
I.J. Intelligent Systems and Applications, 2015, 07, 44-49
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.07.06

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 44-49

Mining Interesting Infrequent Itemsets from Very

Large Data based on MapReduce Framework

T Ramakrishnudu
Dept. of CSE, National Institute of Technology, Warangal, 506004, India

Email: trk@nitw.ac.in

R B V Subramanyam
Dept. of CSE, National Institute of Technology, Warangal, 506004, India

Email: rbvs66@nitw.ac.in

Abstract—Mining frequent and infrequent itemsets from a

given dataset is the most important field of data mining. When

we mine frequent and infrequent itemsets simultaneously,

infrequent itemsets become very important because there are

many valued negative association rules in them. Mining

frequent Itemset is highly expensive, if the minimum threshold

is low, whereas mining infrequent itemsets is highly expensive,

if the minimum threshold is high. When the dataset size is very

large, both memory usage and computational cost of mining

infrequent items is very expensive. In addition, single

processor’s memory and CPU resources are not enough to

handle very large datasets. Parallel and distributed computing

are effective approaches to handle large datasets. In this paper

we proposed a method based on Hadoop-MapReduce model,

which can handle massive datasets in mining infrequent

itemsets. Experiments are performed on 8 node cluster with a

synthetic dataset. The performance study shows that the

proposed method is efficient in handling very large datasets.

Index Terms— Data Mining, Association Rule, Frequent

Itemset, Infrequent Itemset, Hadoop, Mapreduce.

I. INTRODUCTION

Data mining is the process of extracting interesting,

previously unknown and potentially useful patterns from

the large repositories and it is the core process of

Knowledge Discovery in Database (KDD) [13]. Frequent

Itemset Mining (FIM) or Association Rule Mining (ARM)

is a data mining task [13]. Frequent Itemset is actionable

if its support count is greater than or equal to a user-

specified threshold, called a minimum support (ms),

whereas Infrequent Itemset support count is below the

minimum support (ms). Association Rule Mining

discovers associations among items in a transactional

database [1].

Frequent Itemset Mining has been extensively studied

in the literature since Agrawal et al. first introduced it in

[1, 2]. A typical example of Frequent Itemset Mining

application is the market basket analysis. Much effort has

been devoted and algorithms proposed for efficiently

discovering association rules [2, 3, 4, 5, 6, 25 26].

Association rules provide a convenient and effective way

to identify and represent certain dependencies between

attributes in a database.

In recent years, there has been an increasing demand

for mining the infrequent Itemset. For instance, in [7, 8, 9,

12] algorithms for discovering infrequent itemsets have

been proposed. However, traditional infrequent Itemset

mining algorithms still suffering from the scalability,

especially if the data size is very large.

Mining frequent itemsets is highly expensive, if the

minimum threshold is low, whereas mining infrequent

itemsets is very expensive, if the minimum threshold is

high. When the dataset size is very large, both memory

usage and computational cost can still be very expensive

in mining frequent as well as infrequent itemsets. In

addition, single processor’s memory and CPU resources

are not enough to handle very large datasets. Additionally,

because of exponential growth of the data, the

organizations have to deal with continually growing

amount of data. As these data grow past hundreds of

gigabytes towards terabytes or more, it becomes nearly

unimaginable to mine them on a single machine. The

solution for the above problem is the distributed

computing.

The distributed and parallel computing provides an

excellent solution for the above problems. Distributed

data mining algorithms attempts to divide the mining

problem into sub- problems and solves the sub-problems

using homogeneous machines such that each node works

independently and simultaneously. Although the

distributed data mining improve the performance, but

raises quite a few issues like partitioning the input data,

load balancing, communication cost between the working

nodes and identifying the failure of nodes. To overcome

the above problems the MapReduce framework [10, 11]

has been introduced. MapReduce, as a simplified

distributed framework developed by Google [10, 11], is

more appropriate for data processing. It has been widely

used in the tasks of search engines, data mining and

machine learning etc.

In the MapReduce framework [10, 11], a distributed

file system initially partitions the input file and data

represented as <key, value> pairs. All computations are

carried out by two functions called Map and Reduce.

Both the functions Map and Reduce take <key, value>

pair as an input and produce the same pair as an output.

