
I.J. Intelligent Systems and Applications, 2015, 07, 1-10
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.07.01

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

Deep Learning in Character Recognition

Considering Pattern Invariance Constraints

Oyebade K. Oyedotun
1
, Ebenezer O. Olaniyi

2

1,2 Near East University/Electrical & Electronic Engineering, Lefkosa, via Mersin-10, TurkeyMember, Centre of

Innovation for Artificial Intelligence, CiAi,

Email: oyebade.oyedotun@yahoo.com, obalolu117@yahoo.com

Adnan Khashman
3

3 Founding Director, Centre of Innovation for Artificial Intelligence (CiAi), British University of Nicosia, Girne, Mersin

10, Turkey

Email: adnan.khashman@bun.edu.tr

Abstract—Character recognition is a field of machine learning

that has been under research for several decades. The particular

success of neural networks in pattern recognition and therefore

character recognition is laudable. Research has also long shown

that a single hidden layer network has the capability to

approximate any function; while, the problems associated with

training deep networks therefore led to little attention given to it.

Recently, the breakthrough in training deep networks through

various pre-training schemes have led to the resurgence and

massive interest in them, significantly outperforming shallow

networks in several pattern recognition contests; moreover the

more elaborate distributed representation of knowledge present

in the different hidden layers concords with findings on the

biological visual cortex. This research work reviews some of the

most successful pre-training approaches to initializing deep

networks such as stacked auto encoders, and deep belief

networks based on achieved error rates. More importantly, this

research also parallels investigating the performance of deep

networks on some common problems associated with pattern

recognition systems such as translational invariance, rotational

invariance, scale mismatch, and noise. To achieve this, Yoruba

vowel characters databases have been used in this research.

Index Terms— Deep Learning, Character Recognition, Pattern

Invariance, Yoruba Vowels.

I. INTRODUCTION

Pattern recognition has been successfully applied in

different fields, and the benefits therein are somewhat

obvious; in particular, character recognition has sufficed

in applications such as reading bank checks, postal codes,

document analysis and retrieval etc.

In view of this, several recognition systems exist today,

which employs different approaches and algorithms for

achieving such tasks. Some common recognition systems

approach that have been in use include template matching,

syntactic analysis, statistical analysis, and artificial neural

networks. The above mentioned approaches to the

problem of pattern recognition, and therefore character

can be classified into non-intelligent and intelligent

systems. If intelligence is “the ability to adapt to the

environment and to learn from experience” [1]; then we

can say that approaches to pattern recognition such as

template matching, syntactic analysis, and statistical

analysis are non-intelligent, as they inevitably lack the

ability to learn and hence adapt to the tasks they are

designed for. Neural networks, conversely, can learn the

features of task on which they are designed and trained;

they can also adapt to some moderate variations such as

noise on the data they have been trained with, hence

considered intelligent.

The success of neural networks in contrast to other

non-intelligent recognition approaches is striking, based

on performance, and somewhat ease of design

considering the capability of neural networks in

approximation any mapping function of inputs to outputs

while requiring „least‟ domain specific knowledge for its

programming each time it is embedded in different

applications. i.e. self-programming. The above notion

leads to the fact that a new programming algorithm and

therefore codes need not necessarily be developed for

tasks of at least similar applications as it is done in

convectional-digital computing (i.e. same suitable

learning algorithms can be used for different tasks); this

allows for two options hence:

 designers focus more on developing extraction

methods for useful features that can be learnt by the

network for different tasks which reduces the

computational requirement and somewhat increases

performance as most irrelevant features to learning

would have been filtered out, hence learning is more

concise.

 more knowledge, features extracting machine learning

algorithms and architecture of neural networks that

allows the network itself to learn and extract important

features from the training data, hence lesser effort from

designers in handcrafting features from the training

data. This second option has recently boosted interest

in machine learning, as marked achievements include

emergent various architectures of neural networks that

can learn from almost unprocessed data.

Also, the level of intelligence required of recognition

systems has gradually changed over the years from

basically almost 100% handcrafted and extracted features

from data for learning to almost raw data. Some

2 Deep Learning in Character Recognition Considering Pattern Invariance Constraints

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

consideration on the amount of common pattern

invariance achievable in learning has also changed; such

common invariances include relatively moderate

translation, rotation, scale mismatch, and noisy patterns.

These problems are briefly discussed below.

Fig. 1. Translational invariance

It can be seen in the figure above, the linear

translations (fig.1 b & c) of the original pattern (fig.1a) in

the image; it is obvious that this scenario shouldn‟t

represent different patterns in an intelligent recognition

system, a situation referred to as translational invariance.

Although there exist registration algorithms that attempt

to align a pattern image over a reference image so that

pixels present in both images are in the same location.

This process is useful in the alignment of an acquired

image over a template [2].

Fig. 2. Rotational invariance

Rotational invariance is shown in fig.2, with (b) and (c)

being the rotated versions of (a).

Fig. 3. Scale invariance

Scale invariance is a situation where the size of the

pattern has been scaled down or blown up; it is important

to note that the actual dimension or pixels of the image

remains the same in this situation. e.g. see fig.3.

Fig. 4. Noise corruption

Noise, is another problem faced in pattern recognition

as shown above; the question of how much is the level of

noise required to so corrupt the input as to lead to

misclassification of patterns.

