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Abstract—Character recognition is a field of machine learning 

that has been under research for several decades. The particular 

success of neural networks in pattern recognition and therefore 

character recognition is laudable. Research has also long shown 

that a single hidden layer network has the capability to 

approximate any function; while, the problems associated with 

training deep networks therefore led to little attention given to it. 

Recently, the breakthrough in training deep networks through 

various pre-training schemes have led to the resurgence and 

massive interest in them, significantly outperforming shallow 

networks in several pattern recognition contests; moreover the 

more elaborate distributed representation of knowledge present 

in the different hidden layers concords with findings on the 

biological visual cortex. This research work reviews some of the 

most successful pre-training approaches to initializing deep 

networks such as stacked auto encoders, and deep belief 

networks based on achieved error rates. More importantly, this 

research also parallels investigating the performance of deep 

networks on some common problems associated with pattern 

recognition systems such as translational invariance, rotational 

invariance, scale mismatch, and noise. To achieve this, Yoruba 

vowel characters databases have been used in this research. 

 

Index Terms— Deep Learning, Character Recognition, Pattern 

Invariance, Yoruba Vowels. 

 

I.  INTRODUCTION 

Pattern recognition has been successfully applied in 

different fields, and the benefits therein are somewhat 

obvious; in particular, character recognition has sufficed 

in applications such as reading bank checks, postal codes, 

document analysis and retrieval etc. 

In view of this, several recognition systems exist today, 

which employs different approaches and algorithms for 

achieving such tasks. Some common recognition systems 

approach that have been in use include template matching, 

syntactic analysis, statistical analysis, and artificial neural 

networks. The above mentioned approaches to the 

problem of pattern recognition, and therefore character 

can be classified into non-intelligent and intelligent 

systems. If  intelligence is “the ability to adapt to the 

environment and to learn from experience” [1]; then we 

can say that approaches to pattern recognition such as 

template matching, syntactic analysis, and statistical 

analysis are non-intelligent, as they inevitably lack the 

ability to learn and hence adapt to the tasks they are 

designed for. Neural networks, conversely, can learn the 

features of task on which they are designed and trained; 

they can also adapt to some moderate variations such as 

noise on the data they have been trained with, hence 

considered intelligent. 

The success of neural networks in contrast to other 

non-intelligent recognition approaches is striking, based 

on performance, and somewhat ease of design 

considering the capability of neural networks in 

approximation any mapping function of inputs to outputs 

while requiring „least‟ domain specific knowledge for its 

programming each time it is embedded in different 

applications. i.e. self-programming. The above notion 

leads to the fact that a new programming algorithm and 

therefore codes need not necessarily be developed for 

tasks of at least similar applications as it is done in 

convectional-digital computing (i.e. same suitable 

learning algorithms can be used for different tasks); this 

allows for two options hence: 

 designers focus more on developing extraction 

methods for useful features that can be learnt by the 

network for different tasks which reduces the 

computational requirement and somewhat increases 

performance as most irrelevant features to learning 

would have been filtered out, hence learning is more 

concise. 

 more knowledge, features extracting machine learning 

algorithms and architecture of neural networks that 

allows the network itself to learn and extract important 

features from the training data, hence lesser effort from 

designers in handcrafting features from the training 

data. This second option has recently boosted interest 

in machine learning, as marked achievements include 

emergent various architectures of neural networks that 

can learn from almost unprocessed data. 

Also, the level of intelligence required of recognition 

systems has gradually changed over the years from 

basically almost 100% handcrafted and extracted features 

from data for learning to almost raw data. Some 
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consideration on the amount of common pattern 

invariance achievable in learning has also changed; such 

common invariances include relatively moderate 

translation, rotation, scale mismatch, and noisy patterns.  

These problems are briefly discussed below. 

 
Fig. 1. Translational invariance 

 

It can be seen in the figure above, the linear 

translations (fig.1 b & c) of the original pattern (fig.1a) in 

the image; it is obvious that this scenario shouldn‟t 

represent different patterns in an intelligent recognition 

system, a situation referred to as translational invariance. 