The Map function takes an input pair and produces

 Mining Interesting Infrequent Itemsets from Very Large Data based on MapReduce Framework 45

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 44-49

intermediate <key, value> pair. The Reduce function

takes an intermediate key and the set of values associated

with that key. It merges these values to form a possible

small set of values. The output of reduce function is

written to a distributed file in the Distributed File System

(DFS).

Mining very large datasets using MapReduce is not

new, some of the researchers made an effort to the

Frequent Itemset Mining (FIM) and the association rule

mining (ARM) [15-22] on transactional data. And few

methods [23-24] deal with different kind of data. All the

existing work talks about the methods which are used for

frequent Itemsets mining. In this paper, we focused on

mining interesting infrequent Itemset from very large data

using MapReduce programming model.

The rest of this paper is organized as follows. Section 2

briefly presents the relevant concepts and definitions. In

Section 3, the existing strategies are reviewed. The

proposed algorithm is presented in Section 4.

Experimental results are given in Section 5. The

concluding remarks are finally made in Section 6.

II CONCEPTS AND DEFINITIONS

Let I= {i1, i2, i3...in} be a finite set of items and DB be a

set of database transactions where each transaction T I

is a set of items.

Let X, be a set of items called Itemset. Support of the

itemset X  I is:

Supp(X) = No.of transactions contains X/Total No.of

Transactions in DB.

If the support of an itemset X is greater than or equal to

user defined minimum support (ms) threshold, then X is

called frequent Itemset otherwise infrequent Itemset [13].

Definition1: Partial minimum support count [17] =

count (Si) * ms. Where Si is the spliti and count (Si) is the

number of transactions in Si.

Definition 2: I is an infrequent Itemset of potentially

interest [8] if:  X,Y: XY=, XY =I, for ikX, jkY,

sup(ik)  ms, sup(jk)  ms, interest(X,Y)  minimum

interest(mi).

Definition 3: Partial minimum interest (pmi) = count

(Si) *mi , Where mi is the minimum interesting value.

A. Association Rule:

A (positive) association rule is of the form: X Y,

with X, Y  and X  Y = Ø [1]. Support and

confidence of X Y are defined as [2]:

)()(YXSuppYXSupp  (1)

)(

)(
)(

XSupp

YXSupp
YXConf


 (2)

An interesting association rule has support and

confidence greater than user given thresholds minimum

support (ms) and minimum confidence (mc) respectively.

B. Hadoop

Hadoop is a framework that allows for the distributed

processing of large datasets across cluster of computers

using simple programming models [14]. Hadoop is the

parallel programming platform built on Hadoop

Distributed File Systems (HDFS) for MapReduce

computation. The HDFS is the distributed file system

designed to run on commodity hardware. HDFS is highly

fault-tolerant and is designed to be deployed on low-cost

hardware. HDFS provides high throughput access to

application data and is suitable for applications that have

large datasets. HDFS was originally built as infrastructure

for the Apache web search engine project. HDFS is a part

of Apache Hadoop main project [14].

C. MapReduce:

MapReduce is a programming model and an associated

implementation for processing and generating large

datasets. Users specify a map and reduce functions, they

takes <key, value> pair as an input and generates

intermediate <key, value> pairs and merges all

intermediate values associated with the same intermediate

key respectively. Programs written in this function style

are automatically parallelized and executed on a large

cluster of commodity machines [10][11].

III. RELATED WORK

Several algorithms have been proposed for mining

frequent Itemsets using MapReduce framework. But no

algorithms have been proposed for mining interesting

infrequent Itemsets using MapReduce framework.

Xin Yue Yang et al [21], proposed a one pass

algorithm based on Hadoop-MapReduce. The algorithm

needs only one scan (MapReduce job) to find all frequent

k-itemsets. Firstly, splitting will take place and after that

each mapper will apply apriori on that split and it will

generate all length Itemsets. It produce output as Itemsets

as key and value as one. The reduce will take output of

mapper and sum all values for particular keys, then prune

infrequent Itemsets and finally generate all frequent

Itemsets.

In [19] the authors proposed a k-phase parallel apriori

algorithm based on MapReduce. It needs k scans

(MapReduce jobs) to find k-frequent items. The

algorithm uses two different map functions: one for the

first phase and one for rest of the phases. Though the

algorithm was successful in finding k-frequent Itemsets

using the parallel approach, it has a huge overhead of

reading frequent Itemsets of previous phase every time

from HDFS. The fundamentals of parallelizing the

Apriori algorithm in the MapReduce framework is to

design the map and the reduce functions for candidate

generations and support counting.