Fig.4. (a), (b), and (c) shows the images with 20%,

30%, and 40% levels of salt & pepper noise added

respectively.

It is the aim to design machine learning algorithms and

novel neural network architectures that are more robust to

pattern invariance and noise etc.

II. RELATED WORKS

Gorge and Hawkins [3], in their work, „Invariant

Pattern Recognition using Bayesian Inference on

Hierarchical Sequences‟, suggested that invariance could

be learned in a neural network using Bayesian inference

approach. Their work exploited the hierarchical learning

and recalling of input sequences at each layer, it was

proposed that some lower transformation features learned

from some particular patterns could be used for other

patterns representation at higher levels; hence making

learning more efficient. They employed feedforward and

feedback connections, which were described to hold the

inferences made on the current (or locally stored)

observations and supply computed predictions to the

lower levels respectively.

Rahtu E. et al [4] proposed an affine invariant pattern

recognition system using multiscale autoconvolution, in

which they employed probabilistic interpretation of

image functions. It was reported in their work that the

proposed approach is more suited for scenarios where

distortions present in images can be approximated using

affine transformations. Furthermore, their simulation

results presented on the classification of binary English

alphabets A, B, C, D, E, F, G, H, and I, with added

binary noise can be seen to be relatively poor. It was

established that the affine invariant moment and multi-

scale autoconvolution classification approaches presented

seem to collapse at a noise level of 2% and 6%

respectively, giving high classification errors. Also, it can

be seen that such an approach seems to depend on very

complex and rigorous mathematical build up, rather than

a simple approach of describing invariance learning.

Kamruzzaman and Aziz [5], in their research,

presented a neural network based character recognition

system using double backpropagation. The classification

was achieved in two phases, which involves extracting

invariant features to rotation, translation, and scale in the

preprocessing phase (first phase); and training a neural

network classifier with the extracted features in the

second phase. It was recorded that a recognition rate of

97% was achieved on the test patterns .

It was suggested in their work that their classification

system was not tested on real world data such as

handwritten digits, hence the presented approach could

not be verified for robustness in practical applications

where many pattern irregularities may make such systems

suffer poor performance.

It will be observed that one thing that is common to the

above reviewed researches is that they seem to rely more

on somewhat complex data manipulations and pre-

processing techniques and lesser on an intelligent system

that „strive‟ to simulate how pattern invariance is

 Deep Learning in Character Recognition Considering Pattern Invariance Constraints 3

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

achieved as obtains in the human visual perception

system.

Conversely, this paper takes an alternative approach,

by presenting a work which focuses on invariance

learning based on the neural network architectures, rather

than complex training data manipulation schemes and

painstaking mathematical foundations. It is noteworthy

that this research did not employ any invariant feature

extraction technique; hence, investigates how neural

network structures and learning paradigms affect

invariance learning. Also, to reinforce the application

importance of this work, real life data, „handwritten

characters‟, have been used to train and simulate the

considered networks.

Furthermore, one „con‟ approach to achieving

invariance in recognition systems is for any specific

object, invariance can be trivially “learned” by

memorizing a sufficient number of example images of the

transformed object [6].

Unfortunately, the difficulty is to synthesize, and then

to efficiently compute, the classification function that

maps objects to categories, given that objects in a

category can have widely varying input representations

[7]; bearing in mind also that this approach increases

computational load on the designed system.

A better approach is to consider neural network

architectures that allow some level of built-in invariance

due to structure; and of course, this can usually still be

augmented with some handcrafted invariance achieved

through data manipulation schemes.

Recent experimental findings demonstrating that

distributed neural populations (e.g. deep networks) in

early visual processing areas are recruited in a targeted

fashion to support the transient maintenance of relevant

visual features, consistent with the hypothesis that short-

term maintenance of perceptual content relies on the

persistent activation of the same neural ensembles that

support the perception of that content [8], [9], [10].

Neural networks of different architectures have been

used in various machine learning assignments of pattern

recognition; usually, involving just a single hidden layer.

Although, it was later hypothesized the benefits of having

networks with more than a single hidden layer, and there

have been past research attempts to adopt multilayer

neural networks, but technical difficulties encountered in

training such networks led to the lost of interest by

researchers for a while as presented in the following

section.

It is the hope that simple, novel and emerging neural

network architecture and learning algorithms can

overcome or cope with some major pattern invariances as

have been discussed. So far, one of the most successful

pattern recognition systems in machine learning is deep

neural networks, and is discussed briefly in section III.

III. DEEP LEARNING

A. Insight into deep learning

Deep learning depicts neural network architectures of

more than a single hidden layer (multilayer networks); in

contrast to networks of single hidden layer which are

commonly referred to as shallow networks. These

networks enjoy some biologically inspired structure that

overcomes some of the constraints and performance of

shallow networks. Such features include:

 distributed representation of knowledge at each hidden

layer.

 distinct features are extracted by units or neurons in

each hidden layer.

 several units can be active concurrently.

Generally, it is conceived that in deep networks, the

first hidden layer extracts some primary features about

the input, then these features are combined in the second

layer to more defined features, and these features are

further combined into well more defined features in the

following layers, and so on. This can be somewhat seen

as a hierarchical representation of knowledge; and

obvious benefits of such networks compared to shallow

networks include capability to search a far more complex

space of functions as we stack more hidden layers in such

networks.

Of course, such an elaborate and robust structure didn‟t

come without a price of difficultly in training.

