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Abstract—The method of structural identification nonlinear 

dynamic systems is offered in the conditions of uncertainty. The 

method of construction the set containing the data about a 

nonlinear part of system is developed. The concept of 

identifiability system for a solution of a problem structural 

identification is introduced. The special class of structures S for 

a solution of problem identification is introduced. We will show 

that the system is identified, if the structure S is closed. The 

method of estimation the class of nonlinear functions on the 

basis of the analysis sector sets for the offered structure S is 

described. We showed, as on S a preliminary conclusion about a 

form of nonlinear function to make. We offer algorithms of 

structural identification of single-valued and many-valued 

nonlinearities. Examples of structural identification of nonlinear 

systems are considered. 

 

Index Terms— Structural Identification, Structure, Dynamic 

System, Nonlinearity, Secant, Algorithm, Saturation Function, 

Structure-Frequency Analysis. 

 

I.  INTRODUCTION 

The problem of structural identification occupies one 

of the basic places in control theory. In the theory of par-

ametric identification considerable results are received. 

Researches in the domain of choice of structure of model 

are distant from the final decision. Such condition of a 

problem structural identification (SI) explains complexity 

of mathematical statement a problem and lack of regular 

methods of its solution. The majority of approaches to SI 

are grounded on search of models from the give set or 

approximation of a nonlinear part system on the class of 

polynomials. The basis of the specified approaches is 

parametric identification. 

Methods of an estimation structure are widely applied 

to the systems described by integral equations of Wiener 

and Wiener-Hammerstein. In [1] structure of model it is 

set a priori. Nonlinearity is described by polynomial func-

tion of the second order. The basic virtue of the systems 

described by the nonlinear equations of Wiener and Wie-

ner-Hammerstein is grounded on model transformation to 

the regression to a form and application of parametric 

methods of identification. Such approach to identification 

of structure nonlinearity at the set a priori assumptions is 

considered in [2]. The piecewise-linear approximation is 

applied to nonlinearity description. The piecewise-linear 

method of least squares is applied to an estimation of 

parameters nonlinearity. Different approaches to identifi-

cation of nonlinear plants on the basis of Wiener and 

Wiener-Hammerstein models are considered in [3, 4]. 

Review [5] is devoted the analysis of a condition of a 

problem of identification nonlinear processes in a struc-

tural dynamics. Time and frequency methods of paramet-

ric identification are considered. Methods of an estima-

tion of type nonlinearity are analyzed. Examples of appli-

cation different physical and frequency methods, and also 

procedures of handling results experiment for synthesis of 

parametric mathematical models are considered. Typical 

methods, applicable for studied subject domain, are con-

sidered in survey. Methods of a correlation analysis [6] 

and error localization in a linear model updating frame-

work [7, 8], and also pattern recognitions [9] were ap-

plied to an estimation of type nonlinearity. The problem 

of an estimation of type nonlinearity solves on the class 

of the specified models. The problem of choice the func-

tional form of dependence describing nonlinearity is con-

sidered. Polynomial approximation at the initial stage is 

offered to be applied in the presence of the a priori infor-

mation. The basic problem of such approach it is choice 

of an order of a polynomial. Various criteria of choice of 

an order the polynomial, grounded on an evaluation of 

the significance factor [10] and coherence functions [11], 

are analyzed in survey. Shortages of such approach are 

noted. The models received by means of such approach, 

not always allows describing examined processes ade-

quately. The solution of this problem gives application of 

Bayesian approach [12]. Limitation of the polynomial 

approach is noted. It does not allow describing the wide 

class of nonlinearities. The role of the a priori infor-

mation is noted at structure choice (a nonlinearity form) 

noted. If the a priori information has not enough or the 

physical model does not reflect essence of processes it is 

possible to apply the concept of “a blackbox” [13, 14] 

and methods of parametric identification. 

In [15] is applied nonlinear Hammerstein-type neural 

network model to identification of nonlinear system. The 

Lipschitz criterion is used for estimation an order of sys-

tem. Algorithms of adjustment weights a network are 

offered. 

A considerable quantity of publications is devoted 

identification of systems with a hysteresis (look, e.g. [16-

18]). The Bouc-Wen model (BW) is widely applied to 

hysteresis description. Various parametric models, ap-

proximating parameters of a hysteresis, are considered in 
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[16-18]. In [16] is offered the variant Volterra/Wiener 

Neural Network model for an estimation of parameters a 

hysteresis of dynamic system the second order. The mod-

el is described by the regression equation. For identifica-

tion of parameters the equation the adaptive algorithm is 

offered. In [17] models for approximation of a symmetric 

and asymmetrical hysteresis with use of piecewise-linear 

functions are considered. The model is described by a 

discrete difference equation of first order. Iterative proce-

dure is offered for an estimation of parameters model. In 

[18] modification of self-adjusted differential evolution-

ary algorithm for an estimation of parameters the hystere-

sis, described BW model, is offered. Approaches to par-

ametric identification of the hysteresis, described by vari-

ous nonlinear functions, are considered in [19-21]. 