Each mapper calculates counts of each candidate from

its own partition, and then each candidate and the

corresponding count are output. After map phase,

candidates and its counts are collected and summed in

reduce phase to obtain partial frequent Itemsets. By using

count distribution between map phase and reduce phase,

the communication cost can be decreased as much as

possible. Since frequent 1-itemsets are found in pass-1 by

simple counting of items. Phase-1 of the algorithms is

46 Mining Interesting Infrequent Itemsets from Very Large Data based on MapReduce Framework

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 44-49

strait forward. The mapper outputs <item, 1> pair’s for

each item contained in the transaction. The reducer

collects all the support counts of an item and outputs the

<item, count> pairs as a frequent 1-itemset to the L1,

when the count is greater than the minimum support

count. The k-itemsets are passed as an input to the

mapper function and the mapper outputs <item, 1>, then

the reducer collects all the support counts of an item and

outputs the <item, count> pairs as a frequent k-itemset to

the Lk.

Othman Yahya et al [17] proposed a two-phase

algorithm on Hadoop MapReduce, which is more

efficient than previous one-phase and k-phase algorithms.

It needs only two MapReduce phases to find all frequent

k-itemsets. In phase1, each input split is assigned a map

task (executed by map worker) that calls a map function

to process this split. The mapper function uses traditional

Apriori with the partial minimum support count; which is

equal to the number of transactions in the split multiply

by the minimum support threshold.

The mappers output is a list of intermediate <key,

value> pairs grouped by the key via combiner, and stored

in the map worker where the key is an element of partial

frequent k-itemsets and the value is its partial count.

When all map tasks are finished, the reduce task is started.

The mappers output are shuffled to the reduce worker that

calls a reduce function. The output of reduce function is a

list (Lp) of <key, value> pairs, where the key is an

element of partial frequent k-itemsets and the value equal

one, stored in HDFS.

In phase two, one extra input is added to the data flow

of the previous phase, which is a file that contains all

partial frequent k-itemsets. The map function of this

phase counts occurrence of each element of partial

frequent k-itemset in the split and outputs a list of <key,

value> pairs, where the key is an element of partial

frequent k-itemset and the value is the total occurrence of

this key in the split. The reduce function outputs a list (Lg)

of <key,value> pairs, where the key is an element of

global frequent k-itemsets and the value is its occurrence

in the whole dataset. The main drawback of this method

is the large number of partial frequent itemsets may

overload the map functions of the phase-II.

Mohammadhossein B et al [23] proposed a scalable

and distributable binomial method, which deals with

different kind of data. It converts the input data into

binomial format to take benefit of MapReduce method

structures, and then mine association rules from that data.

It uses the layered approach to mine frequent itemsets

from the binomial data.

Zahara Farzanaryar et al [24] proposed a method based

on insignificant Itemset property, and it deals with social

network data. It improves the method proposed in [17].

IV PROBLEM DESCRIPTION AND PROPOSED METHOD

Most of the methods proposed for mining frequent

Itemsets using Hadoop MapReduce, but no method was

designed for mining infrequent Itemsets using Hadoop

MapReduce. It is necessary to design a method to mine

infrequent Itemsets from very large data using Hadoop

MapReduce framework.

Problem Statement: Given a large transactional

database LDB and user-defined minimum support (ms)

value, minimum interesting (mi) values, the problem is to

find interesting infrequent Itemsets using Hadoop

MapReduce framework.

We propose a two phase method to find interesing

infrequent Itemsets and a pruning technique to decrease

the number of intermediate infrequent Itemsets during

phase one.

In first phase the input is divided into number of

chunks and each chunk is assigned to one node. The

mapper function at each node accepts two more inputs are

partial minimum support (pms) and partial minimum

interest (pmi) in addition to the chunk, and it generates

the candidate k Itemsets of that chunk. If the partial

support count of an itemset is less than the partial

minimum support and the interest is greater than the

partial minimum interest then the itemset is assigned to

reducer. The reducer function outputs the itemsets in the

form <key, 1>. The algorithms for mapper and reducer

are shown in “Fig.2” and “Fig.3”.

Fig. 1. Work flow the method

In second phase the mapper function of this phase

takes an infrequent itemset list from the distributed file

system and the input chunk as an input. It calculates the

frequency of an itemset in that chunk, and return <key,

count> as an output. The reducer summaries the count of

each itemset and for each itemset if the count is less than

the minimum support and the interest is greater than the

minimum interest then the itemset is considered as an

interesting infrequent itemset.