At training time, small inaccuracies in other layers may

be exploited to improve overall performance, but when

run on unseen test data these inaccuracies can compound

and create very different predictions and often poor test

set performance [11].

Common problems associated with training deep

networks conventionally (through backpropagation

algorithm) are discussed below.

 Saturating units: this occurs when the value of the pre-

activations of hidden units are close to 1, such that the

error gradient propagated to the layer below is almost 0.

 Vanishing gradients: since deep networks are basically

multilayer networks, and trained with gradient descent

by back propagation of errors at the output; it therefore

follows that there is a „dilution‟ of error gradients from

a layer to the one below as a result of saturating units

in the present layer; this consequently slows down or

hamper learning in the network. Research works have

shown that Hyperbolic-Tangent, Softsign [12], and

Rectified Liner activations have improved performance

on units saturation [13].

 Over-fitting: Since as we stack more hidden layers in

the network, we add more units and interconnections,

therefore, the feasibility of the network memorizing

input patterns grows. Hence, in as much as we achieve

distributed knowledge with more hidden layers, it

comes with a trade-off of over-fitting. This problem is

usually solved using various learning validation

schemes during training (i.e. monitoring the error on

the validation data) and different regularization

algorithms; one method that has sufficed in this

situation is the drop-out technique (removing units and

their corresponding connections temporarily from the

network) that prevents overfitting and provides a way

of approximately combining exponentially many

different neural network architectures efficiently [14].

4 Deep Learning in Character Recognition Considering Pattern Invariance Constraints

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

Drop-out technique is a more recent approach where

hidden units are randomly removed with a probability of

0.5 as this has been seen to prevent the co-adaptation of

hidden units [15].

Erhan also noted in his work that pre-training is a kind

of regularization mechanism [16].

Under-fitting: Since stacked architectures have usually

thousands of parameters to be optimized during training,

the feasibility of the network converging to a good local

minimum is hence consequently reduced.

Back-propagation networks are based on local gradient

descent, and usually start out at some random initial

points in weight space. It often gets trapped in poor local

optima, and the severity increases significantly as the

depth of the networks increases [17]. Several

optimization algorithms have been proposed to this

problem such as different pre-training schemes for

initializing the networks‟ memory.

B. Classification of deep learning architectures

 Generative Architectures

This class of deep networks is not required to be

deterministic of the class patterns that the inputs belong,

but is used to sample joint statistical distribution of data;

moreover this class of networks relies on unsupervised

learning. Some deep networks that implement this type

architecture include Auto Encoders(AEs), Stacked

Denoising Auto Encoders(SDAE), Deep Belief Networks

(DBNs), Deep Boltzmann Machines (DBMs) etc.

In general, they have been quite useful in various non-

deterministic pre-training methods applied in deep

learning and data compression systems.

 Discriminative Architectures

Discriminative deep networks actually are required to

be deterministic of the correlation of input data to the

classes of patterns therein. Moreover, this category of

networks relies on supervised learning. Examples of

network that belong to this class include Conditional

Random Fields (CRFs), Deep Convolutional Networks,

Deep Convex Networks etc. In as much as these networks

can be implemented as „stand-alone‟ modules in

applications, they are also commonly used in the fine-

tuning of generatively trained networks under deep

learning.

 Hybrid Architectures

Networks that belong to this class rely on the

combination of generative and discriminative approach in

their architectures. Generally, such networks are

generatively pre-trained and then discriminately fine-

tuned for deterministic purposes. e.g. pattern

classification problems. This class of networks has

sufficed in many applications with the state-of-art

performances.

IV. TRAINIING DEEP LEARNING MODELS

A. Stacked denoising auto encoder (SDAE)

Stacked Auto Encoders (SDAEs) are basically

multilayer feedforward networks with the little difference

being the manner in which weights are initialized. Here,

the weights initialization is achieved through a generative

learning algorithm, as this provides good starting weight

parameters for the network (and helps fight under-fitting

during learning).

An auto encoder (single layer network) is a

feedforward network trained to replicate the

corresponding inputs at the output. During training, these

networks learn some underlying features in the training

data that are necessary for the reproduction at the output

layer. The target outputs of these networks are the

corresponding inputs themselves. i.e. no labels, hence an

unsupervised learning.

The application of auto encoders and therefore

generative architectures leverage on the unavailability of

labelled data or the required logistics and cost that may

be necessary in labeling available data. It therefore

follows that generative learning suffices in situations

where we have large unlabelled data and small labelled

data. The unlabelled data can be used to generatively

train the network as in the case of auto encoders and the

small labelled data used in the fine-tuning of the final

network (as in hybrid networks).

Fig.5. Auto encoder

As can be seen above (fig.5), the auto encoder can be

decomposed into two parts, the encoder, and decoder. It

will also be noted that the number of output and input

neurons, k, are equal (since the input and output are the

same, hence of the same dimension), while the number of

hidden units, j, is smaller than k, generally. i.e. a sort of

data compression scheme can be inferred.

The auto encoder can be seen as an encoder-decoder

system, where the encoder (input-hidden layer pair)

receives the input, extracting essential features for

reconstruction; while the decoder (hidden-output layer

pair) part receives the features extracted from the hidden

layer, performing reconstruction at its best.

Auto encoders can be stacked on one another to

achieve a more distributed and hierarchical representation

of knowledge extraction from data; such architectures are

referred to Stacked Auto Encoders (SAEs).