From review of publications follows that the over-

whelming number of works is devoted problems of para-

metric identification of nonlinear systems subject to dif-

ferent various (and sometimes and full) level of the a pri-

ori information. Receive of the simplified model of non-

linearity for the purpose of its further implementation is 

the basis of the majority researches on nonlinearity iden-

tification. A series of researches is devoted an estimation 

of structure a nonlinear part system. The a priori infor-

mation in these researches is used. Choice of applied 

methods depends on results of observations. The general 

approaches to a solution of a problem structural identifi-

cation are not offered. One of opens problem is selection 

of informational set in the conditions of a priori uncer-

tainty. This set contains the necessary data about nonline-

arity. The approach offered in [22-24], is by one of per-

spective directions in a solution of the given problem. It 

allows receiving set of the data about nonlinearity in the 

conditions of uncertainty. 

The second important problem of structural identifica-

tion dynamic systems in the conditions of uncertainty is an 

estimation of the class nonlinear function – one-valued or 

multivalued. The analysis of publications displays that 

such researches were not fulfilled. The first results in this 

direction are received in [25]. In [25] method of sector sets 

is applied to the analysis of the special static structures 

reflecting behaviour of a nonlinear part a static system. The 

mode of construction sector sets is described and decision 

making procedures about the class of nonlinearity in the 

conditions of uncertainty of this work are offered. 

In the given work development of the results received in 

[22-25], on nonlinear dynamic systems in the conditions of 

uncertainty is given. The mode of formation the informa-

tional set containing the data about a nonlinear part of sys-

tem is described. We display that the given set can be gen-

erated on the basis of application the special class static 

models. They are received on the basis of handling to input 

data "input-exit". They are received on the basis of a data 

handling "input-output". On the basis of this set we con-

struct the dynamic structure, reflecting in the generalized 

form behaviour of nonlinearity. It generalizes the structure 

,e kS  offered in [23]. We describe criteria of estimation the 

class nonlinearity. Further we state procedures of estima-

tion structural parameters of nonlinearity and we describe 

results of simulation. 

We do not consider a problem of estimation an order 

and eigenvalues of system. They have been studied in 

[23]. 

 

II. PROBLEM STATEMENT 

Consider dynamic system 

( , , , ),

( , , , ),Y

X F X U A t

Y F X U A t




                                                     (1) 

where U m

UU R   , Y nY R   are measured 

input and output of system, X qX R   is a state vector, 

Y X nR  , : q m qF R R J R    is smooth continu-

ously differentiable on X  and A  a vector function, 
q qA R   is a matrix of parameters, t J R  , 

: q m n

YF R R J R    is the function setting a mode of 

formation output system. 

For (1) we have set of the measured data observed on a 

time gap J , 

   I I , , ,m n

o U Y U R Y R t J     ,                    (2) 

Problem: on the basis of the analysis and handling of 

set Io
 to make the solution on operator structure F  in (1). 

 

III. APPROACH TO IDENTIFICATION OF CLASS 

NONLINEARITIES 

We will state the approach to structural identification 

for a special case of system (1) with the selected linear 

part 

( ) ,

,T

X AX y I Bu

y C X

  


                                              (3) 

where u R , y R  are input and output of system, 

q qA R  , qB R , qI R , qC R , ( )y  is some scalar 

nonlinear function. Consider a matrix A  stable. 

We can make various assumptions concerning function 

structure ( )y  . All of them are defined by level of 

the a priori information. In the conditions of full a priori 

determinancy the methods grounded on those or other 

varieties of a linearization [26, 27] can be applied. In [28] 

the following assumption becomes concerning nonlineari-

ty at research of an absolute stability of nonlinear systems 

 2( ) , 0, (0) 0          F ,                    (4) 

where R   is an input nonlinear element of system. 

Consider that is a linear combination of variables a 

state that is a vector. The sector condition is often used 

for approximation function   




2 2

1 2

1 2

( ) ,

0, (0) 0, 0,

       

   

   

    

F
.                  (5) 
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The analysis of works shows that in control systems 

static nonlinearities are often applied. Therefore we will 

apply the models described by the static (algebraic) equa-

tions to a function estimation ( )  . We state that in the 

conditions of a priori uncertainty we have the data which 

do not allow solving a problem structural identification 

( )  . Therefore, we for identification of this class models 

should obtain a corresponding subset of the measured 

data or their converted analogue. 

We suppose that the set Io
 for system (3) have the 

form 

  0I ( ), ( ) ,o ku t y t t J t t   .                                  (6) 

Problem: on the basis of a data handling (6) estimate 

the class to which belong nonlinear function ( )y in (3) 

and its structural parameters. 

For a solution of a problem we use methodology of in-

formational synthesis [22, 23]. It realizes following steps. 

