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Abstract—Mining frequent and infrequent itemsets from a 

given dataset is the most important field of data mining. When 

we mine frequent and infrequent itemsets simultaneously, 

infrequent itemsets become very important because there are 

many valued negative association rules in them. Mining 

frequent Itemset is highly expensive, if the minimum threshold 

is low, whereas mining infrequent itemsets is highly expensive, 

if the minimum threshold is high. When the dataset size is very 

large, both memory usage and computational cost of mining 

infrequent items is very expensive. In addition, single 

processor’s memory and CPU resources are not enough to 

handle very large datasets. Parallel and distributed computing 

are effective approaches to handle large datasets. In this paper 

we proposed a method based on Hadoop-MapReduce model, 

which can handle massive datasets in mining infrequent 

itemsets. Experiments are performed on 8 node cluster with a 

synthetic dataset. The performance study shows that the 

proposed method is efficient in handling very large datasets. 

 

Index Terms— Data Mining, Association Rule, Frequent 

Itemset, Infrequent Itemset, Hadoop, Mapreduce.  

 

I.  INTRODUCTION 

Data mining is the process of extracting interesting, 

previously unknown and potentially useful patterns from 

the large repositories and it is the core process of 

Knowledge Discovery in Database (KDD) [13]. Frequent 

Itemset Mining (FIM) or Association Rule Mining (ARM) 

is a data mining task [13]. Frequent Itemset is actionable 

if its support count is greater than or equal to a user-

specified threshold, called a minimum support (ms), 

whereas Infrequent Itemset support count is below the 

minimum support (ms). Association Rule Mining 

discovers associations among items in a transactional 

database [1]. 

Frequent Itemset Mining has been extensively studied 

in the literature since Agrawal et al. first introduced it in 

[1, 2]. A typical example of Frequent Itemset Mining 

application is the market basket analysis. Much effort has 

been devoted and algorithms proposed for efficiently 

discovering association rules [2, 3, 4, 5, 6, 25 26]. 

Association rules provide a convenient and effective way 

to identify and represent certain dependencies between 

attributes in a database. 

In recent years, there has been an increasing demand 

for mining the infrequent Itemset. For instance, in [7, 8, 9, 

12] algorithms for discovering infrequent itemsets have 

been proposed.  However, traditional infrequent Itemset 

mining algorithms still suffering from the scalability, 

especially if the data size is very large. 

Mining frequent itemsets is highly expensive, if the 

minimum threshold is low, whereas mining infrequent 

itemsets is very expensive, if the minimum threshold is 

high. When the dataset size is very large, both memory 

usage and computational cost can still be very expensive 

in mining frequent as well as infrequent itemsets. In 

addition, single processor’s memory and CPU resources 

are not enough to handle very large datasets. Additionally, 

because of exponential growth of the data, the 

organizations have to deal with continually growing 

amount of data. As these data grow past hundreds of 

gigabytes towards terabytes or more, it becomes nearly 

unimaginable to mine them on a single machine. The 

solution for the above problem is the distributed 

computing. 

The distributed and parallel computing provides an 

excellent solution for the above problems. Distributed 

data mining algorithms attempts to divide the mining 

problem into sub- problems and solves the sub-problems 

using homogeneous machines such that each node works 

independently and simultaneously. Although the 

distributed data mining improve the performance, but 

raises quite a few issues like partitioning the input data, 

load balancing, communication cost between the working 

nodes and identifying the failure of nodes. To overcome 

the above problems the MapReduce framework [10, 11] 

has been introduced. MapReduce, as a simplified 

distributed framework developed by Google [10, 11], is 

more appropriate for data processing. It has been widely 

used in the tasks of search engines, data mining and 

machine learning etc. 

In the MapReduce framework [10, 11], a distributed 

file system initially partitions the input file and data 

represented as <key, value> pairs. All computations are 

carried out by two functions called Map and Reduce. 

Both the functions Map and Reduce take <key, value> 

pair as an input and produce the same pair as an output. 

The Map function takes an input pair and produces 
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intermediate <key, value> pair. The Reduce function 

takes an intermediate key and the set of values associated 

with that key. It merges these values to form a possible 

small set of values. The output of reduce function is 

written to a distributed file in the Distributed File System 

(DFS). 

Mining very large datasets using MapReduce is not 

new, some of the researchers made an effort to the 

Frequent Itemset Mining (FIM) and the association rule 

mining (ARM) [15-22] on transactional data. And few 

methods [23-24] deal with different kind of data. All the 

existing work talks about the methods which are used for 

frequent Itemsets mining. In this paper, we focused on 

mining interesting infrequent Itemset from very large data 

using MapReduce programming model. 

The rest of this paper is organized as follows. Section 2 

briefly presents the relevant concepts and definitions. In 

Section 3, the existing strategies are reviewed. The 

proposed algorithm is presented in Section 4. 

