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Abstract— After generalization of Shannon’s entropy measure 

by Renyi in 1961, many generalized versions of Shannon 

measure were proposed by different authors. Shannon measure 

can be obtained from these generalized measures asymptotically. 

A natural question arises in the parametric generalization of 

Shannon’s entropy measure. What is the role of the parameter(s) 

from application point of view?  In the present communication, 

super additivity and fast scalability of generalized hyperbolic 

measure [Bhatia and Singh, 2013] of probabilistic entropy  as 

compared to some classical measures of entropy has been 

shown. Application of a generalized hyperbolic measure of 

probabilistic entropy in certain situations has been discussed. 

Also, application of generalized hyperbolic measure of fuzzy 

entropy in multi attribute decision making have been presented 

where the parameter affects the preference order. 

 

Index Terms— Probabilistic Entropy, Fuzzy Entropy, Super 

Additive Entropy, Multi Attribute Decision 

 

I. INTRODUCTION 

The main use of information is to remove uncertainty 

and main objectives of information theoretic studies are: 

 To develop new measures of information and their 

applications 

 To develop entropy optimization principles 

 To develop connections and interrelations of 

information theory with other disciplines such as 

science, engineering, management, operation research 

etc. 

 Exploration of role of additional parameters in 

generalized information/divergence measures. 

Entropy is central concept in the field of information 

theory and was originally introduced by Shannon in his 

seminal paper [1], in the context of communication 

theory. The entropy of an experiment has dual 

interpretations. It can be considered both as a measure of 

the uncertainty that prevailed before the experiment was 

accomplished and as a measure of the information 

expected from an experiment. An experiment might be an 

information source emitting a sequence of symbols (i.e., a 

message) }...,,,{ 21 nsssM  , where successive symbols 

are selected according to some fixed probability law. For 

the simplest kind of source, we assume that successive 

symbols emitted from the source are statistically 

independent. Such an information source is termed a 

zero-memory source and is completely described by the 

source alphabet and the probabilities with which the 

symbols occur }...,,,{ 21 npppP  . We may calculate the 

average information provided by a zero-memory 

information source using several entropies. The Shannon 

Entropy [1] is a well-known and highly used measure of 

information. 

Consider a set E of mutually exclusive events Ei (i = 

1, ..., n) each of which has the probability of occurrence 

pi, so that the pi s add up to unity. The information 

content of the occurrence of event E, is defined [1]: 

.
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The expected information content of an event from our 

set of ‘n’ events, the entropy of the set E, is defined [1]: 
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(1) 

)(PH  is always non negative. Its maximum value 

depends on ‘n’. It is equal to nlog  when all pi are equal.  

)(PH  is known as Shannon Entropy or Shannon’s 

measure of Information. In 1961, to add flexibility to 

Shannon’s measure, Renyi [2] proposed a one parametric 

generalization of Shannon’s measure. After Renyi, many 

one, two, three and four parametric generalizations have 

been proposed by the scholars in the field of information 

theory. 

Bhatia and Singh[3] proposed a one parametric 

hyperbolic measure of entropy as follows: 
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Thus the Shannon measure is the limiting case of the 

measure proposed in Eq.(2). 

After the initiation of fuzzy theory by Zadeh[4], the 

concept of fuzziness has influenced almost each and 

every branch of research. The influence of fuzzy theory 

in the field of information theory gave birth to non-

classical information theory. De Luca and Termini[5] 

proposed a measure of fuzzy entropy corresponding to 

probabilistic entropy of Shannon given by 
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where, A is a fuzzy set and A(xi) is membership 

value of xi  in A. 

After De Luca and Termini many generalized versions 

of this fuzzy entropy have been proposed. Bhatia et al. [6] 

proposed a one parametric generalized hyperbolic 

measure of entropy as follows: 
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 The real number α is associated with the non 

extensiveness of the system. 

The concepts of entropy and fuzzy entropy have been 

extensively utilized in numerous applications in science, 

engineering and management[7,8]. In the present paper, 

some applications of generalized hyperbolic measure of 

probabilistic entropy (Eq.(2)) and  generalized hyperbolic 

measure of fuzzy entropy (Eq.(5)) have been presented. 