1. Formation of the set 
,IN g

 containing the data about a 

nonlinear part of system (3). 

2. Construction of the structures S reflecting in the 

generalized form of property a nonlinear part system on 

the basis of the analysis 
,IN g

. 

3. Development of algorithm decision making about 

the class of nonlinearity F  on the basis of the analysis 

S . 

4. Development of procedure of estimation parameters 

of nonlinearity on the class F . 

So, pass to the first step of a solution of a problem 

structural identification. 

 

IV. SET FORMATION ,IN g  

Apply to ( )y t  operation of differentiation and desig-

nate the received variable as 
1x . The account 

1x  gives 

expansion of informational set Io
:  1I I ,ent o x . 

Remark 1. If variables ,u y  are measured with an er-

ror at first apply filtering or smoothing procedure. 

Select the subset of the data I Ig ent  corresponding to 

a particular solution of system (3) (steady state), for reali-

zation of the first step procedure. We form this set delet-

ing the data Itr
 containing the information on transient 

process in system, that is I I \ Ig ent tr . 

Apply mathematical model 

1̂ ( ) [1 ( ) ( )]l T Tx t H u t y t                                              (7) 

to selection of the linear component 1x  defined on the 

interval \g trJ J J . Here 3H R  is a vector of parame-

ters model. 

We define a vector H  from a condition of minimiza-

tion squared criterion 2( ) 0.5Q e e  

1 1ˆ
min ( ) l opte x xH

Q e H
 

 . 

On the basis of the model (7) define the forecast for a 

variable 
1( )x t  Igt  and generate an error 

1 1
ˆ( ) ( ) ( )le t x t x t  . ( )e t  depends on nonlinearity ( )y  in 

system (3). As a result we receive set 

 ,I ( ), ( )N g gy t e t t J   

which we will apply at the second stage of informa-

tional synthesis. Further we will use a designation ( )y t , 

supposing that 
,( ) IN gy t  . 

 

V. STRUCTURES  
eyS , 

ekS  

We will consider a phase portrait of system (3) in 

space ( , )ye y eP  for the analysis of properties nonlinear 

systems. To phase portrait there corresponds the structure 

eyS  described by the function :{ } { }ey y e   gt J  . 

eyS  can have the closed form. It eyS  differs from struc-

tures 
ekS  which are applied to the analysis of static sys-

tems [23, 24]. 

We will use to decision making also 
ekS -structure 

which is described by function    : ( ) ( )ek sk t e t  , 

where ( )sk t R  is a coefficient of structural properties 

[23, 24] systems in space yeP  

( )
( )

( )
s

e t
k t

y t
 . 

Results of simulation will show that many approaches 

offered for an identification of structure static systems 

[24], are applicable and for dynamic systems. We can a 

solution about the class of nonlinear functions (one-

valued or multivalued) in a system (3) to accept on the 

basis of the application results work [24]. Further, we 

describe the corresponding approach. 

As we analyze an identification problem at first we will 

consider the problem on identifiability of system (2). We 

give a solution of this problem on the basis of the analysis 

properties the offered structures. 

 

VI. ABOUT PROPERTIES ,IN g  

Consider properties of set ,IN g at which the solution of 

a problem structural identification function ( )y  is pos-

sible. At first, the initial set Io  should allow to solve a 

problem of parametric model identification (7). It means 

that the input ( )u t  should be nondegenerate on the inter-

val J . Secondly, the input ( )u t  should give informative 

structure  ,Iey N gS  (or ekS ). It means that we the make a 

decision about nonlinear properties of a system (3) on the 
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basis of the analysis can 
eyS . Such input we will name 

representative. 

Let the structure 
eyS is closed. Let  eyh S  is a distance 

between two points the structure opposite sides 
eyS . 

Statement 1. Let: 1) the linear part of system (3) is 

stable to, and nonlinearity ( )   will satisfy to a condition 

(5); 2) the input ( )u t  is restricted piecewise continuous 

and extreme nondegenerate; 3) exist such 0S   that 

 ey Sh S . Then the structure 
eyS  is identified on set 

,IN g
. 

Proof. Consider an input ( )u t , satisfying to a condi-

tion 1) ( )u t  corresponds a Fourier series containing of a 

sinusoid frequency 
i  of a frequency spectrum ( )u t . The 

output 
,( ) IN gy t   also contains components of this spec-

trum and has phase shift in relation to ( )u t . 
1x  is a result 

of differentiation ( )y t . Hence 
1x  contains components 

with the specified frequency spectrum. Therefore the 

structure 
eyS  on a phase plane  1,y x  has the closed 

character. eyS  is closed. Therefore we can define distance 

 eyh S  between opposite points of structure. 
1( ), ( )y t x t  

are extreme nondegenerate functions of a time according 

to a condition 1). Therefore  ey Sh S  for almost all 

,N gt J .  

The structure 
eyS  having specified properties, we name 

h -identified. Further we suppose that eyS  has the speci-

fied property. 