Experimental results are given in Section 5. The 

concluding remarks are finally made in Section 6. 

 

II   CONCEPTS AND DEFINITIONS 

Let I= {i1, i2, i3...in} be a finite set of items and DB be a 

set of database transactions where each transaction T  I 

is a set of items. 

Let X, be a set of items called Itemset. Support of the 

itemset X  I is: 

Supp(X) = No.of transactions contains X/Total No.of 

Transactions in DB. 

If the support of an itemset X is greater than or equal to 

user defined minimum support (ms) threshold, then X is 

called frequent Itemset otherwise infrequent Itemset [13]. 

Definition1: Partial minimum support count [17] = 

count (Si) * ms. Where Si is the spliti and count (Si) is the 

number of transactions in Si. 

Definition 2: I is an infrequent Itemset of potentially 

interest [8] if:  X,Y: XY=, XY =I, for ikX, jkY, 

sup(ik)  ms, sup(jk)  ms, interest(X,Y)  minimum 

interest(mi). 

Definition 3: Partial minimum interest (pmi) = count 

(Si) *mi , Where mi is the minimum interesting value. 

A. Association Rule: 

A (positive) association rule is of the form: X Y, 

with X, Y  and X  Y = Ø [1]. Support and 

confidence of X Y are defined as [2]: 
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An interesting association rule has support and 

confidence greater than user given thresholds minimum 

support (ms) and minimum confidence (mc) respectively. 

B. Hadoop 

Hadoop is a framework that allows for the distributed 

processing of large datasets across cluster of computers 

using simple programming models [14]. Hadoop is the 

parallel programming platform built on Hadoop 

Distributed File Systems (HDFS) for MapReduce 

computation. The HDFS is the distributed file system 

designed to run on commodity hardware. HDFS is highly 

fault-tolerant and is designed to be deployed on low-cost 

hardware. HDFS provides high throughput access to 

application data and is suitable for applications that have 

large datasets. HDFS was originally built as infrastructure 

for the Apache web search engine project. HDFS is a part 

of Apache Hadoop main project [14]. 

C. MapReduce: 

MapReduce is a programming model and an associated 

implementation for processing and generating large 

datasets. Users specify a map and reduce functions, they 

takes <key, value> pair as an input and generates 

intermediate <key, value> pairs and merges all 

intermediate values associated with the same intermediate 

key respectively. Programs written in this function style 

are automatically parallelized and executed on a large 

cluster of commodity machines [10][11]. 

 

III.  RELATED WORK 

Several algorithms have been proposed for mining 

frequent Itemsets using MapReduce framework. But no 

algorithms have been proposed for mining interesting 

infrequent Itemsets using MapReduce framework. 

Xin Yue Yang et al [21], proposed a one pass 

algorithm based on Hadoop-MapReduce. The algorithm 

needs only one scan (MapReduce job) to find all frequent 

k-itemsets. Firstly, splitting will take place and after that 

each mapper will apply apriori on that split and it will 

generate all length Itemsets. It produce output as Itemsets 

as key and value as one. The reduce will take output of 

mapper and sum all values for particular keys, then prune 

infrequent Itemsets and finally generate all frequent 

Itemsets. 

In [19] the authors proposed a k-phase parallel apriori 

algorithm based on MapReduce. It needs k scans 

(MapReduce jobs) to find k-frequent items. The 

algorithm uses two different map functions: one for the 

first phase and one for rest of the phases.  Though the 

algorithm was successful in finding k-frequent Itemsets 

using the parallel approach, it has a huge overhead of 

reading frequent Itemsets of previous phase every time 

from HDFS. The fundamentals of parallelizing the 

Apriori algorithm in the MapReduce framework is to 

design the map and the reduce functions for candidate 

generations and support counting. 

Each mapper calculates counts of each candidate from 

its own partition, and then each candidate and the 

corresponding count are output. After map phase, 

candidates and its counts are collected and summed in 

reduce phase to obtain partial frequent Itemsets. By using 

count distribution between map phase and reduce phase, 

the communication cost can be decreased as much as 

possible. Since frequent 1-itemsets are found in pass-1 by 

simple counting of items. Phase-1 of the algorithms is 
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strait forward. The mapper outputs <item, 1> pair’s for 

each item contained in the transaction. The reducer 

collects all the support counts of an item and outputs the 

<item, count> pairs as a frequent 1-itemset to the L1, 

when the count is greater than the minimum support 

count. The k-itemsets are passed as an input to the 

mapper function and the mapper outputs <item, 1>, then 

the reducer collects all the support counts of an item and 

outputs the <item, count> pairs as a frequent k-itemset to 

the Lk. 

Othman Yahya et al [17] proposed a two-phase 

algorithm on Hadoop MapReduce, which is more 

efficient than previous one-phase and k-phase algorithms. 