This paper is organized as follows: In Section II, super 

additivity and scalability of generalized hyperbolic 

information measure (2) are investigated and its 

application in certain situations is discussed. Section III 

presents a new model for mutiple attribute decision 

making using generalized fuzzy entropy. Section IV 

contains concluding remarks. 

 

II. APPLICATION OF GENERALIZED HYPERBOLIC 

INFORMATION MEASURE 

For notational convenience, let us call the entropy 

measure proposed in Eq.(2) as  hyperbolic entropy (hyp  

entropy) and denote it as 

0,)logsinh(
)sinh(

1
)(

1

 





n

i

iihyp ppPH .

    

(7) 

Many one parametric measures are suggested in 

literature. But from application point of view it has been 

observed that most of the applications revolves around 

Shannon entropy[1], Renyi entropy[2], Havrda-Charvat 

entropy(HC)[9] and Tsallis entropy[10]. Shannon 

entropy[1], Renyi entropy[2] are additive and their 

application is suitable for extensive systems. On the other 

hand, Havrda-Charvat entropy [9] and Tsallis entropy[10] 

are sub additive  and their application is suitable for non-

extensive systems. The Hyperbolic entropy proposed in 

Eq.(7) is compared with Renyi entropy[2] and Havrda-

Charvat entropy[9] for arbitrarily chosen eight complete 

probability distributions and different values of parameter 

α. For comparison, all of three entropies have been 

normalized.  

 

 

Table 1. Values of normalized Renyi, Hyperbolic and Havrda-Charvat Entropies at hypothetically choosen eight probability distributions at α=0.1 

 α=0.1 Normalized Entropies   α=0.1   

iP  Renyi Hyp. Havrda-Charvat Renyi Hyp. Havrda-Charvat 

1P  2.29 2.08 3.66 0.991 0.930 0.983 

2P  2.31 2.24 3.73 1.000 1.000 1.000 

3P  2.28 2.02 3.63 0.985 0.901 0.973 

4P  2.28 2.05 3.64 0.987 0.914 0.975 

5P  2.28 2.02 3.64 0.988 0.903 0.977 

6P  2.30 2.13 3.68 0.993 0.950 0.987 

7P  2.30 2.16 3.70 0.997 0.967 0.994 

8P  2.31 2.18 3.71 0.997 0.972 0.995 

 

Let 

 ,35.0,3.0,05.0,2.0,1.01 P
 

 ,14.0,31.0,23.0,22.0,1.02 P
 

 ,34.0,22.0,09.0,32.0,03.03 P   

 ,34.0,03.0,31.0,21.0,11.04 P
 

 ,31.0,2.0,05.0,37.0,07.05 P      

 27.0,05.0,12.0,23.0,33.06 P , 

 3.0,33.0,11.0,09.0,17.07 P  

and  37.0,2.0,1.0,11.0,22.08 P
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be hypothetically chosen eight complete probability 

distributions. For these probability distributions we 

calculate three normalized entropies namely, Renyi[2], 

Hyp. entropy given by Eq.(7) and Havrda-Charvat 

entropy[9] for different values of α in Tables 1-5. 

Here we compare the three entropies under 

consideration at same scale for given α=0.1. In Table 1. , 

normalized values of entropies under consideration have 

been calculated for hypothetically chosen eight 

probability distributions because normalized value makes 

comparison simple. 

 

Fig. 1. 

 

In Figure 1., the graph of the normalized values of 

three entropies under consideration for α=0.1 with respect 

to hypothetically chosen eight probability distributions is 

given. 

Table 2-5 and Figure 2-5 have been constructed for 

similar purpose for α = 0.4. 0.5, 0.7, 0.75. 

 

Fig. 2. 

 

Fig. 3. 

 

 

Fig. 4. 
 

 

Fig. 5. 