Some undeveloped features are extracted in the first

hidden layer, followed by more significant elementary

features in the second, to more developed and meaningful

features in the subsequent layers.

 Deep Learning in Character Recognition Considering Pattern Invariance Constraints 5

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

The training approach that is used in achieving

learning in generative network architectures is known as

„greedy layer-wise pre-training‟. The idea behind such an

approach is that each hidden layer can be hand-picked for

training as in the case of single hidden-layer networks;

after which the whole network can be coupled back as

whole, and fine-tuning done if required.

Since the auto encoder is fundamentally a feedforward

network, the training is described below.

Encoder mode:

(1) (1)
1() (()) ()

L L
L x g m x sigm b W x

encoder
   (1)

() (1)
(()) (1())

y L
y z n x sigm b W L x

decoder
   (2)

Where, m(x) and n(x) are the pre-activations of the

hidden and output layers L1 and y respectively; b(L1) and

b(y) are biases of the hidden and output layers L1 and y

respectively.

The objective of the auto encoder is to perform

reconstruction as “cleanly” as possible, which is achieved

by minimizing cost functions such as are given below.

 
k

kk xyyxC
1

2)(),(

 (3)

 
k

kkkk yxyxyxC
1

))1log()1()log((),((4)

Equation 3 is used when the range of values for the

input are real, and a linear activation applied at the output;

while equation 4 is used when the inputs are binary or fall

into the range 0 to 1, and sigmoid functions are applied as

activation functions. Equation 4 is known as the sum of

Bernoulli cross-entropies.

In the greedy layer-wise training, the input is fed into

the network with L1 as the hidden layer and L2(x) as the

output; note that L2(x) has target data as the input. The

network is trained as in back propagation and weights

connection between the input layer and L1 saved or fixed

(fig.6).

The input layer is removed and L1 made the input, L2

the hidden layer, and output follows last (i.e. layer y).

The activation values of L1 now act as input to the hidden

layer L2(x), and the output layer made the same as input

L1(x), weights between L1(x) and L2(x) are trained and

fixed.

Fig. 6. Stacked auto encoder

Finally, the pre-trained weights obtained from the

greedy layer-wise training are coupled back to the

corresponding units in the network so that final weights

fine-tuning for the whole network can now be carried out

using back propagation algorithm. i.e. the original

training data is supplied at the input layer and the

corresponding target outputs or class labels are supplied

at the output layer. Note that the weights between the last

hidden layer and the output network can either be

randomly initialized or trained discriminatively before the

final network fine-tuning.

Another variant of auto encoders, known as denoising

auto encoders is very similar to the typical auto encoder

except that the input data are intentionally corrupted by

some moderate degree (setting some random input data

attributes to 0) and while the corresponding targets are

the correct, unaltered data. Here, the denoising auto

encoder is required to learn the reconstruction of corrupt

input data; this greatly improves the performance of

initialized weights for deep networks.

Denoising is advocated and investigated as a training

criterion for learning to extract useful features that will

constitute better higher level representation [18].

B. Deep belief network (DBN)

A DBN is a deep network, which is graphical and

probabilistic in nature; it is essentially a generative model

too.

A belief net is a directed acyclic graph composed of

stochastic variables [19].

These networks have many hidden layers which are

directed, except the top two layers which are undirected.

The lower hidden layers which are directed are referred

to as a Sigmoid Belief Network (SBN), while the top two

hidden layers which are undirected are referred to as a

Restricted Boltzmann Machine (RBM). i.e. fig.7. Hence a

DBN can be visualized as a combination of a Sigmoid

Belief Network and a Restricted Boltzmann Machine.

The sigmoid belief network is sometimes inferred as a

Bayesian network or casual network [20].

Fig. 7. Deep Belief Network

Furthermore, it has been shown that for the ease of

training, deep belief networks can be visualized as a stack

of Restricted Boltzmann Machines [21] [22].

6 Deep Learning in Character Recognition Considering Pattern Invariance Constraints

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

Since the last two layers of a deep belief network is an

RBM, which is undirected, it can therefore be conceived

that a deep belief network of only two layers is just an

RBM. When more hidden layers are added to the network,

the initially trained deep belief network with only 2 layers

(also just an RBM) can be stacked with another RBM on

top of it; and this process can be repeated with each new

added layer trained greedily.

Such a training scheme is aimed at maximizing the

likelihood of the input vector at a layer below given a

configuration of a hidden layer that is directly on top of it.

As discussed above, it is therefore essential to

introduce Restricted Boltzmann Machine for the proper

understanding of deep belief networks.

A restricted Boltzmann machine has only two layers

(fig.8); the input (visible) and the hidden layer. The

connections between the two layers are undirected, and

there are no interconnections between units of the same

layer as in the general Boltzmann machine. We can

therefore say that from the restriction in interconnections

of units in layers, units are conditionally independent.

The RBM can be seen as a Markov network, where the

visible layer consists of either Bernoulli (binary) or

Gaussian (real values usually between from 0 to 1)

stochastic units, and the hidden layer of stochastic

Bernoulli units [22].

Fig.8. Restricted Boltzmann Machine

The main aim of an RBM is to compute the joint

distribution of v and h, p(v,h), given some model specific

parameter, ϕ.