Although there exist registration algorithms that attempt 

to align a pattern image over a reference image so that 

pixels present in both images are in the same location. 

This process is useful in the alignment of an acquired 

image over a template [2]. 

 
Fig. 2. Rotational invariance 

 

Rotational invariance is shown in fig.2, with (b) and (c) 

being the rotated versions of (a). 

 
Fig. 3. Scale invariance 

 

Scale invariance is a situation where the size of the 

pattern has been scaled down or blown up; it is important 

to note that the actual dimension or pixels of the image 

remains the same in this situation. e.g. see fig.3. 

 
Fig. 4. Noise corruption 

 

Noise, is another problem faced in pattern recognition 

as shown above; the question of how much is the level of 

noise required to so corrupt the input as to lead to 

misclassification of patterns. 

Fig.4. (a), (b), and (c) shows the images with 20%, 

30%, and 40% levels of salt & pepper noise added 

respectively. 

It is the aim to design machine learning algorithms and 

novel neural network architectures that are more robust to 

pattern invariance and noise etc. 

 

II.  RELATED WORKS 

Gorge and Hawkins [3], in their work, „Invariant 

Pattern Recognition using Bayesian Inference on 

Hierarchical Sequences‟, suggested that invariance could 

be learned in a neural network using Bayesian inference 

approach. Their work exploited the  hierarchical learning 

and recalling of input sequences at each layer, it was 

proposed that some lower transformation features learned 

from some particular patterns could be used for other 

patterns representation at higher levels; hence making 

learning more efficient. They employed feedforward and 

feedback connections, which were described to hold the 

inferences made on the current (or locally stored) 

observations and supply computed predictions to the 

lower levels respectively. 

Rahtu E. et al [4] proposed an affine invariant pattern 

recognition system using multiscale autoconvolution, in 

which they employed probabilistic interpretation of 

image functions. It was reported in their work that the 

proposed approach is more suited for scenarios where 

distortions present in images can be approximated using 

affine transformations. Furthermore, their simulation 

results presented on the classification of binary English 

alphabets A, B, C, D, E, F, G, H, and I,  with added 

binary noise can be seen to be relatively poor. It was 

established that the affine invariant moment and multi-

scale autoconvolution classification approaches presented 

seem to collapse at a noise level of 2% and 6% 

respectively, giving high classification errors. Also, it can 

be seen that such an approach seems to depend on very 

complex and rigorous mathematical build up, rather than 

a simple approach of describing invariance learning. 

Kamruzzaman and Aziz [5], in their research, 

presented a neural network based character recognition 

system using double backpropagation. The classification 

was achieved in two phases, which involves extracting 

invariant features to rotation, translation, and scale in the 

preprocessing phase (first phase); and training a neural 

network classifier with the extracted features in the 

second phase. It was recorded that a recognition rate of 

97% was achieved on the test patterns . 

It was suggested in their work that their classification 

system was not tested on real world data such as 

handwritten digits, hence the presented approach could 

not be verified for robustness in practical applications 

where many pattern irregularities may make such systems 

suffer poor performance. 

It will be observed that one thing that is common to the 

above reviewed researches is that they seem to rely more 

on somewhat complex data manipulations and pre-

processing techniques and lesser on an intelligent system 

that „strive‟ to simulate how pattern invariance is 
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achieved as obtains in the human visual perception 

system. 

Conversely, this paper takes an alternative approach, 

by presenting a work which focuses on invariance 

learning based on the neural network architectures, rather 

than complex training data manipulation schemes and 

painstaking mathematical foundations. It is noteworthy 

that this research did not employ any invariant feature 

extraction technique; hence, investigates how neural 

network structures and learning paradigms affect 

invariance learning. Also, to reinforce the application 

importance of this work, real life data, „handwritten 

characters‟, have been used to train and simulate the 

considered networks. 

Furthermore, one „con‟ approach to achieving 

invariance in recognition systems is for any specific 

object, invariance can be trivially “learned” by 

memorizing a sufficient number of example images of the 

transformed object [6]. 

Unfortunately, the difficulty is to synthesize, and then 

to efficiently compute, the classification function that 

maps objects to categories, given that objects in a 

category can have widely varying input representations 

[7]; bearing in mind also that this approach increases 

computational load on the designed system. 