 

 
Table 2. Values of normalized Renyi, Hyperbolic and Havrda-Charvat Entropies at hypothetically choosen eight probability distributions at α=0.4 

 α=0.4 Normalized Entropies α=0.4 

iP  Renyi Hyp. Havrda-Charvat Renyi Hyp. Havrda-Charvat 

1P  2.20 2.38 2.91 0.966 0.945 0.949 

2P  2.28 2.52 3.07 1.000 1.000 1.000 

3P  2.16 2.31 2.82 0.948 0.919 0.922 

4P  2.17 2.34 2.85 0.954 0.929 0.930 

5P  2.17 2.32 2.85 0.954 0.924 0.930 

6P  2.22 2.41 2.95 0.975 0.960 0.961 

7P  2.25 2.45 3.00 0.986 0.975 0.979 

8P  2.26 2.47 3.01 0.989 0.983 0.983 
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Table 3. Values of normalized Renyi, Hyperbolic and Havrda-Charvat Entropies at hypothetically choosen eight probability distributions at α=0.5 

 α=0.5 Normalized Entropies   α=0.5 

iP  Renyi Hyp. Havrda-Charvat Renyi Hyp. Havrda-Charvat 

1P  2.18 2.57 2.72 0.959 0.956 0.942 

2P  2.27 2.69 2.89 1.000 1.000 1.000 

3P  2.13 2.52 2.63 0.938 0.935 0.912 

4P  2.14 2.54 2.66 0.945 0.942 0.922 

5P  2.14 2.53 2.66 0.944 0.939 0.920 

6P  2.20 2.61 2.76 0.969 0.968 0.956 

7P  2.23 2.64 2.82 0.983 0.980 0.975 

8P  2.24 2.65 2.83 0.986 0.984 0.980 

 

Table 4. Values of normalized Renyi, Hyperbolic and Havrda-Charvat Entropies at hypothetically choosen eight probability distributions at α=0.7 

 α=0.7 Normalized Entropies α=0.7 

iP  Renyi Hyp. Havrda-Charvat Renyi Hyp. Havrda-Charvat 

1P  2.13 3.19 2.41 0.946 0.994 0.933 

2P  2.25 3.20 2.58 1.000 1.000 1.000 

3P  2.07 3.18 2.33 0.920 0.993 0.902 

4P  2.09 3.18 2.36 0.930 0.994 0.914 

5P  2.08 3.18 2.34 0.925 0.991 0.908 

6P  2.16 3.19 2.45 0.960 0.996 0.951 

7P  2.20 3.19 2.50 0.976 0.996 0.970 

8P  2.21 3.19 2.52 0.981 0.996 0.976 

 

Table 5. Values of normalized Renyi, Hyperbolic and Havrda-Charvat Entropies at hypothetically choosen eight probability distributions at α=0.75 

 α=0.75 Normalized Entropies  α=0.75 

iP  Renyi Hyp. Havrda-Charvat Renyi Hyp. Havrda-Charvat 

1P  2.12 3.39 2.34 0.943 1.007 0.932 

2P  2.24 3.37 2.51 1.000 1.000 1.000 

3P  2.06 3.42 2.26 0.917 1.015 0.901 

4P  2.08 3.42 2.29 0.927 1.014 0.913 

5P  2.07 3.40 2.28 0.921 1.010 0.906 

6P  2.15 3.39 2.39 0.958 1.007 0.950 

7P  2.19 3.37 2.44 0.974 1.001 0.969 

8P  2.20 3.37 2.45 0.978 1.000 0.975 

 

Table 6. Values of normalized  Hyperbolic Entropies Hhyp(P1Pj),j≠1 for hypothetically chosen  eight probability distributions 

)( 21PPHhyp
 

)( 31PPHhyp  )( 41PPHhyp  )( 51PPHhyp  )( 61PPHhyp  )( 71PPHhyp  )( 81PPHhyp  

4.430041 4.197412 4.226259 4.202577 4.208789 4.352488 4.364985 

 

Table 7. Values of normalized  Hyperbolic Entropies Hhyp(P1)+ Hhyp(Pj),j≠1 for hypothetically choosen eight probability distributions 