This joint distribution can be described using an energy

based probabilistic function as shown below.

  
j

jji

i j i

ijiij hbxbhxWhxE);,( (5)

Z

e
hxp

hxE));,((

);,(





 (6)

 
i h

hxEeZ));,((
 (7)

Where, E(x,h;ϕ) is the energy associated with the

distribution of x given h, x and h are input and hidden

units activations respectively, i is the number of units at

the input layer, j is the number of units at the hidden layer,

bi is the corresponding bias to the input layer units, bj is

the corresponding bias to the hidden layer units, Wij is the

weight connection between unit xi and hj, P(x,h;ϕ) is the

joint distribution of variable x and h, while Z is a

partition constant or normalization factor [22] [23].

For a RBM with binary stochastic variables at both

visible and hidden layers, the conditional probabilities of

a unit, given the vector of unit variables of the other layer

can be written as,

)();|1(ji

i

ijj bxWvhp   (8)

)();|1(ij

j

iji bhWhxp   (9)

Where σ is the sigmoid activation function.

Deng observed in his work that by taking the gradient

of the log-likelihood p (x,h; ϕ), the weight update rule for

RBM becomes,

)()(mod jieljidataij hxEhxEW  (10)

Where, Edata is the actual expectation when hj is

sampled from x, given the training set; and Emodel is the

expectation of hj sampled from xi, considering the

distribution defined by the model.

It has also been shown that the computation of such

likelihood maximization, Emodel, is intractable in the

training of RBMs, hence the use of an approximation

scheme known as “contrastive divergence”, an algorithm

proposed to solve the problem of intractability of Emodel

by Hinton [21].

Because of the way it is learned, the graphical model

has the convenient property that the top-down generative

weights can be used in the opposite direction for

performing inference in a single bottom-up pass [24].

Hence, such an attribute as mentioned above makes

feasible the use of an algorithm like backpropagation in

the fine-tuning or optimization of the pre-trained network

for discriminative purpose.

V. DATA ANALYSIS FOR LEARNING

As the aim of this research is to investigate the

tolerance in neural network based recognition systems to

some common pattern variances that occur in pattern

recognition; the variances that have been considered

include rotation, translation, scale mismatch, and noise.

Handwritten Yoruba vowel characters have been used to

evaluate and observe the performance of the different

network architectures considered for this work.

Yoruba language is one of the three major languages in

Nigeria with over 18 million native users; used largely by

the southwestern part of the country. It consists of 7

vowel alphabet characters, and in recent years, the

acceptance and usage of the language have grown to such

an extent that Google now accepts web searches using the

language. It is noteworthy that the patterns (Yoruba

 Deep Learning in Character Recognition Considering Pattern Invariance Constraints 7

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

vowel characters) that have been used in this work are

quite harder for recognition than some other languages, as

some of the characters comprise diacritical marks; these

marks can lie in slightly different positions of interest and

also that the writing styles of individuals makes

recognition even tougher.

Handwritten copies of the characters are collected and

processed into a form that is suitable to be fed as inputs to

the different trained networks; different databases with

specific variances were also collected to evaluate the

performance of the trained networks on such variances.

Listed below are the different collected databases and

logic of sequence applied to this research.

 Training database of Yoruba vowel characters: A1

 Validating database of Yoruba vowel characters: A2

 Translated database of Yoruba vowel characters: A3

 Rotated database of Yoruba vowel characters: A4

 Scale different database of Yoruba vowel character :

A5

 Noise affected database of Yoruba vowel character: A6

 Process image databases as necessary

 Train and validate all the different networks with

created databases A1 and A2 respectively.

 Simulate the different trained networks with A3, A4,

A5, and A6.

Fig. 9. Unprocessed character images

All original databases contain images with 300×400

pixels; the figure above shows separate handwritten

character images which have not been processed.

The characters were processed by binarizing the

images (black & white), obtaining the negatives, and

filtering using a 10×10 median filter; finally all images

were resized to 32×32 pixels to be fed as inputs to the

different designed networks. All networks have 7 outputs

neurons as can be deduced from the number of characters

to be classified.

A. Databases A1 and A2

These databases A1 and A2 contain the training and

validation samples, respectively, for the different network

architectures considered for this research. The characters

in these databases A1 and A2 have been sufficiently

processed with the key interest being that images are now

centered in the images i.e. most redundant background

pixels removed.

Fig.10. Training and validation characters

B. Database A3

For the purpose of evaluating the tolerance of the

trained networks to translation a separate database was

collected with the same characters and other feature

characteristics in databases A1 and A2 save that the

characters in the images have now been translated

horizontally and vertically. The figure below describes

these translations.

Fig. 11. Translated characters.

C. Database A4

This database contains the rotated characters contained

in database A1 and A2. Its sole purpose is to further

evaluate the performance of trained networks on pattern

rotation. See fig.12 for samples.

Fig. 12. Rotated characters

D. Database A5

This database is essentially databases A1 and A2

except that the scales of characters in the images have

now been purposely made different in order to evaluate

the performance of the networks on scale mismatch. It

will be seen that some characters are now bigger or

smaller as compared to the training and validation

characters earlier shown in Fig.10.

Fig.13 show samples contained in this database.

Fig.13. Scale varied characters

E. Database A6

In order to assess the performance of the networks on

noisy data, sub-databases with added salt & pepper noise

of different densities were collected as described below.