A better approach is to consider neural network 

architectures that allow some level of built-in invariance 

due to structure; and of course, this can usually still be 

augmented with some handcrafted invariance achieved 

through data manipulation schemes. 

Recent experimental findings demonstrating that 

distributed neural populations (e.g. deep networks) in 

early visual processing areas are recruited in a targeted 

fashion to support the transient maintenance of relevant 

visual features, consistent with the hypothesis that short-

term maintenance of perceptual content relies on the 

persistent activation of the same neural ensembles that 

support the perception of that content [8], [9], [10]. 

Neural networks of different architectures have been 

used in various machine learning assignments of pattern 

recognition; usually, involving just a single hidden layer. 

Although, it was later hypothesized the benefits of having 

networks with more than a single hidden layer, and there 

have been past research attempts to adopt multilayer 

neural networks, but technical difficulties encountered  in 

training such networks led to the lost of interest by 

researchers for a while as presented in the following 

section. 

It is the hope that simple, novel and emerging neural 

network architecture and learning algorithms can 

overcome or cope with some major pattern invariances as 

have been discussed. So far, one of the most successful 

pattern recognition systems in machine learning is deep 

neural networks, and is discussed briefly in section III. 

 

III.  DEEP LEARNING 

A. Insight into deep learning 

Deep learning depicts neural network architectures of 

more than a single hidden layer (multilayer networks); in 

contrast to networks of single hidden layer which are 

commonly referred to as shallow networks. These 

networks enjoy some biologically inspired structure that 

overcomes some of the constraints and performance of 

shallow networks. Such features include: 

 distributed representation of knowledge at each hidden 

layer. 

 distinct features are extracted by units or neurons in 

each hidden layer. 

 several units can be active concurrently. 

Generally, it is conceived that in deep networks, the 

first hidden layer extracts some primary features about 

the input, then these features are combined in the second 

layer to more defined features, and these features are 

further combined into well more defined features in the 

following layers, and so on. This can be somewhat seen 

as a hierarchical representation of knowledge; and 

obvious benefits of such networks compared to shallow 

networks include capability to search a far more complex 

space of functions as we stack more hidden layers in such 

networks. 

Of course, such an elaborate and robust structure didn‟t 

come without a price of difficultly in training. 

At training time, small inaccuracies in other layers may 

be exploited to improve overall performance, but when 

run on unseen test data these inaccuracies can compound 

and create very different predictions and often poor test 

set performance [11]. 

Common problems associated with training deep 

networks conventionally (through backpropagation 

algorithm) are discussed below. 

 Saturating units: this occurs when the value of the pre-

activations of hidden units are close to 1, such that the 

error gradient propagated to the layer below is almost 0. 

 Vanishing gradients: since deep networks are basically 

multilayer networks, and trained with gradient descent 

by back propagation of errors at the output; it therefore 

follows that there is a „dilution‟ of error gradients from 

a layer to the one below as a result of saturating units 

in the present layer; this consequently slows down or 

hamper learning in the network. Research works have 

shown that Hyperbolic-Tangent, Softsign [12], and 

Rectified Liner activations have improved performance 

on units saturation [13]. 

 Over-fitting: Since as we stack more hidden layers in 

the network, we add more units and interconnections, 

therefore, the feasibility of the network memorizing 

input patterns grows. Hence, in as much as we achieve 

distributed knowledge with more hidden layers, it 

comes with a trade-off of over-fitting. This problem is 

usually solved using various learning validation 

schemes during training (i.e. monitoring the error on 

the validation data) and different regularization 

algorithms; one method that has sufficed in this 

situation is the drop-out technique (removing units and 

their corresponding connections temporarily from the 

network) that prevents overfitting and provides a way 

of approximately combining exponentially many 

different neural network architectures efficiently [14]. 
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Drop-out technique is a more recent approach where 

hidden units are randomly removed with a probability of 

0.5 as this has been seen to prevent the co-adaptation of 

hidden units [15]. 