)( 1PHhyp
+ 

)( 2PHhyp  

)( 1PHhyp
+ 

)( 3PHhyp  

)( 1PHhyp
+ 

)( 4PHhyp  

)( 1PHhyp
+ 

)( 5PHhyp  

)( 1PHhyp
+ 

)( 6PHhyp  

)( 1PHhyp
+ 

)( 7PHhyp  

)( 1PHhyp
+ 

)( 8PHhyp  

4.321248 4.100226 4.127745 4.104282 4.311766 4.246897 4.258633 
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Based on the preceding comparisons the following 

observations can be made: 

1. The generalized entropies, with the Shannon Entropy 

as a special case, are almost consistent for different 

values of α, increasing α makes the measure’s values 

span a smaller interval. This means that as α increases, 

the measures become coarser and their discriminating 

power decreases. By changing value of α, Hyperbolic 

entropy can be made to oscillate on large interval or 

small interval. Further from the graphs in Figure 1-4, it 

can be seen that scalability of Hyperbolic entropy is 

much faster than Renyi and Havrda-Charvat Entropy. 

2. In Table 1-4, it is observed that maximum entropy 

corresponds to the probability distribution 2P  for all 

the three entropies under consideration. But, from 

Table 5 it can be seen that Hyperbolic entropy is not in 

agreement with Renyi and Havrda-Charvat entropies in 

context of maximum entropy prescriptions of 

Jaynes[11]. That is, for 75.0 , Hyperbolic entropy 

behaves differently. In other words, we can say that 

when extraneous factor α assumes value greater than 

equal to 0.75, we observe that the most unbiased 

probability distribution is not that what is expected 

from classical measures of entropy. 

Further, using the probability distributions 821 ...,,, PPP , 

we construct Table 6 and Table 7 to show the 

superadditivity of Hyperbolic entropy. 

From Table 6 and Table 7 it is concluded that: 

1 1( ) ( ) ( ),

2,3, ,8

hyp hyp j hyp jH P H P H PP
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Therefore, hyperbolic entropy is super additive. 

So, it can be applied to measure the information 

content of those systems which have several subsystems 

and total information provided by individual subsystems 

is less than that of information provided by whole system. 

In biological studies it is observed that among the great 

amount of genes presented in microarray gene expression 

data, only a small fraction are effective for performing a 

certain diagnostic test. In this regard, mutual information 

has been shown to be successful for selecting a set of 

relevant and non redundant genes from microarray data. 

However, information theory offers many more measures 

such as the f-information measures which may be suitable 

for selection of genes from microarray gene expression 

data. Maji [12] tested performance of some f-information 

measures and compared with that of the mutual 

information based on the predictive accuracy of naive 

bayes classifier, K-nearest neighbour rule, and support 

vector machine and found that some f-information 

measures are shown to be effective for selecting relevant 

and non redundant genes from microarray data. In this 

type of study, the generalized information measure given 

in Eq.(7) proposed here may perform better, as it is more 

discriminative in comparison of some classical measures. 

Further, this measure seems to perform better in binary 

image segmentation. 

 

III. APPLICATIONS OF  GENERALIZED HYPERBOLIC FUZZY 

INFORMATION MEASURE IN MULTIPLE ATTRIBUTE 

DECISION MAKING 

A model to find the best alternative on the basis of 

multiple attributes is proposed here. 

The model requires mainly the following: 

1. Available alternatives. 

2. Attributes. 

3. Weight of each attribute. 

4. Parameter α with which preference order of 

alternatives may vary. 

Let }...,,,{ 21 nxxxX   be a finite set of alternatives 

and }...,,,{ 21 maaaA   be a finite set of attributes, and 

for ,10 
 

)...,,,( 21

mwwwW   , 

1,0

1

 


m

i

ii ww 
 be the weight vector of the attributes 

)...,,2,1( miai  which is not predefined. 

Now, the model can be given in following three steps: 

STEP 1: Let mnjiA axR  )),((  be fuzzy decision 

matrix, where ),( jiA ax  indicates the degree range that 

the alternative ix  satisfies the attribute ja , the fuzzy 

entropy proposed by DeLuca and Termini[5] given in Eq. 