Database A6_1: 2.5% noise density

Database A6_2: 5% noise density

Database A6_3: 10% noise density

Database A6_4: 20% noise density

Database A6_5: 30% noise density

The figure below show character samples of database

A6_4.

Fig.14. Characters with 20% salt & pepper noise density

VI. DEEP NETWORKS TEST AND ANALYSIS

The tables below show the error rates obtained by

simulating the trained networks with the different

databases as described in the section V.

8 Deep Learning in Character Recognition Considering Pattern Invariance Constraints

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

It is to be noted that the trained networks were only

trained with the database A1 and validated with database

A2 to prevent overfitting.

All the databases images were resize to 32×32 pixels

and then reshaped to a column matrix of size 1024×1

which were found suitable to be fed as network inputs.

All the networks have 7 output neurons to accommodate

the number of classes of the characters.

The networks that were trained include the

conventional Back Propagation Neural Network (BPNN),

Denoising Auto Encoder (DAE), Stacked Denoising Auto

Encoder (SDAE), and Deep Belief Network (DBN).

The BPNN networks were trained on the scaled

conjugate algorithm; using 1 (BPPN-1) and 2 (BPNN-2)

hidden layers to observe the effect of deep learning on

pattern invariances of interest as discussed in the previous

sections.

The DAE and SDAE networks were trained with a 0.5

input zero mask fraction. i.e. denoising parameter.

14,000 samples have been used to train the networks,

2,500 samples as the validation set, and 700 samples as

test set for each invariance constraint.

Please note that as some of the original images were

rotated to create a larger database for training, validation,

and testing; thus inferring that some level of prior

knowledge on rotation of characters have been built into

the network; nevertheless the performance of the trained

networks was still verified on rotational invariance.

Also important, is that the only variance introduced

into each database A3, A4, A5, and A6 is the particular

invariance of interest correspondingly, as this allows the

sole observation of network tolerances on a particular

invariance. Below are the network training parameters

and achieved error rates.

Table 1. Training parameters for networks

No. of hidden neurons 1st layer 2nd layer

BPNN – 1 layer 65 0

BPNN – 2 layers 95 65

DAE – 1 layer 100 0

SDAE – 2 layers 95 65

DBN - 2 layers 200 150

Table 2. Error rates for training and validation data

Nets. Train Validate

BPNN – 1 layer 0.0433 0.0734

BPNN – 2 layers 0.0277 0.0639

DAE – 1 layer 0.0047 0.0679

SDAE – 2 layers 0.0028 0.0567

DBN - 2 layers 0.0023 0.0377

It can be seen from table 2 that the DBN achieved the

lowest error rate on both the train and validation data.

The SDAE comes second in performance to the DBN on

classification error rates. While the AE outperformed the

BPNN-1 on both train and validation error rates, it can be

inferred that the pre-training schemed allowed the

weights initialization of the AE to occur in a weight space

which was more favourable to the convergence of the

network to a better local optimum, as compared to

BPNN-1 without pre-training.

Table 3. Error rates for network architectures on variances

Nets. Translation Rotation Scale

BPNN – 1 layer 0.8571 0.3140 0.3571

BPNN – 2 layers 0.8286 0.2729 0.3658

DAE – 1 layer 0.8000 0.2486 0.3057

SDAE – 2 layers 0.7429 0.2214 0.2743

DBN - 2 layers 0.8143 0.1986 0.2329

The simulation results on the considered invariances

for the different trained networks are shown in table 3. It

can be seen that the SDAE has the lowest error rate on

translation, while the DBN outperformed other networks

on rotational and scale invariances.

It can be observed that the two best networks in

invariance learning (DBN and SDAE) are of 2 hidden

layers, hence we can conjure that these networks were

able to explore a more complex space of solutions while

learning to the deep nature; since hierarchical learning

allows more distributed knowledge representation.

Table 4. Error rates for network architectures on noise

Nets. 2.5% 5% 10%

BPNN – 1 layer 0.3214 0.3486 0.3471

BPNN – 2 layers 0.2943 0.3158 0.3414

DAE – 1 layer 0.2843 0.3243 0.4357

SDAE – 2 layers 0.2586 0.3043 0.3857

DBN - 2 layers 0.2371 0.2771 0.3843

Table 5. Error rates for network architectures on noise

Nets. 20% 30%

BPNN – 1 layer 0.4129 0.4829

BPNN – 2 layers 0.4486 0.5586

DAE – 1 layer 0.5986 0.6843

SDAE – 2 layers 0.5386 0.6371

DBN - 2 layers 0.6414 0.7729

The figure below shows the performance of the

different network architectures at 0%, 2.5%, 5%, 10%,

20%, and 30% noise densities added to the test data.

Fig. 15. Performance of networks on noise levels

 Deep Learning in Character Recognition Considering Pattern Invariance Constraints 9

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

DBN and SDAE have low error rates at relatively low

noise levels, but their performances seem to degrade

drastically from 7% and 10% noise densities respectively

(see fig.15). BPNN-1 was observed to have the best

performance at 30% noise level.

VII. CONCLUSION

This research is meant to explore and investigate some

common problems that occur in recognition systems that

are neural network based. It will be seen that the deep

belief networks on the average, performed best compared

to the other networks on variances like translation,

rotation and scale mismatch; while its tolerance to noise

decreased noticeably as the level of noise was increased

as shown in table 4, table 5, and fig.15.