Erhan also noted in his work that pre-training is a kind 

of regularization mechanism [16]. 

Under-fitting: Since stacked architectures have usually 

thousands of parameters to be optimized during training, 

the feasibility of the network converging to a good local 

minimum is hence consequently reduced. 

Back-propagation networks are based on local gradient 

descent, and usually start out at some random initial 

points in weight space. It often gets trapped in poor local 

optima, and the severity increases significantly as the 

depth of the networks increases [17]. Several 

optimization algorithms have been proposed to this 

problem such as different pre-training schemes for 

initializing the networks‟ memory. 

B. Classification of deep learning architectures 

 Generative Architectures 

This class of deep networks is not required to be 

deterministic of the class patterns that the inputs belong, 

but is used to sample joint statistical distribution of data; 

moreover this class of networks relies on unsupervised 

learning. Some deep networks that implement this type 

architecture include Auto Encoders(AEs), Stacked 

Denoising Auto Encoders(SDAE), Deep Belief Networks 

(DBNs), Deep Boltzmann Machines (DBMs) etc. 

In general, they have been quite useful in various non-

deterministic pre-training methods applied in deep 

learning and data compression systems. 

 Discriminative Architectures 

Discriminative deep networks actually are required to 

be deterministic of the correlation of input data to the 

classes of patterns therein. Moreover, this category of 

networks relies on supervised learning. Examples of 

network that belong to this class include Conditional 

Random Fields (CRFs), Deep Convolutional Networks, 

Deep Convex Networks etc. In as much as these networks 

can be implemented as „stand-alone‟ modules in 

applications, they are also commonly used in the fine-

tuning of generatively trained networks under deep 

learning. 

 Hybrid Architectures 

Networks that belong to this class rely on the 

combination of generative and discriminative approach in 

their architectures. Generally, such networks are 

generatively pre-trained and then discriminately fine-

tuned for deterministic purposes. e.g. pattern 

classification problems. This class of networks has 

sufficed in many applications with the state-of-art 

performances. 

 

IV.  TRAINIING DEEP LEARNING MODELS 

A. Stacked denoising auto encoder (SDAE) 

Stacked Auto Encoders (SDAEs) are basically 

multilayer feedforward networks with the little difference 

being the manner in which weights are initialized. Here, 

the weights initialization is achieved through a generative 

learning algorithm, as this provides good starting weight 

parameters for the network (and helps fight under-fitting 

during learning). 

An auto encoder (single layer network) is a 

feedforward network trained to replicate the 

corresponding inputs at the output. During training, these 

networks learn some underlying features in the training 

data that are necessary for the reproduction at the output 

layer. The target outputs of these networks are the 

corresponding inputs themselves. i.e. no labels, hence an 

unsupervised learning. 

The application of auto encoders and therefore 

generative architectures leverage on the unavailability of 

labelled data or the required logistics and cost that may 

be necessary in labeling available data. It therefore 

follows that generative learning suffices in situations 

where we have large unlabelled data and small labelled 

data. The unlabelled data can be used to generatively 

train the network as in the case of auto encoders and the 

small labelled data used in the fine-tuning of the final 

network (as in hybrid networks). 

 
Fig.5. Auto encoder 

 

As can be seen above (fig.5), the auto encoder can be 

decomposed into two parts, the encoder, and decoder. It 

will also be noted that the number of output and input 

neurons, k, are equal (since the input and output are the 

same, hence of the same dimension), while the number of 

hidden units, j, is smaller than k, generally. i.e. a sort of 

data compression scheme can be inferred. 

The auto encoder can be seen as  an encoder-decoder 

system, where the encoder (input-hidden layer pair) 

receives the input, extracting essential features for 

reconstruction; while the decoder (hidden-output layer 

pair) part receives the features extracted from the hidden 

layer, performing reconstruction at its best. 

Auto encoders can be stacked on one another to 

achieve a more distributed and hierarchical representation 

of knowledge extraction from data; such architectures are 

referred to Stacked Auto Encoders (SAEs). 