Consider concept features h -identifiability. 

1. h -identifiability is applied to a solution nonpara-

metric, and to structural identification. 

2. The demand of parametric identifiability is the fun-

damentals h - identifiability. 

3. h -identifiability specifies more rigid demands to a 

system input. 

The feature 3 means that "the bad" input can fulfil to 

an extreme nondegenerate condition. But it can give so-

called, insignificant eyS -structure which will have as be-

fore property h -identifiability. Property of insignificance 

in the conditions of uncertainty can bring to an identifica-

tion of nonlinearity, atypical for researched system. This 

problem demands more detailed study. 

Now we will pass to an estimation of the class of non-

linearity ( )y . It is one of the main problems of structural 

identification. 

 

VII. ESTIMATION OF CLASS NONLINEARITY 

We will consider classes of single-valued 
ovF  and 

many-valued 
mvF  nonlinearities. These classes contain 

the big set of nonlinear functions. Fulfil a fragmentation 

of structure 
eyS  on the basis of use a subset 

,I IN g   for 

an estimation of the class nonlinearities. I  adequately 

reflects a variation of a function ( )y   in structural 

space 
yeP . 

The problem of finding a subset 
,I IN g  is nontrivial 

and depends on the available a priori information [25]. It 

is reduced to selection of such interval a modification a 

variable 
,I IN gy    in the conditions of uncertainty on 

which we see features of function  . We will select 

,I IN g   on the basis of the analysis of a change of 

structure 
eyS . I  correspond fragments 

ey FR S  on 

which we see change features 
eyS . 

On the basis of the analysis fragments 
ey FR S select 

a subset of intervals I j

y   1,j s . I j

y  are basis for the 

analysis of features ( )y . Intervals I j

y  not linked with 

features of nonlinear function can contain fragments. We 

fathom under features of function loss of continuity, flex 

points and extremes on some interval I j

y . All these fea-

tures are an indication of nonlinearity examined function. 

In this sense we will use concept of self-descriptiveness 

of set I j

y  [23, 24]. 

Statement 2. Let on some interval I j

y  functions 

( )( )
( ) ( )

s

j j s
e k

dk tde t
t t

dy dy
 
   

     
   

   1,j s           (8) 

are not continuous or in their behaviour there are fea-

tures. Then the interval I j

y  can be considered as informa-

tive. 

This statement does not envelop some classes of non-

linear functions. Such approach is justified in the condi-

tions of a priori uncertainty. The specified property of 

self-descriptiveness depends from h - identifiabilities of 

structure eyS . 

We on the basis of the analysis a change parameters (8) 

on each of i

gJ  eliminate spurious subsets I j

y  from con-

sideration. Remained I j

y  include in composition I  

I I (I )
v

i i

y
i

  ,     v s . 

So, we have received informational set ,I IN g  . I  

allows passing to an estimation of the class nonlinearity 

( )y . 

Consider a fragment 
i

ey FR S  defined on Ii

  for 

1i  . Construct for 
i

FR sector set [25]. Apply a least-

squares method and define a secant i  for 
i

FR  on Ii

  

 ( ) ( )i i iy t a y t b    ,                                          (9) 

Find mean value iy  for ( )y t  on I Ii

y  . Let iy  is a 
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centre i

FR  on I Ii

y  . Draw a perpendicular from a 

point 
iy  to intersection with 

i  on a plane ( , )y e . Set 

magnitude 0ic   and in a point  , ( )i iy e y   draw 

straight lines 

, , ( )i i ia y t b    , 
, , ( )i i ia y t b    ,                      (10) 

where 
, ( )i i ia a c    . 

Name    , ,Sec ,
i

i

a i i   FR  sector set for i

FR . Let 

     , ,Sec Sec Seci i i

l r     FR FR FR , 

where    , ,Sec , Seci i

l r   FR FR  are the subsets 

 Sec i

FR  arranged at the left and to the right of a point 

 . 

We secants 

, , ,( )i l i l i la y t b   ,
, , ,( )i r i r i ra y t b                          (10) 

for each of parts , ( )

i

l rFR  a fragment i

FR , belonged 

 ,Sec i

i FR  and  , ( )Sec i

l r FR , will define. Further we 

will apply modification of statement from [25]. 

Let exist such 0i   that 

,i l i ia a   ,    ,i r i ia a   .                                  (11) 

Theorem 1. Let for system (3) in space ( , )ye y eP : i) 

structures ,

i

rFR , ,

i

lFR described by maps 

   , ( ) , ( ) , ( )
:ey l r i l r i l r

y e  , 

where  
, ( )

Ii

i l r
y  ,  

, ( )
Ii

i l r
e  , and secants (10) cor-

responding to them are received; ii) for i

FR  the secant (9) 

is received. Then: 1) function ( ) ovy F  if (11) is ful-

filled; 2) function ( ) mvy F  if (11) is not fulfilled. 