The algorithms for mapper and reducer are shown in

“Fig.4” and “Fig.5”. The detailed flow diagram of the

process is shown in “Fig.1”.

In each phase different Mapper and Reducer functions

are used. In the first phase the mapper function accepts

three different inputs called input split, minimum partial

support and partial minimum interest where as in the

second phase of the mapper accepts only two different

inputs called infrequent Itemset list generated in phase

one and the input split.

 Mining Interesting Infrequent Itemsets from Very Large Data based on MapReduce Framework 47

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 44-49

Map1()

Input: Split-Si; partial minimum support(pms); partial

minimum interest(pmi).

Output: <key, value>; key: interesting infrequent k-

Itemset of the split Si; value: partial count of k-Itemset.

Begin

1. Ck =Generate_Candidate_Itemsets(Si)/*

generates candidate itemsets of the splitSi */

2. For each IkCk do

3. If k=1 then L1= L1U I1

4. If k>1

5. If(partial_count(Ik)<pms&&

Interest(Ik)>pmi)then

6. Lk= LkU Ik;

7. End if;

8. End if

9. Lk= LkU L1 ;

10. Foreach Item I in Lk do

11. Output(I, pc) /* pc: partial count */

12. End for

End;

Fig. 2. Algorithm for Map1

Reduce1()

Input: <key, value>; key: interesting infrequent k-

Itemset of the split Si; value: partial count of k-Itemset.

Output: <key, 1>; key is global candidate Infrequent

Itemsets.

Begin

1. Foreach key do

2. Output(key,1)

3. End for

End

Fig. 3. Algorithm for Reduce

Map2()

Input: Si: split, L: infrequent Itemset list read from

distributed memory.

Output: <key, value> key: Itemset from list L, value:

Item count in Si .

Begin

1. Foreach Item I in L do

2. count=count+ find(I,Si) /*The find() function

finds the occurrence of I in Si */

3. End for

4. Out(I, count)

End

Fig. 4. Algorithm for Map2

Reduce2()

Input: <key, value> key: candidate itemset, value:

Item count in each split, minimum support (ms) and

minimum interest(mi).

Output: <key, value> key: Interesting Infrequent

Itemset; value: Its count in the whole dataset

Begin

1. Foreach key Ik do

2. Foreach value in Ik’s list

3. count(Ik)=count(Ik)+Ik.value;

4. End for

5. End for

6. if(count(Ik)<ms&&Interest(Ik)>mi)

7. Out(Ik, count)

8. End if

End

Fig. 5. Algorithm for Reduce

V. EXPERIMENTAL RESULTS

In this section we measure the performance of the

proposed algorithm running on cluster of nodes. To

evaluate the performance of our method we formed few

clusters with different size. All the experiments were

conducted in a Hadoop 2.2.0 cluster where each node

contains 2.20 GHz processors with 4 GB RAM, and a

500 GB hard disk and 2 a gigabyte Ethernet link.

Synthetic dataset is used in experiments. It is a

transactional dataset. It consists 1,000 distinct items and

the average size of the transaction is 120.

We test our approach to find the infrequent itemsets. A

set of experiments conducted to show the behaviour of

our approach at different minimum support and dataset

size in one cluster and different cluster size for fixed

minimum support. For better results each case is executed

two times and the average values are taken.

“Fig.5” depicts performance of the algorithm; the

execution time of the algorithm is observed for different

dataset size with a fixed minimum support on 8 nodes

cluster. The results show that the algorithm takes less

time even for larger datasets.

“Fig.6” delineates the performance of the algorithm; in

this the execution time of the method is observed for

different minimum support values for two dataset sizes of

1GB and 10GB. The results show that there is no much

difference in execution time when the minimum support

is high, but there is a difference in case of smaller

minimum support.

Fig. 6. Execution time for different dataset size

Then we fix the minimum support at 40% and test the

behaviour of the proposed method at different cluster size

for two different data sizes of 500MB and 1GB. “Fig.7”

shows results of these experiments. The results show that

48 Mining Interesting Infrequent Itemsets from Very Large Data based on MapReduce Framework

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 44-49

there is a much difference in the execution time if the

cluster size is less, but there is no much difference in case

of number of nodes are increased in the cluster. Also we

observed that the impact of MapReduce framework is

very less when the cluster size small.