(4) takes the form 


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and the generalized hyperbolic measure of entropy 

given in Eq.(5) takes the form 
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STEP 2: The weight associated with attribute ja  is 

defined as follows: 
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STEP 3: Finally, we construct a score function as 

follows: 
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Alternative with highest score is the best choice. 

Now, the above model is illustrated with the help of 

following example: 

Example 3.1 Let us consider a customer who intends 

to buy a car. Five types of cars (alternatives) 

)5,4,3,2,1( ixi are available. The customer takes into 

account four attributes to decide which car to buy: 

(1) :1a Price; (2) :2a  Comfort; (3) :3a Design; and (4) 

:4a  Safety 

Assume that the characteristics of the alternatives 

)5,4,3,2,1( ixi   are represented by fuzzy decision 

matrix 

45)),((  jiA axR   

Let 
















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




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5.07.04.06.0

6.03.06.08.0

6.05.05.06.0

4.07.05.07.0

6.06.05.07.0

R

 

We discuss the result for various values of  . 

For ;0
 
From fuzzy decision matrix we have 

Table 8. Values of formula in Eq.(9) at α=0 

)( 10 aH  )( 20 aH  )( 30 aH  )( 40 aH  

0.885282 0.98838 0.922965 0.97676 

 

and 7733.3)(

4

1

0 
i

iaH  

0 0 0 0

1 1 1 1( , , , )

(0.2346, 0.2619, 0.2446,0.2589 )

w w w w w

  

By calculating we have 

)( 10 xS 0.59727, )( 20 xS 0.56995,  

)( 30 xS 0.54935, )( 40 xS 0.57354, )( 50 xS 0.54619. 

Based on the calculated values of )( ixS  ,as above, 

we get the following orderings of ranks of the alternatives 

ix  ( i =1,2,3,4,5)  ; 53241 xxxxx  . 

Therefore the optimal alternative is .1x
 

In the same manner we can find the ordering of ranks 

of the alternatives ix  ( i =1,2,3,4,5) for different values 

of α in Table 9. 

 

 

 

 

 

Table 9. Values of Sα(xi) for α = 0.3, 0.5, 0.7, 0.9, 0.99 

 α =0.3 α =0.5 α =0.7 α =0.8 α =0.9 α =0.99 

Sα(x1) 0.5975 0.5980 0.5988 0.5993 0.5987 0.6005 

Sα(x2) 0.5704 0.5714 0.5729 0.5738 0.5537 0.5759 

Sα(x3) 0.5494 0.5495 0.5497 0.5498 0.5489 0.5501 

Sα(x4) 0.5736 0.5739 0.5744 0.5747 0.5739 0.5755 

Sα(x5) 0.5465 0.5473 0.5484 0.5490 0.5487 0.5506 

 

Again, based on results in Table 9, we get the 

following orderings of ranks of the alternatives ix  ( i 

=1,2,3,4,5)  ; 

For 3.0 , 53241 xxxxx   

For 5.0 , 53241 xxxxx 
 

For 7.0 , 53241 xxxxx 
 

For 8.0 , 53241 xxxxx 
 

For 9.0 , 53241 xxxxx 
 

For 99.0 , 

From this discussion it is clear that 1x  is most 

preferable alternative. But at 99.0 ,  the ranks of 

preference of alternatives changes. Thus extraneous 

factor ‘α’ plays its role in order of preference and does 

not affect the choice of best alternative. 

The proposed algorithm is also helpful in insurance 

sector (example 3.2), medical diagnosis (example 3.3), 

education (example 3.4) etc. 

Example 3.2 Let us consider a customer who intends 

to get insured at an insurance company. Five insurance 

companies (alternatives) )5,4,3,2,1( ixi  
are 

available. The company takes into account four attributes 

to decide the suitability of customer for insurance: 

(1) :1a  Smoking habit; (2) :2a  Cholesterol level; (3) 

:3a  Blood pressure; and (4) :4a  Adequate weight 

Assume that the characteristics of the alternatives 

)5,4,3,2,1( ixi  are represented by fuzzy decision 

matrix 

45)),((  jiA axR   

where ),( jiA ax  indicates the degree range that the 

alternative ix  satisfies the attribute ja
.
 