The proof of the theorem 1 is analogous to the proof of 

statement from [25] and is grounded on homothety appli-

cation. 

From the theorem 1 follows that if conditions (11) are 

fulfilled, for ( )y  true a Holder-Lipschitz condition and 

to sectors    , ,Sec , Seci i

l r   FR FR  operation of a ho-

mothety [29] is applicable. 

Other approach to an estimation of the class nonlineari-

ty F  is founded on the construction of a sector for ( )y . 

We will apply the approach offered in [25] to its realiza-

tion. In this case pass in space  ,ke sk eP . 

Now we will consider methods of identification struc-

ture (form) of the function ( )y  belonging to the set 

class F . 

 

VIII. ESTIMATION STRUCTURE ( )y  

The problem of structural identification of nonlinear 

systems is difficult and complicated. We cannot offer the 

common approaches. Each class of nonlinearity F  has 

the features. They affect behaviour of trajectories of sys-

tem, and, therefore, influence properties of structure
eyS . 

Detection of these features gives the detailed analysis 
eyS  

in the conditions of uncertainty. Therefore further, we 

will consider concrete examples of systems with 

( )y  F to state identification methodology. The result 

of such approach is a development of algorithm identifi-

cation structure ( )y  for the concrete class F . 

A. Class 
ovF  

In space 
yeP  consider structure 

eyS  and a fragment 

i

ey FR S  defined on Ii i

yI  . We suppose that on 

Ii i

yI   conditions (11) are satisfied. Therefore nonline-

arity is described by a monotone function. We suppose 

that the fragment i

ey FR S  is h -identified. 

We will explain the approach to SI on an example of 

system the second order (3) with following parameters 

0 1

3 4
A

 
  

  
, (0) 2, (0) 1x x  ,  

( ) 5 2sin(0.1 )u t t  , 0.4( )x x  , y x . 

The system was integrated on the interval [0; 30] s 

with a step 0,2s. We have generated sets Io
, IN

, 
,IN g

. 

We showed on Fig. 1 phase portrait of system and struc-

ture eyS  on the interval [5,4;27,2]gJ  s. On eyS  we 

have selected two fragments i

ov FR F , 1,2i  . The Fig. 

1 confirms identifiability of structure eyS . 

1,2 1,8 2,4 3,0
-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

S
ey

y

y'
e

-0,0050

-0,0025

0,0000

0,0025

0,0050

2

FR

1

FR

y'

 
Fig. 1. Phase portrait of system and eyS -structure 

 

From Fig. 1 nonlinearity of system follows. We will 

pass from eyS  to structure 
ekS  for simplification of pro-

cedure decision making about a form ( )y . 

On Fig. 2 we will show that ( ) ovx F . We define sec
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tor  Seck e  for 
ekS  and secants for 1 2

, ,,k k FR FR . Curves 

1, 2 on Fig. 2 correspond 1 2

, ,,k k FR FR . We will not show 

on Fig. 2 structure 
ekS , as 1 2

, ,ek k k S FR FR . This note 

is fair also sectors    1 2

, ,Sec , Seck k FR FR  as they prac-

tically coincide with boundaries  Seck e . 

Secants for 
ekS  and 1 2

, ,,k k FR FR  

1,83 sk k  , 
1, 1,849 sk k  , 

2, 1,87k sk  . 

Coefficients of determinations for secants exceed 0.925. 

Application of the theorem 1 with 
1 2 0.05    gives 

( ) ovx F . 

-0,003 -0,002 -0,001 0,000 0,001 0,002 0,003
-0,0050

-0,0025

0,0000

0,0025

0,0050

 Seck e

1,k

k

2,k

1

 e

sk

2

 
Fig. 2. Sector for ( )x  

 

Now we will consider a problem of identification a 

form function ( )x . Select on ekS  the fragment 

2

,k ek FR S  defined on a subinterval 

, [16,4; 26,2]s.g kJ   It is showed on Fig. 3. 2

,k ek FR S  

corresponds a fragment 2

ey FR S . 

-0,004 -0,002 0,000 0,002 0,004
-0,0050

-0,0025

0,0000

0,0025

0,0050

2,k
2,k

 
ekS

sk

e

 
Fig. 3. ekS -structure 

 

On Fig. 3 we showed a secant 2, 2,( ) ( )k k st a k t   for 

2

,kFR . The coefficient of determination for 2,k  is 

2,

2

, 0,956
ker   . So, as a first approximation we have a 

linear estimator for ( )x . Verify the obtained result. 

We will apply offered in [30] to statics systems the ap-

proach for decision making about a form ( )y . Ap-

proach implementation is grounded on following opera-

tions. At first we introduce criterion of decision making. 

Further we select the structure function ( )y , satisfy to 

this criterion. We apply for this purpose the theorem 3.7 

[30]. 