Some undeveloped features are extracted in the first 

hidden layer, followed by more significant elementary 

features in the second, to more developed and meaningful 

features in the subsequent layers. 
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The training approach that is used in achieving 

learning in generative network architectures is known as 

„greedy layer-wise pre-training‟. The idea behind such an 

approach is that each hidden layer can be hand-picked for 

training as in the case of single hidden-layer networks; 

after which the whole network can be coupled back as 

whole, and fine-tuning done if required. 

Since the auto encoder is fundamentally a feedforward 

network, the training is described below. 

Encoder mode: 

( 1) ( 1)
1( ) ( ( )) ( )

L L
L x g m x sigm b W x

encoder
          (1)

 

( ) ( 1)
( ( )) ( 1( ))

y L
y z n x sigm b W L x

decoder
                   (2) 

Where, m(x) and n(x) are the pre-activations of the 

hidden and output layers L1 and y respectively; b(L1) and 

b(y) are biases of the hidden and output layers L1 and y 

respectively. 

The objective of the auto encoder is to perform 

reconstruction as “cleanly” as possible, which is achieved 

by minimizing cost functions such as are given below. 

 
k

kk xyyxC
1

2)(),(

                                      (3) 

 
k
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1
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Equation 3 is used when the range of values for the 

input are real, and a linear activation applied at the output; 

while equation 4 is used when the inputs are binary or fall 

into the range 0 to 1, and sigmoid functions are applied as 

activation functions. Equation 4 is known as the sum of 

Bernoulli cross-entropies. 

In the greedy layer-wise training, the input is fed into 

the network with L1 as the hidden layer and L2(x) as the 

output; note that L2(x) has target data as the input. The 

network is trained as in back propagation and weights 

connection between the input layer and L1 saved or fixed 

(fig.6). 

The input layer is removed and L1 made the input, L2 

the hidden layer, and output follows last (i.e. layer y). 

The activation values of L1 now act as input to the hidden 

layer L2(x), and the output layer made the same as input 

L1(x), weights between L1(x) and L2(x) are trained and 

fixed. 

 
Fig. 6. Stacked auto encoder 

Finally, the pre-trained weights obtained from the 

greedy layer-wise training are coupled back to the 

corresponding units in the network so that final weights 

fine-tuning for the whole network can now be carried out 

using back propagation algorithm. i.e. the original 

training data is supplied at the input layer and the 

corresponding target outputs or class labels are supplied 

at the output layer. Note that the weights between the last 

hidden layer and the output network can either be 

randomly initialized or trained discriminatively before the 

final network fine-tuning. 

Another variant of auto encoders, known as denoising 

auto encoders is very similar to the typical auto encoder 

except that the input data are intentionally corrupted by 

some moderate degree (setting some random input data 

attributes to 0) and while the corresponding targets are 

the correct, unaltered data. Here, the denoising auto 

encoder is required to learn the reconstruction of corrupt 

input data; this greatly improves the performance of 

initialized weights for deep networks. 

Denoising is advocated and investigated as a training 

criterion for learning to extract useful features that will 

constitute better higher level representation [18]. 

B. Deep belief network (DBN) 

A DBN is a deep network, which is graphical and 

probabilistic in nature; it is essentially a generative model 

too. 

A belief net is a directed acyclic graph composed of 

stochastic variables [19]. 

These networks have many hidden layers which are 

directed, except the top two layers which are undirected. 

The lower hidden layers which are directed are referred 

to as a Sigmoid Belief Network (SBN), while the top two 

hidden layers which are undirected are referred to as a 

Restricted Boltzmann Machine (RBM). i.e. fig.7. Hence a 

DBN can be visualized as a combination of  a Sigmoid 

Belief Network and a Restricted Boltzmann Machine. 

The sigmoid belief network is sometimes inferred as a 

Bayesian network or casual network [20]. 

 

Fig. 7. Deep Belief Network 

 

Furthermore, it has been shown that for the ease of 

training, deep belief networks can be visualized as a stack 

of Restricted Boltzmann Machines [21] [22]. 
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Since the last two layers of a deep belief network is an 

RBM, which is undirected, it can therefore be conceived 

that a deep belief network of only two layers is just an 

RBM. When more hidden layers are added to the network, 

the initially trained deep belief network with only 2 layers 

(also just an RBM) can be stacked with another RBM on 

top of it; and this process can be repeated with each new 

added layer trained greedily. 