A noteworthy attribute of the patterns (Yoruba vowel

characters) used in validating this research is that they

contain diacritical marks which increases the achievable

variations of each pattern, and as such, recognition

systems designed and described in this work have been

tasked with a harder classification problem.

The performances of the denoising auto encoder (DAE-

1 hidden layer) and stacked denoising auto encoder

(SDAE-2 hidden layer), on the average with respect to the

variances in character images seems to second the deep

belief network.

The performance of the denoising auto encoder is

lower than that of the stacked denoising auto encoder, it

can be conjured that the stacked denoising auto encoder is

less sensitive to the randomness of the input; of course the

training and validation errors for the SDAE are also lower

to the DAE, and the tolerance to variances introduced into

the input significantly higher. i.e. a kind of higher

hierarchical knowledge of the training data achieved.

It is the hope that machine learning algorithms and

neural network architectures, which when trained once,

perform better on invariances that can occur in the

patterns that they have been trained with can be explored

for more robust applications. This also obviously saves

time and expenses in contrast to training many different

networks for such situations.

Furthermore, building invariances by the inclusion of

all possible pattern invariances which can occur when

deployed in applications during the training phase is one

solution that has been exploited; unfortunately this is not

always feasible as the capacity of the network is

concerned. i.e. considering number of training samples

enough to guarantee that proper learning has been

achieved.

It can be seen that the major problem in deep learning is

not in obtaining low error rates on the training and

validation sets (i.e. optimization) but on the other

databases which contain variant constraints of interest (i.e.

regularization). These variances are common constraints

that occur in real life recognition systems for handwritten

characters, and some of the solutions have been

constraining the users (writers) to some particular possible

domains of writing spaces or earmarked pattern of writing

in order for low error rates to be achieved.

It is noteworthy that from the error rates obtained in

table 2 to 5, it can be inferred that while pre-training has

both optimization and regularization effect as has been

observed by researchers [14], this research reinforces that

the optimization effect is larger; this is seen in that lower

error rates were obtained from the deep networks that

were pre-trained (DAE, SDAE, DBN) compared to the

networks without pre-training (BPNN 1-layer and BPNN

2-layers). In addition, it will be seen that as the level of

added noise was increased, the errors on the deep

networks began to rise; at 30% noise level, the shallow

network (BPNN 1-layer) has the lowest error rate, which

can be explained by the fact that it has the lowest number

of network units (neurons) and therefore a lower

possibility of overfitting data. See table 4 & 5. It will be

noticed that even though the stacked auto encoder has

more units than the denoising auto encoder, hence should

have had higher error rates as noise was increased (i.e.

due to overfitting) as observed in the deep belief network,

the SDAE was pre-trained using the drop-out technique,

and which success in fighting overfitting can be seen as

the relatively lower error rates achieved at 20% and 30%

noise levels compared to the DBN (table 4 & 5, and

fig.15).

It has been shown that another flavour of neural

networks, “convolutional networks” and its deep variant

give very motivating performance on some of these

constraints [25], however the complexity of these

networks is somewhat obvious.

This work reviews the place of deep learning, a simpler

architecture (with no invariant features extraction pre-

processing techniques applied), in a more demanding

sense, that is, a “train once-simulate all” approach; and

how well these networks accommodate the discussed

invariances. It is the hope that with the emergence of

deep learning architectures and learning algorithms that

can extract features that are less sensitive to these

constraints, a new era in deep learning, neural networks

and machine learning field could emerge in the near

future.

REFERENCES

[1] Sternberg, R. J., & Detterman, D. K. (Eds.), „What is

Intelligence?‟, Norwood, USA: Ablex, 1986, pp.1

[2] Morgan McGuire, "An image registration technique for

recovering rotation, scale and translation parameters",

Massachusetts Institute of Technology, Cambridge MA,

1998, pp.3

[3] Gorge, D., and Hawkins, J., Invariant Pattern Recognition

using Bayesian Inference on Hierarchical Sequences, In

Proceedings of the International Joint Conference on

Neural Networks. IEEE, 2005. pp.1-7

[4] Esa Rahtu, Mikko Salo and Janne Heikkil ,̈ Affine

invariant pattern recognition using Multiscale

Autoconvolution, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2005, 27(6): pp.908-18

[5] Joarder Kamruzzaman and S. M. Aziz, A Neural Network

Based Character Recognition System Using Double

Backpropagation, Malaysian Journal of Computer Science,

Vol. 11 No. 1, 1998, pp. 58-64

10 Deep Learning in Character Recognition Considering Pattern Invariance Constraints

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 07, 1-10

[6] Joel Z Leibo, Jim Mutch, Lorenzo Rosasco, Shimon

Ullman, and Tomaso Poggio, Learning Generic

Invariances in Object Recognition: Translation and Scale,

Computer Science and Artificial Intelligence Laboratory

Technical Report, 2010, pp.1

[7] Yann Lecun, Yoshua Bengio, Pattern Recognition and

Neural Networks, AT & T Bell Laboratories, 1994, pp.1

[8] Cowan N. 1993. Activation, attention, and short-term

memory. Mem. Cognit. 21:162–7

[9] Postle BR. 2006. Working memory as an emergent

property of the mind and brain. Neuroscience 139:23–38

[10] Ruchkin DS, Grafman J, Cameron K, Berndt RS. 2003.