Construct for 
eyS  a secant described by a polynomial 

of order p , 

 2, , 2, , 0,2, 1, ,

1

,
p

v j

k p s k p p j p s

j

e k a a k 


   .               (12) 

Order of a polynomial (12) define from a condition 

2, ,

2 *max ( )
k pe

j
r j p  ,                                                 (13) 

where 
2, ,

2

k per   is a coefficient of determination between 

e  and 
sk . Results of simulation give value 3p   with 

2, ,

2 0.982
k per   . 

Consider the class of elementary functions. At first ap-

ply a power function y  in the capacity of the candidate 

on ( )y . Construct secant 
ekS  as function from y  

2, , 2, ,( ) ( , )k k st a k t   , 

where ( , ) ( ) ( )sk t e t y t  . 

At 0.6   we obtain 
2, ,0.6

2 0.987
ker   , and at 0.4   

2, ,0.4

2 0.994
ker   . Apply the theorem 3.7 [30] and choose a 

power function with 0.4  . 

Remark 2. The described approach to secant choice 

2, ,k   in [23] is named by a straightening method. The 

graphic-analytical approach analogous to a method of 

straightening was applied in [31]. 

Coefficients of determinations secants with nonlinear 

functions sin( ), ln( ), yy y e  are less magnitude 
2, ,

2

k per  . 

Analogous results are true and for a fragment 
1

,k ek FR S . 

Now we will generalize the obtained results and the 

approach offered in [30]. We offer the following algo-

rithm of choice structure function ( )y  on the class 
ovF . 

1. Define structure eyS  and estimate identifiability of 

system on eyS . 

2. Construct sector  Sec i

FR  for 
i

ey FR S . If it is 

necessary, fulfil this step for 
ekS . 

3. Make a solution on the class 
ovF . If ( ) ovy F , go to 

a step 4. 

4. Go into structural space  ,ke sk eP  and construct 

structure 
ekS . 
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5. On 
ekS select a fragment 

,

i

k ek FR S  1i  . 

6. Define for 
,

i

kFR  a secant 
,i k  and a coefficient of 

determination 
,

2

, i ker  . 

7. Define a secant 
2, ,k p  (12), and parameter p will se-

lect from a condition (13). 

8. Set the class of the elementary single-valued nonlin-

earities. Use a method of straightening and choose struc-

ture of function ( )y . 

Sometimes in space 
keP  it is not possible to make a so-

lution on a form of function ( )y . It is true for power 

and sinusoidal functions. In this case be switched in space 

eyP  and make a solution on the basis of the structure 

analysis 
eyS . 

B. Class 
mvF  

Consider now the class of many-valued functions. We 

use for a solution of a problem structure
eyS , 

ekS . The 

structure 
ekS  unlike 

eyS  allows to find parameters func-

tion ( )y . 

We will explain the approach to structure choice ( )y  

on an example of system the second order considered in 

section 8.1. Input is ( ) 2sin(0.1 )u t t . ( )y  is de-

scribed by saturation function 

, 1,

( ) ( ) , 1,

, 0.5,

y

y sat y y y

y



 






  
  

 2, 2, 1      . 

Corresponding structures for a steady state are showed 

on Fig. 4. 

-1,0 -0,5 0,0 0,5 1,0 1,5
-0,4

-0,2

0,0

0,2

0,4

S
ey

y'
ey'

y

-0,10

-0,05

0,00

0,05

0,10

 
Fig. 4. Structures of system the second order with saturation 

 

From Fig. 4 we see that in points 0.5y   , 1y   the 

system changes the properties. The analysis of behaviour 

structure will show that in neighbourhood of the specified 

points is had a sharp change of properties. On the interval 

(-0.5; 1) we see linear growth ( )e t . From 
ekS  follows, 

that we observe sharp growth (slope) ( )y t  out of the 

specified interval. Such behaviour of a system we see on 

the ends of variations intervals of a variable ( )y t . Com-

pare such behaviour of a system to presence at it a condi-

tion of cutting off (saturation). 

We do not state a method of estimation the class F  for 

considered function. It is described in section 7.A. 

So, the visual analysis even in the conditions of uncer-

tainty allows making preliminary assumptions about a 

nonlinearity form ( )y . 

Pass to an estimation stage of parameters. We will di-

vide the upper part of the structure 
eyS  defined on a time 

gap [17.2; 27.4]s, on fragments i

FR , 1,2,3i  . They are 

showed in Fig. 5. Fragments 
,

i

kFR correspond i

FR  on 

ekS . Further, we will apply the approach described in 

section 7.A. Consider a fragment 2

,k ek FR S  for defini-

tion of an angle of inclination function ( )sat y . Apply 

secant method. Obtain for an angle of inclination ( )sat y  

an estimation 2.03. The linear part ( )sat y is defined on 

the interval [-0.5; 1]. Therefore for saturation areas 

( )sat y  obtain estimations ˆ ˆ2, 1    . 