Fig. 7. Execution time for different minimum support

At the end we evaluate the impact of the prunning

technique, which is used during the first phase of the

method. First we execute the algorithms without prunning

technique, it produce large number of intermediate items.

Intermediate items effects on the performance of the

entire process. And next we execute the algorithm with

the prunning technique, it produce less number of items.

“Fig.8” shows the impact of the prunning technique.

The results show that the impact of prunning techniques

is very high when the the data size is large.

“Fig.9” shows ths effect of prunning technique. We

fixed the minimum support and the dataset size, and

observed the execution time by changing the cluster size.

The rusults show that there is no much difference beteen

with and without prunning technique.

Fig. 8. Execution time for different Cluster size

Fig. 9. Execution time for different minimum support

Fig. 10. Execution time for different minimum support

VI. CONCLUSION AND FUTURE WORK

Finding infrequent Itemset is one of the most important

data mining problems. The task of finding interesting

infrequent items from very large data requires a lot of

computational and memory power.

In this paper we have proposed new method to find

interesting infrequent Itemsets from very large data based

on MapReduce framework. The results show that the

proposed method in this paper is very efficient in finding

infrequent items from very large datasets. Also the

experimental results show that the proposed method is

more efficient as the data size is increased.

Our future research works include design of better

interesting functions, which produce less number of

intermediate items during its process. Performance of the

reducer is depending on the intermediate nodes produced

by the mapper.

REFERENCES

[1] R. Agrawal, T. Imielinski, A. Swami, “Mining association

rules between sets of items in large databases”, In

Proceedings of ACM SIGOM International Conference on

Management of Data, New York, May 1993, pp. 207–216.

[2] R.Agrawal and R.Srikant, “Fast algorithms for mining

association rules”, In Proceedings of 20th International

Conference on VLDB, Chile, May 1994, pp. 207–216.

[3] J.Han and Y.Fu, “Mining multiple-level association rules

in large databases”, IEEE Trans. on Knowledge and Data

Engineering, Vol. 11, No 5, September 1999, pp. 798-805.

[4] X. Wu, C. Zhang and S. Zhang,”Efficient mining of both

positive and negative association rules”, ACM Trans. on

Information Systems, vol.22 (3), 2004, pp 381–405.

[5] Chris Cornelis, Peng Yan, Xing Zhang, Guoqing Chen:

“mining positive and negative association rules from large

databases”, in IEEE conference on Cybernetics and

Intelligent Systems, Bangkok, June 2006, pp.1-6.

[6] X. Yuan, B.P. Buckles, Z. Yuan and J. Zhang, ”Mining

negative association rules”, Proceedings of the Seventh

International Symposium on Computers and

Communication, Italy, July 2002, pp. 623–629.

[7] Junfeng Ding, Stephen S.T. Yau, “TCOM, an innovative

data structure for mining association rules among

infrequent items”, Computers and Mathematics with

Applications, Vol. 57, No. 2, January 2009, pp. 290-301.

[8] Ling Zhou, Stephen Yau, “Efficient association rule

mining among both frequent and infrequent items”,

 Mining Interesting Infrequent Itemsets from Very Large Data based on MapReduce Framework 49

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 44-49

Computers and Mathematics with Applications, Vol. 54,

No.6, September 2007, pp. 737–749.

[9] Luca Cagliero and Paolo Garza “Infrequent weighted

itemset mining using frequent pattern growth ” IEEE

Transactions on Knowledge and Data Engineering, Vol. 26,

No. 4, April 2013, pp. 903-915.

[10] Jeffery Dean and Sanjay Ghemawat “MapReduce:

simplified data processing on large clusters”, 6th

Symposium on Operating Systems Design and

Implementation, October 2004, pp.107-113.

[11] Jeffery Dean and Sanjay Ghemawat “MapReduce:

simplified data processing on large clusters”,

Communications of the ACM, Vol. 51, No.1, 2008, pp.

107-113.

[12] Dong, Z Zheng, Z Niu and Q Jiam ”Mining infrequent

itemset based on multiple level minimum supports”, 2nd Int.

Conf. on Innovative Computing, Information Control,

2007.

[13] Jiawei Han and Micheline Kamber, “Data mining:

concepts and techniques”, Morgan Kaufman, 2001.

[14] Apache Hadoop Project, http://hadoop:apache.org/.

accessed at 201408251930.