Working memory retention systems: a state of activated

long-term memory. Behav. Brain Sci. 26:709–28;

discussion 728–77

[11] Alexander Grubb, J. Andrew Bagnell, Stacked Training for

Overftting Avoidance in Deep Networks, Appearing at the

ICML 2013 Workshop on Representation Learning, 2013,

pp.1

[12] Xavier Glorot and Yoshua Bengio, Understanding the

difficulty of training deep feedforward neural networks,

Appearing in Proceedings of the 13th International

Conference on Artificial Intelligence and Statistics

(AISTATS), 2010, pp.251-252

[13] Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng,

Rectifier Nonlinearities Improve Neural Network Acoustic

ModelsProceedings of the 30 th International Conference

on Machine Learning, Atlanta, Georgia, USA, 2013, pp.2

[14] Nitish Srivastava at el, Dropout: A Simple Way to Prevent

Neural Networks from Overfitting, Journal of Machine

Learning Research 15 (2014) 1929-1958, 2014, pp.1930

[15] Kevin Duh, Deep Learning & Neural Networks: Lecture 4,

Graduate School of Information Science, Nara Institute of

Science and Technology, 2014, pp.9

[16] Dumitru Erhan at el, Why Does Unsupervised Pre-training

Help Deep Learning?,Appearing in Proceedings of the 13th

International Conference on Artificial Intelligence and

Statistics (AISTATS) 2010, Chia Laguna Resort, Sardinia,

Italy. Volume 9 of JMLR: W&CP 9, pp.1

[17] Li Deng, An Overview of Deep-Structured Learning for

Information Processing, Asia-Pacific Signal and

Information Processing Association: Annual Summit and

Conference, 2014, pp.2-4

[18] Pascal Vincent et al., Stacked Denoising Autoencoders:

Learning Useful Representations in a Deep Network with a

Local Denoising Criterion, Journal of Machine Learning

Research 11 (2010) 3371-3408, pp.3379

[19] Geoffrey Hinton, NIPS Tutorial on: Deep Belief Nets,

Canadian Institute for Advanced Research & Department

of Computer Science, University of Toronto, 2007, pp. 9

[20] Radford M. Neal, Connectionist learning of belief

networks, Elsevier, Artificial Intelligence 56 (1992) 71-

113, pp.77

[21] Geoffrey E. Hinton, Simon Osindero, Yee-Whye Teh, A

Fast Learning Algorithm for Deep Belief Nets, Neural

Computation 18, 1527–1554 (2006), pp.7

[22] Li Deng and Dong Yu, Deep Learning Methods and

Applications, Foundations and Trends® in Signal

Processing, Volume 7 Issues 3-4, ISSN: 1932-8346, 2013,

pp.242-247

[23] Yoshua Bengio et al., Greedy Layer-Wise Training of

Deep Networks, Universit é de Montr éal Montr éal,

Qu ébec, 2007, pp.1-2

[24] Abdel-Rahman Mohamed, Geoffrey Hinton, and Gerald

Penn, Understanding How Deep Belief Networks Perform

Acoustic Modelling, Department of Computer Science,

University of Toronto, 2012, pp.1.

[25] Yann LeCun et al., Gradient-Based Learning Applied to

Document Recognition, Proceedings of the IEEE, 1998,

pp.6

Authors’ Profiles

Oyebade K. Oyedotun is a member of

Centre of Innovation for Artificial

Intelligence, British University of Nicosia,

Girne, via Mersin-10, Turkey and currently

pursuing a masters degree program in

Electrical/Electronic Engineering at Near

East University, Lefkosa, via Mersin-10,

Turkey.

Research interests include artificial neural networks, pattern

recognition, machine learning, image processing, fuzzy systems

and robotics.

PH-+905428892591. E-mail: oyebade.oyedotun@yahoo.com

Ebenezer O. Olaniyi is a member of

Centre of Innovation for Artificial

Intelligence, British University of Nicosia,

Girne, via Mersin-10, Turkey and currently

pursuing a masters degree program in

Electrical/Electronic Engineering at Near

East University, Lefkosa, via Mersin-10,

Turkey.

His research interest areas are Artificial neural network,

Pattern Recognition, Image processing, Machine Learning,

Speech Processing and Robotics.

PH- +905428827442. E-mail: obalolu117@yahoo.com

Adnan Khashman received the B.Eng.

degree in electronic and communication

engineering from University of

Birmingham, England, UK, in 1991, and

the M.S and Ph.D. degrees in electronic

engineering from University of

Nottingham, England, UK, in 1992 and

1997.

During 1998-2001 he was an Assistant

Professor and the Chairman of Computer Engineering

Department, Near East University, Lefkosa, Turkey. During

2001-2009 he was an Associate Professor and Chairman of

Electrical and Electronic Engineering Department, and in 2009

he received the professorship. In 2001 he established the

Intelligent Systems Research Group (ISRG) at the same

university, and has been chairing ISRG until present. From

2007 until 2008 he was also the Vice-Dean of Engineering

Faculty, later on from 2013 until 2014 the Dean of the faculty at

the same university.

Since 2014, Professor Khashman was appointed as the

Founding Dean of Engineering Faculty at the British University

of Nicosia in N. Cyprus, where he also established the Centre of

Innovation for Artificial Intelligence His current research

interests include image processing, pattern recognition,

emotional modeling and intelligent systems.

E-mail: adnan.khashman@bun.edu.tr