-1,0 -0,5 0,0 0,5 1,0 1,5
-0,10

-0,05

0,00

0,05

0,10

3

FR

2

FR

1

FR

e

y
 

Fig. 5. The upper part eyS  on a time gap [17.2; 27.4] s 

 

Validity of application an estimation of a change a lin-

ear part of function ( )y  follows from following state-

ment. 

Statement 3. Let: i) in space eyP  the fragment 

2

ey FR S  is described by the equation e cy d  , 

where ( ),c d  are some numbers, 0  ; ii) in space 
keP  

for 
2

,k ek FR S  the secant 2, 2, 2,( ) ( )k k s kt a k t b   , where 

2, 2,,k ka b are some numbers, is received; iii) function 

( ) ( )y sat y   on a fragment 
2

ey FR S  is described  by 

the equation ( )y y  . Then for c  on 
2

ey FR S  the 

estimation 2,kc p a  is true, where 

1
e e

d b
p 

 
   , 1

2,max ( ) , max ( )e e k
t t

e t t     . 
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Proof. Let  2domy   FR  

e cy d  .                                                                (14) 

The fragment 2

,k ek FR S  in space 
keP  corresponds to 

a fragment 2

FR . For 2

,kFR  construct a secant 

2, 2, 2,( ) ( )k k s kt a k t b   , 

where 
2, 2,,k ka b  are defined by means of a least square 

method. 

Consider a secant 
2, 2, 2,( ) ( )k k s kt a k t b   . From the se-

cant equation define y  

2,

2, 2,

k

k k

a e
y

b



. 

Values substitute in (14) and define c  

  2, 2,

2,

2, 2,

2,

1

1
1

k k

k

k k

k

c b e d
a e

bd

a e e e





   

  
   

  

.                               (15) 

Designate 
e  as max ( )e

t
e t  , 2,

1
max ( )k

t
e

t 


 . 

Then (15) 

2, 2,

2, 2,

1 1
1 1

k k

k e e k e e

b bd d
c

a a
 

   

  
       

  
. 

As 
0 0c c   and 

0 0c  , that 2, 0ka  . Last inequal-

ity is a positivity   corollary. So, we obtain 2,kc p a , 

where p  will satisfy to a condition 

2,
1

k

e e

bd
p 

 
   . 

Results of structural identification fragments 
1 3, FR FR  we have obtained above as estimations on 

parameters ,   function ( )sat y . They will conform to 

obtained on the basis of the analysis structure eyS  qualita-

tive conclusions. 

We will describe now algorithm of an estimation a 

form nonlinear function ( )y  on the class mvF . 

1. Construct structure eyS  and divide it into frag-

ments
i

ey FR S , 1i  . 

2. Estimate on eyS  identifiability of system. 

3. Construct sector  Sec i

FR  for 
i

FR . Make a solu-

tion on the class mvF . If ( ) mvy F , pass to a step 4. 

4. Make a preliminary solution on a form of function 

( )y  on the basis of analysis the structure eyS . 

5. Estimate properties and parameters of function on 

the basis of the analysis fragments
,

i

k ek FR S , 1i   by 

means of secant method in space 
keP . 

6. For 
,

i

kFR  find a secant 
,i k  and a coefficient of de-

termination 
,

2

, i ker  corresponding to it. 

7. Make a solution on the significance of the obtained 

parameters of function on values 
,

2

, i ker  . 

Remark 3. The offered approach gives parametric es-

timations for 
,i k  in the form of some subset belonging to 

informational set Io
. Level of obtained values of estima-

tions is one more measure of adequacy the offered ap-

proach. 

The final decision about effectiveness of the obtained 

estimations at a stage of parametric identification system 

(3) accepts. 

The offered approach is based on the analysis of struc-

tures eyS  and 
ekS . Generally it does not allow identifying 

any many-valued nonlinearity. Therefore we should fulfil 

additional researches to consider all features and specific-

ity of nonlinear functions. It confirms an example eyS - 

structure and a phase portrait for a system of the second 

order. They describe the steady state of a system and are 

showed on Fig. 6. 

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5
-0,8

-0,4

0,0

0,4

0,8

y

ey'y'

S
ey

-0,250

-0,125

0,000

0,125

0,250

 

Fig. 6 

 

We see (Fig. 6) that the system is h -identified. Non-

linearity has features in points 1y   , 0y   and 1y  . 

These points are points of change a sign a derivative (see 

eyS -structure). Application of secant method for struc-

tures 
ekS  or eyS  will show that on intervals of violation 

of smoothness the coefficient of the slope a secant is 

close to 0. The coefficient of determination secants ex-

ceeds 0.96. We conclude that nonlinearity does not con-

tain in a neighbourhood of the specified points of smooth 

curves. We can suppose that in these points the derivative 

changes a sign. Explain it as properties of function ( )y , 

and the chosen interval of integration. 

Function ( )y  has form 
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2, if 1,

( ) sign( ), if 1,

2, if 1.

y

y y y

y






 
   

                                        (16) 

The obtained inference confirms Fig. 7. From Fig. 7 

we see that the structure 
keS  contains points of change a 

sign derivative variable e . We consider behaviour of 

system in space 
keP . 