Proceeding with the data of example 3.1, it is 

concluded that company  1x  is best choice to get insured. 

Example 3.3 Let us consider a doctor intends to 

diagnose a patient based on some symptoms of a disease. 

Let five possible diseases (alternatives) say (x1:Viral 

fever, x2: Malaria, x3: Typhoid, x4 : Stomach problem, x5 : 

Chest problem) )5,4,3,2,1( ixi have closely related 

symptoms or characteristics. The doctor takes into 

account four symptoms to decide the possibility of a 

particular disease: 



42 On Applications of a Generalized Hyperbolic Measure of Entropy  

Copyright © 2015 MECS                                                           I.J. Intelligent Systems and Applications, 2015, 07, 36-43 

(1) :1a  Temprature ; (2) :2a  Headache ; (3) :3a  

Stomach pain ; and (4) :4a  Cough. 

Assume that the characteristics of the alternatives 

)5,4,3,2,1( ixi  are represented by fuzzy decision 

matrix 

45)),((  jiA axR   

where ),( jiA ax  indicates the degree range that the 

disease ix  satisfies the symptom ja
.
 

Proceeding with the data of example 3.1, doctor 

concluded that patient is suffering from viral fever. 

Example 3.4 Let us consider a person who intends to 

select a school for his ward’s admission. Five schools 

(alternatives) )5,4,3,2,1( ixi are available. Man takes 

into account four attributes to decide the suitability of 

school for his ward: (1) :1a  Transportation facility; (2) 

:2a  Academic profile of teachers; (3) :3a  Past results of 

school; and (4) :4a  Discipline. Assume that the 

characteristics of the alternatives )5,4,3,2,1( ixi   are 

represented by fuzzy decision matrix 

45)),((  jiA axR   

where ),( jiA ax  indicates the degree range that the 

alternative ix  satisfies the attribute ja
.
Proceeding with 

the data of example 3.1, father concludes that school 1x is 

best choice to secure admission for his ward. 

It has been observed that the extraneous factor ‘α’ 

plays an important role in order of ranking of alternatives. 

So, two parametric generalized version of formula given 

in Eq.(9) may give better insight and flexibility in certain 

cases of multiple attribute decision making. 

 

IV. CONCLUDING REMARKS 

A probablistic entropy measure can be additive, sub 

additive and super additive. In this paper, super additivity 

of generalized hyperbolic entropy measure (2) is tested 

with the help of hypothetical data. Therefore, one open 

problem, the application of super additive information 

measures is natural in this context. Secondly, we 

observed the fast scalability of  generalized hyperbolic 

entropy measure (2) as compared to some classical 

generalized entropy measures [2,9] with respect to 

parameter  . This proposes another open problem: How 

this scalability is useful in various applications ? Sahoo et 

al.[13], Sahoo and Arora [14,15] applied one parameter 

entropy measures in image thresholding and analyzed the 

images on the basis of fact that how much information is 

lost due to thresholding. They observed that 

corresponding to the certain value of    the loss of 

information is least and produces best optimal threshold 

value. Thus, the parameter   in the generalized entropy 

measures is very important from application point of 

view. The entropy measure (2) may serve well in image 

thresholding problems in case of certain images.Two, 

three or four parameter entropy measures provide more 

flexibility of application. 

A model for multiple attribute decision 

making(MADM) using generalized hyperbolic fuzzy 

entropy (5) is proposed here. The advantage of this 

method is that here we calculate the weight of an attribute 

from entropy formula itself whereas in the available 

methods of MADM weight of attributes is determined by 

experts.  Moreover, fuzzy entropy has vital application in 

image processing problems [16,17]. Therefore, 

generalized hyperbolic fuzzy entropy (5) seems to be 

useful in image processing and pattern recognition 

problems. 
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