[15] Jongwook Woo, “Market basket analysis algorithm on

Map/Reduce in AWS EC2”, International Journal of

Advanced Science and Technology, Vol.46, September

2012, pp. 25-38.

[16] Su-Qi W, Yu-Bin Y, Guang-Peng C, Yang G and Yao Z,

“MapReduce-based closed frequent Itemset mining with

efficient redundancy filtering”, 12th International

Conference on Data Mining Workshops, December 2012,

pp. 449-453.

[17] Othman Y, Osman H and Ehab E, “An efficient

implementation of apriori algorithm based on hadoop-

MapReduce model”, International Journal of Reviews in

Computing, Vol. 12, December 2012, pp.57-67.

[18] Ming-Yen Li, Pei-Yu L and Sue-Chen H, “Apriori-based

frequent Itemset mining algorithms on MapReduce”, The

6th International Conference on Ubiquitous Information

Management and Communication, Malaysia, February

2012, pp.257-264.

[19] Ning Li, Li Z, Qing H and Zhongzhi S, “Parallel

implementation of apriori algorithm based on MapReduce”,

13th International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed

Computing, Japan, August 2012, pp. 236-241.

[20] Le Z, Zhiyong Z and Jin C, “Balanced parallel fp-growth

with mapreduce”, in 2010 IEEE Youth Congress on

Information Counting and Telecommunications, Chaina,

November 2010, pp. 243-246.

[21] Xin Yue Y, Zhen L and YanFu, ”Mapreduce as a

programming model for association rules algorithm on

hadoop”, in 3rd International Conference on Information

Sciences and Interaction Sciences, Chaina, June 2010, pp.

99-102.

[22] Matteo Riondato, Justin A. DeBratant, Rodrigo Fonseca,

and Eli Upfal, “PARAM: A parallel randomized algorithm

for approximate association rules mining in MapReduce”

in 21st ACM International Conference on Information and

Knowledge Management, USA, October 2012, pp.85-94.

[23] Mohammadhossein B and Madhi Niamanesh, “ScaniBino:

An effective MapReduce-based association rule mining

method”, in proceedings of the the sixteenth International

Conference on Electronic commerce, USA, August 2014,

pp.1-8.

[24] Zahara Farzanaryar and Nick Cercone, “Efficient mining

of frequent itemsets in social network data based on

MapReduce framework”, in proceedings of the IEEE/ACM

International Conference on Advances in Social Networks

Analysis and Mining, Canada, August 2013, pp.1183-1188.

[25] M M Rahman “Mining social data to extract intellectual

knowledge”, International Journal of Intelligent Systems

and Applications, Vol. 4, No. 10, 2012, pp. 15-24.

[26] Thabet slimani and Amor Lazzez, “Efficient analysis of

pattern and association rule mining approaches”,

International Journal of Information Technology and

Computer Science, Vol. 6, No. 3, 2014, pp. 70-81.

Authors’ Profiles

T Ramakrishnudu was born on June

01, 1980. He received B.Tech

(Computer Science and Engineering)

degree from Jawaharlal Nehru

Technological University, Hyderabad,

India in 2001 and M.Tech (Computer

Science and Technology) from Andhra

University, Visakhapatnam, India in

2005. Currently he is working as an Assistant Professor in the

department of Computer Science and Engineering in National

Institute of Technology Warangal, India. His research interests

include Data Mining, Distributed Data Mining and Big Data

Analytics. He is a member in IEEE, ACM and Computer

Society of India.

R B V Subramanyam received M.Tech

and Ph.D from Indian Institute of

Technology Kharagpur, India. Currently He

is working in National Institute of

Technology Warangal. He has published

many journal and conference papers in the

areas of Data Mining. Some of his research

interests include Data Mining, Distributed

Data Mining, Fuzzy Data Mining, Distributed Data Mining and

Big Data Analytics. He is one of the reviewers for IEEE

Transactions on Fuzzy Systems and also for Journal of

Information and Knowledge Management. He is member in

IEEE and The Institution of Engineers (India).

How to cite this paper: T Ramakrishnudu, R B V

Subramanyam,"Mining Interesting Infrequent Itemsets from

Very Large Data based on MapReduce Framework",

International Journal of Intelligent Systems and Applications

(IJISA), vol.7, no.7, pp.44-49, 2015. DOI:

10.5815/ijisa.2015.07.06