It needs only two MapReduce phases to find all frequent 

k-itemsets. In phase1, each input split is assigned a map 

task (executed by map worker) that calls a map function 

to process this split. The mapper function uses traditional 

Apriori with the partial minimum support count; which is 

equal to the number of transactions in the split multiply 

by the minimum support threshold. 

The mappers output is a list of intermediate <key, 

value> pairs grouped by the key via combiner, and stored 

in the map worker where the key is an element of partial 

frequent k-itemsets and the value is its partial count. 

When all map tasks are finished, the reduce task is started. 

The mappers output are shuffled to the reduce worker that 

calls a reduce function. The output of reduce function is a 

list (Lp) of <key, value> pairs, where the key is an 

element of partial frequent k-itemsets and the value equal 

one, stored in HDFS. 

In phase two, one extra input is added to the data flow 

of the previous phase, which is a file that contains all 

partial frequent k-itemsets. The map function of this 

phase counts occurrence of each element of partial 

frequent k-itemset in the split and outputs a list of <key, 

value> pairs, where the key is an element of partial 

frequent k-itemset and the value is the total occurrence of 

this key in the split. The reduce function outputs a list (Lg) 

of <key,value> pairs, where the key is an element of 

global frequent k-itemsets and the value is its occurrence 

in the whole dataset. The main drawback of this method 

is the large number of partial frequent itemsets may 

overload the map functions of the phase-II. 

Mohammadhossein B et al [23] proposed a scalable 

and distributable binomial method, which deals with 

different kind of data. It converts the input data into 

binomial format to take benefit of MapReduce method 

structures, and then mine association rules from that data. 

It uses the layered approach to mine frequent itemsets 

from the binomial data. 

Zahara Farzanaryar et al [24] proposed a method based 

on insignificant Itemset property, and it deals with social 

network data. It improves the method proposed in [17]. 

 

IV   PROBLEM DESCRIPTION AND PROPOSED METHOD 

Most of the methods proposed for mining frequent 

Itemsets using Hadoop MapReduce, but no method was 

designed for mining infrequent Itemsets using Hadoop 

MapReduce. It is necessary to design a method to mine 

infrequent Itemsets from very large data using Hadoop 

MapReduce framework. 

Problem Statement: Given a large transactional 

database LDB and user-defined minimum support (ms) 

value, minimum interesting (mi) values, the problem is to 

find interesting infrequent Itemsets using Hadoop 

MapReduce framework. 

We propose a two phase method to find interesing 

infrequent Itemsets and a pruning technique to decrease 

the number of intermediate infrequent Itemsets during 

phase one. 

In first phase the input is divided into number of 

chunks and each chunk is assigned to one node. The 

mapper function at each node accepts two more inputs are 

partial minimum support (pms) and partial minimum 

interest (pmi) in addition to the chunk, and it generates 

the candidate k Itemsets of that chunk. If the partial 

support count of an itemset is less than the partial 

minimum support and the interest is greater than the 

partial minimum interest then the itemset is assigned to 

reducer. The reducer function outputs the itemsets in the 

form <key, 1>. The algorithms for mapper and reducer 

are shown in “Fig.2” and “Fig.3”. 

 
Fig. 1. Work flow the method 

 

In second phase the mapper function of this phase 

takes an infrequent itemset list from the distributed file 

system and the input chunk as an input. It calculates the 

frequency of an itemset in that chunk, and return <key, 

count> as an output. The reducer summaries the count of 

each itemset and for each itemset if the count is less than 

the minimum support and the interest is greater than the 

minimum interest then the itemset is considered as an 

interesting infrequent itemset. 

The algorithms for mapper and reducer are shown in 

“Fig.4” and “Fig.5”. The detailed flow diagram of the 

process is shown in “Fig.1”. 

In each phase different Mapper and Reducer functions 

are used. In the first phase the mapper function accepts 

three different inputs called input split, minimum partial 

support and partial minimum interest where as in the 

second phase of the mapper accepts only two different 

inputs called infrequent Itemset list generated in phase 

one and the input split. 
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Map1() 

Input: Split-Si; partial minimum support(pms); partial 

minimum interest(pmi). 

Output: <key, value>; key: interesting infrequent k-

Itemset of the split Si; value: partial count of k-Itemset. 

 

Begin  

1. Ck =Generate_Candidate_Itemsets(Si)/* 

generates candidate itemsets of the splitSi */ 

2. For each IkCk do 

3.    If k=1 then L1= L1U I1 

4.    If k>1  

5.       If(partial_count(Ik)<pms&&   

Interest(Ik)>pmi)then  

6.         Lk= LkU Ik; 

7.       End if; 

8.    End if 

9.    Lk= LkU L1 ; 

10. Foreach Item I in Lk do 

11.    Output(I, pc) /* pc: partial count */ 

12. End for 

End; 

Fig. 2. Algorithm for Map1 

 

Reduce1() 

Input: <key, value>; key: interesting infrequent k-

Itemset of the split Si; value: partial count of k-Itemset. 