Such a training scheme is aimed at maximizing the 

likelihood of the input vector at a layer below given a 

configuration of a hidden layer that is directly on top of it. 

As discussed above, it is therefore essential to 

introduce Restricted Boltzmann Machine for the proper 

understanding of deep belief networks. 

A restricted Boltzmann machine has only two layers 

(fig.8); the input (visible) and the hidden layer. The 

connections between the two layers are undirected, and 

there are no interconnections between units of the same 

layer as in the general Boltzmann machine. We can 

therefore say that from the restriction in  interconnections 

of units in layers, units are conditionally independent. 

The RBM can be seen as a Markov network, where the 

visible layer consists of either Bernoulli (binary) or 

Gaussian (real values usually between from 0 to 1) 

stochastic  units, and the hidden layer of stochastic 

Bernoulli units [22]. 

 
Fig.8. Restricted Boltzmann Machine 

 

The main aim of an RBM is to compute the joint 

distribution of v and h, p(v,h), given some model specific 

parameter, ϕ. 

This joint distribution can be described using an energy 

based probabilistic function as shown below. 

  
j
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Where, E(x,h;ϕ) is the energy associated with the 

distribution of x given h, x and h are input and hidden 

units activations respectively, i is the number of units at 

the input layer, j is the number of units at the hidden layer, 

bi is the corresponding bias to the input layer units, bj is 

the corresponding bias to the hidden layer units, Wij is the 

weight connection between unit xi and hj, P(x,h;ϕ) is the 

joint distribution of variable x and h, while Z is a 

partition constant or normalization factor [22] [23]. 

For a RBM with binary stochastic variables at both 

visible and hidden layers, the conditional probabilities of 

a unit, given the vector of unit variables of the other layer 

can be written as, 

)();|1( ji

i

ijj bxWvhp                       (8) 

)();|1( ij

j

iji bhWhxp                       (9) 

Where σ is the sigmoid activation function. 

Deng observed in his work that by taking the gradient 

of the log-likelihood p (x,h; ϕ), the weight update rule for  

RBM becomes, 

)()( mod jieljidataij hxEhxEW                    (10) 

Where, Edata is the actual expectation when hj is 

sampled from x, given the training set; and Emodel is the 

expectation of hj sampled from xi, considering the 

distribution defined by the model. 

It has also been shown that the computation of such 

likelihood maximization, Emodel, is intractable in the 

training of RBMs, hence the use of an approximation 

scheme known as “contrastive divergence”, an algorithm 

proposed to solve the problem of intractability of Emodel 

by Hinton [21]. 

Because of the way it is learned, the graphical model 

has the convenient property that the top-down generative 

weights can be used in the opposite direction for 

performing inference in a single bottom-up pass [24]. 

Hence, such an attribute as mentioned above makes 

feasible the use of an algorithm like backpropagation in 

the fine-tuning or optimization of the pre-trained network 

for discriminative purpose. 
 

V.  DATA ANALYSIS FOR LEARNING 

As the aim of this research is to investigate the 

tolerance in neural network based recognition systems to 

some common pattern variances that occur in pattern 

recognition; the variances that have been considered 

include rotation, translation, scale mismatch, and noise. 

Handwritten Yoruba vowel characters have been used to 

evaluate and observe the performance of the different 

network architectures considered for this work. 

Yoruba language is one of the three major languages in 

Nigeria with over 18 million native users; used largely by 

the southwestern part of the country. It consists of 7 

vowel alphabet characters, and in recent years, the 

acceptance and usage of the language have grown to such 

an extent that Google now accepts web searches using the 

language. It is noteworthy that the patterns (Yoruba 
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vowel characters) that have been used in this work are 

quite harder for recognition than some other languages, as 

some of the characters comprise diacritical marks; these 

marks can lie in slightly different positions of interest and 

also that the writing styles of individuals makes 

recognition even tougher. 

