): the

software maintenance process model. Journal of Software

Maintenance and Evolution: Research and Practice, 2005,

17, 13, 197–223.

[5] Antonellis P., Antoniou D., Kanellopoulos Y., Makris C.,

Theodoridis E., Tjortjis C. and Tsirakis N., A data mining

methodology for evaluating maintainability according to

ISO/IEC-9126 software engineering–product quality

standard, Special Session on System Quality and

Maintainability-SQM2007, 2007.

[6] Lincke R., Gutzmann T. and W. Lo we, Software quality

prediction models compared, Quality Software (QSIC),

2010, 10th International Conference, pp. 82-91.

[7] Losavio F., Chirinos L., Matteo A., Lévy N. and

Ramdane-Cherif A., ISO quality standards for measuring

architectures, J. Syst. Software, 2004, vol. 72, pp. 209-223.

[8] Heitlager I., Kuipers T. and Visser J., A practical model

for measuring maintainability, Quality of Information and

Communications Technology, 2007, 6 th International

Conference, pp. 30-39.

[9] Chen J. C. and Huang S. J., An empirical analysis of the

impact of software development problem factors on

66 A Model for Object-Oriented Software Maintainability Measurement

Copyright © 2016 MECS I.J. Intelligent Systems and Applications, 2016, 1, 60-66

 software maintainability, J. Syst. Software, 2009, vol. 82,

pp. 981-992.

[10] Kanellopoulos Y., Antonellis P., Antoniou D., Makris C.,

Theodoridis E., Tjortjis C. and Tsirakis N., Code Quality

Evaluation Methodology Using The ISO/IEC 9126

Standard, Arxiv Preprint arXiv:1007.5117, 2010.

[11] Ping L., A quantitative approach to software

maintainability prediction, Information Technology and

Applications (IFITA), 2010 International Forum, pp.105-

108.

[12] Orenyi A., Basri S., Tan Jung L., Object-Oriented

Software Maintainability Measurement in the past Decade,

International Conference on Advanced Computer Science

Applications and Technologies, 2012, 257-262.

[13] Thomas McCabe, “A Complicity Measure”, IEEE

Transaction on Software Engineering, VOL. SE-2, No. 4,

1976.

[14] Š. Cais & P. Pícha, Identifying Software Metrics

Thresholds for Safety Critical System, SDIWC, 2014.

[15] E. Chandra, P. Edith Linda, Class Break Point

Determination Using CK Metrics Thresholds, Global

Journal of Computer Science and Technology, Vol.10

Issue 14, November 2010.

[16] K. Ferreira, M. Bigonha, R. Bigonha, L. Mendes, H.

Almeida, Identifying thresholds for object-oriented

software metrics, The Journal of Systems and Software,

Elsevier, 2011.

[17] Ron Parr, “Hidden markov models,” Duke University,

tutorial, October 2004,

https://www.cs.duke.edu/courses/fall03/cps260/notes/lect

ure14.pdf [Accessed on: 2015-08-20].

Authors’ Profiles

Morteza Asadi is a student of M.Sc in

Computer Software Engineering at Islamic

Azad University of Qazvin. He received his

BSc degrees in Computer Software

Engineering from University of Zanjan. His

research interests include software

engineering, software maintenance,

computer science and object-oriented

programming. His website is http://asadiweb.ir.

Hassan Rashidi is an Associate Professor in

Department of Mathematics and Computer

Science of Allameh Tabataba'i University.

He received an M.Sc degree in Systems

Engineering and Planning from the Isfahan

University of Technology and a PhD from

Computer Science and Engineering from

University of Essex. His research interests

include software engineering, software testing, and Scheduling

algorithms.

How to cite this paper: Morteza Asadi, Hassan Rashidi, "A

Model for Object-Oriented Software Maintainability

Measurement", International Journal of Intelligent Systems and

Applications (IJISA), Vol.8, No.1, pp.60-66, 2016. DOI:

10.5815/ijisa.2016.01.07