Statement 4. Let system (3): i) is h -identified; ii) each 

fragment i

FR  of structure i

ey
i

S FR , 1i   contains 

flexes points. Then the system (3) is not identified in 

space 
keP  if the potency of an applicable domain of each 

fragment i

FR  does not exceed 
in , where 

in is a positive 

number. 

Proof. We on the basis of the analysis structure 
eyS  ob-

tain set of fragments i

FR . Consider a fragment i

FR  and 

a flex point 
iM  on it. Let ( )iI y  is a variation interval y  

between flexes points of fragments i

FR  and 1i



FR and 

# i iI n  where # iI  is a potency of interval 
iI . We sup-

pose that 
in  is a small number. Therefore it is not enough 

number of points the data for an estimation of parameters 

function ( )y  by means of secant method. We obtain a 

low coefficient of determination for a secant of fragment. 

Statement is proved.  

-0,10 -0,05 0,00 0,05 0,10
-0,10

-0,05

0,00

0,05

0,10

sk

e

 
Fig. 7. 

keS -structure for system with function (16) 

 

С. About Choice of Structure Nonlinearity 

In section 7 we have offered the approach to choice of 

the class of nonlinear functions. It on construction of sec-

tor set and the analysis of properties secants is based. 

Further, we have considered based on the analysis of 

properties structure eyS the approach. We have offered 

algorithms of decision making by means of secant meth-

od. Effectiveness of the offered method of the form non-

linearity depends. Properties of structure depend on dy-

namic properties of system and model of its deriving. The 

structure eyS is result of approximation motion of system 

by means of special model. Therefore 
eyS  can contain 

errors (uncertainty). These errors influence by form a 

variable ( )e t  and complicate decision making process. 

We on an example of system with nonlinearity (16) ob-

served it. Therefore we should offer the approach which 

will confirm above obtained results in the conditions of a 

priori uncertainty. 

Development of analytical methods decision making in 

the conditions of a priori uncertainty about structure of 

system and its properties is a complicated problem. Apply 

in this case indirect methods. Refer to them a method of 

frequency bar chart (frequency distribution) which is ap-

plied to study of statistical processes. We show, as this 

method to apply to the analysis of a considered problem. 

Consider dynamic system of the second order with 

nonlinearity (16). On Fig. 6 we showed structures corre-

sponding to it. We name the applied approach the struc-

ture-frequency analysis (SFA method). Results of work 

SFA method in the integrated form are presented on Fig. 

8. From Fig. 8 we see that nonlinearity gives non-uniform 

value distributions I domi

y eyy S  . On Fig. 8 we 

showed one of fragments 
eyS . Designate distribution 

functions ,e y  as ( ), ( )f e f y . 
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Fig. 8. Results of application of SFA method 

 

Notice that a form of functions ( )f y , ( )f e  reflect in 

corresponding space the form of function (16). The anal-

ysis ( )f y  gives 4 variations intervals of function (16). 

On Fig. 8 we represent piecewise-linear reconstruction 

( )e y  of function ( )y  in scale to a variable e . Arrows 

we will show choice of switch points of function. 

So, we conclude that SFA method allows obtaining an 

estimation of the form nonlinear function ( )y  on the 

basis of the analysis of functions ( )en e , ( )en e  and struc-

ture eyS . The given approach is obvious, but demands 

from the researcher good knowledge of object domain. 

This knowledge, eventually, defines final result. 
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IX. CONCLUSION 

The method of structural identification dynamic sys-

tems with nonlinearity is offered. We showed that for a 

solution of a problem an estimation structure the condi-

tion h -identifiability of system should be satisfied. The 

method of construction the set containing the information 

on nonlinearity is offered. It is grounded on application of 

special static model. 

The structure 
eyS  is introduced reflecting a change of 

nonlinear properties of system. The method of estimation 

the class nonlinear functions on the basis of the analysis 

sector set for 
eyS , 

ekS -structures are offered. We showed 

that in the conditions of a priori uncertainty we can make 

a conclusion about a form of nonlinear function on 
eyS . 

The algorithm of an estimation structure single-valued 

nonlinear function is offered. We for obtaining of estima-

tions parameters nonlinear function the structure 
keS  are 

used. Examples of work algorithm are considered. 

The approach to structural identification of many-

valued nonlinearities is described. Existing difficulties are 

noted. We showed that condition execution h -

identifiability for some nonlinearity not always is suffi-

cient for an overall estimate of structure nonlinearity. Use 

the additional information for an improvement of the ob-

tained estimations. It we underline complexity, variety of 

nonlinearity. 

The structurally-frequency method of recovery of non-

linearity is offered. It is the instrument of check solutions 

and the obtained structural estimations. 

The analysis of the obtained results will show the ne-

cessity of continuation research for the given direction. 
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