Output: <key, 1>; key is global candidate Infrequent 

Itemsets. 

 

Begin 

1. Foreach key do 

2. Output(key,1) 

3. End for 

End 

Fig. 3. Algorithm for Reduce 

 

Map2() 

Input: Si: split, L: infrequent Itemset list read from 

distributed memory. 

Output: <key, value> key: Itemset from list L, value: 

Item count in Si . 

 

Begin 

1. Foreach Item I in L do 

2.    count=count+ find(I,Si ) /*The  find() function 

finds the occurrence of I in Si */ 

3. End for 

4. Out(I, count) 

End  

Fig. 4. Algorithm for Map2 

 

Reduce2() 

Input: <key, value> key: candidate itemset, value: 

Item count in each split, minimum support (ms) and 

minimum interest(mi). 

Output: <key, value> key: Interesting Infrequent 

Itemset; value: Its count in the whole dataset 

 

 

Begin 

1. Foreach key Ik do 

2.   Foreach value in Ik’s list 

3.     count(Ik)=count(Ik)+Ik.value; 

4.   End for 

5. End for 

6. if(count(Ik)<ms&&Interest(Ik)>mi) 

7.   Out(Ik, count) 

8. End if 

End  

Fig. 5. Algorithm for Reduce 

 

V.  EXPERIMENTAL RESULTS 

In this section we measure the performance of the 

proposed algorithm running on cluster of nodes. To 

evaluate the performance of our method we formed few 

clusters with different size. All the experiments were 

conducted in a Hadoop 2.2.0 cluster where each node 

contains 2.20 GHz processors with 4 GB RAM, and a 

500 GB hard disk and 2 a gigabyte Ethernet link. 

Synthetic dataset is used in experiments. It is a 

transactional dataset. It consists 1,000 distinct items and 

the average size of the transaction is 120. 

We test our approach to find the infrequent itemsets. A 

set of experiments conducted to show the behaviour of 

our approach at different minimum support and dataset 

size in one cluster and different cluster size for fixed 

minimum support. For better results each case is executed 

two times and the average values are taken. 

“Fig.5” depicts performance of the algorithm; the 

execution time of the algorithm is observed for different 

dataset size with a fixed minimum support on 8 nodes 

cluster. The results show that the algorithm takes less 

time even for larger datasets. 

“Fig.6” delineates the performance of the algorithm; in 

this the execution time of the method is observed for 

different minimum support values for two dataset sizes of 

1GB and 10GB. The results show that there is no much 

difference in execution time when the minimum support 

is high, but there is a difference in case of smaller 

minimum support. 

 

Fig. 6. Execution time for different dataset size 

 

Then we fix the minimum support at 40% and test the 

behaviour of the proposed method at different cluster size 

for two different data sizes of 500MB and 1GB. “Fig.7” 

shows results of these experiments. The results show that 
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there is a much difference in the execution time if the 

cluster size is less, but there is no much difference in case 

of number of nodes are increased in the cluster. Also we 

observed that the impact of MapReduce framework is 

very less when the cluster size small. 

 

Fig. 7. Execution time for different minimum support 

 

At the end we evaluate the impact of the prunning 

technique, which is used during the first phase of the 

method. First we execute the algorithms without prunning 

technique, it produce large number of intermediate items. 

Intermediate items effects on the performance of the 

entire process. And next we execute the algorithm with 

the prunning technique, it produce less number of items. 

“Fig.8” shows the impact of the prunning technique. 

The results show that the impact of prunning techniques 

is very high when the the data size is large. 

“Fig.9” shows ths effect of prunning technique. We 

fixed the minimum support and the dataset size, and 

observed the execution time by changing the cluster size. 

The rusults show that there is no much difference beteen 

with and without prunning technique. 

 

Fig. 8. Execution time for different Cluster size 

 

 

Fig. 9. Execution time for different minimum support 
 

 

Fig. 10. Execution time for different minimum support 

 

VI.  CONCLUSION AND FUTURE WORK 

Finding infrequent Itemset is one of the most important 

data mining problems. The task of finding interesting 

infrequent items from very large data requires a lot of 

computational and memory power. 

In this paper we have proposed new method to find 

interesting infrequent Itemsets from very large data based 

on MapReduce framework. The results show that the 

proposed method in this paper is very efficient in finding 

infrequent items from very large datasets. Also the 

experimental results show that the proposed method is 

more efficient as the data size is increased. 

Our future research works include design of better 

interesting functions, which produce less number of 

intermediate items during its process. Performance of the 

reducer is depending on the intermediate nodes produced 

by the mapper. 
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