Handwritten copies of the characters are collected and 

processed into a form that is suitable to be fed as inputs to 

the different trained networks; different databases with 

specific variances were also collected to evaluate the 

performance of the trained networks on such variances. 

Listed below are the different collected databases and 

logic of sequence applied to this research. 

 Training database of Yoruba vowel characters: A1 

 Validating database of Yoruba vowel characters: A2 

 Translated database of Yoruba vowel characters: A3 

 Rotated database of Yoruba vowel characters: A4 

 Scale different database of Yoruba vowel character : 

A5 

 Noise affected database of Yoruba vowel character: A6 

 Process image databases as necessary 

 Train and validate all the different networks with 

created databases A1 and A2 respectively. 

 Simulate the different trained networks with A3, A4, 

A5, and A6. 

 

 
Fig. 9. Unprocessed character images 

 

All original databases contain images with 300×400 

pixels; the figure above shows separate handwritten 

character images which have not been processed. 

The characters were processed by binarizing the 

images (black & white), obtaining the negatives, and 

filtering using a 10×10 median filter; finally all images 

were resized to 32×32 pixels to be fed as inputs to the 

different designed networks. All networks have 7 outputs 

neurons as can be deduced from the number of characters 

to be classified. 

A. Databases A1 and A2 

These databases A1 and A2 contain the training and 

validation samples, respectively, for the different network 

architectures considered for this research. The characters 

in these databases A1 and A2 have been sufficiently 

processed with the key interest being that images are now 

centered in the images i.e. most redundant background 

pixels removed. 

 

Fig.10. Training and validation characters 

B. Database A3 

For the purpose of evaluating the tolerance of the 

trained networks to translation a separate database was 

collected with the same characters and other feature 

characteristics in databases A1 and A2 save that the 

characters in the images have now been translated 

horizontally and vertically. The figure below describes 

these translations. 

 

Fig. 11. Translated characters. 

C. Database A4 

This database contains the rotated characters contained 

in database A1 and A2. Its sole purpose is to further 

evaluate the performance of trained networks on pattern 

rotation. See fig.12 for samples. 

 

Fig. 12. Rotated characters 

D. Database A5 

This database is essentially databases A1 and A2 

except that the scales of characters in the images have 

now been purposely made different in order to evaluate 

the performance of the networks on scale mismatch. It 

will be seen that some characters are now bigger or 

smaller as compared to the training and validation 

characters earlier shown in Fig.10. 

Fig.13 show samples contained in this database. 

 

Fig.13. Scale varied characters 

E. Database A6 

In order to assess the performance of the networks on 

noisy data, sub-databases with added salt & pepper noise 

of different densities were collected as described below. 

Database A6_1:       2.5% noise density 

Database A6_2:       5% noise density 

Database A6_3:       10% noise density 

Database A6_4:       20% noise density 

Database A6_5:       30% noise density 

The figure below show character samples of database 

A6_4. 

 

Fig.14. Characters with 20% salt & pepper noise density 

 

VI.  DEEP NETWORKS TEST AND ANALYSIS 

The tables below show the error rates obtained by 

simulating the trained networks with the different 

databases as described in the section V. 
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It is to be noted that the trained networks were only 

trained with the database A1 and validated with database 

A2 to prevent overfitting. 

All the databases images were resize to 32×32 pixels 

and then reshaped to a column matrix of size 1024×1 

which were found suitable to be fed as network inputs. 

All the networks have 7 output neurons to accommodate 

the number of classes of the characters. 

The networks that were trained include the 

conventional Back Propagation Neural Network (BPNN), 

Denoising Auto Encoder (DAE), Stacked Denoising Auto 

Encoder (SDAE), and Deep Belief Network (DBN). 

The BPNN networks were trained on the scaled 

conjugate algorithm; using 1 (BPPN-1) and 2 (BPNN-2) 

hidden layers to observe the effect of deep learning on 

pattern invariances of interest as discussed in the previous 

sections. 

The DAE and SDAE networks were trained with a 0.5 

input zero mask fraction. i.e. denoising parameter. 

14,000 samples have been used to train the networks, 

2,500 samples as the validation set, and 700 samples as 

test set for each invariance constraint. 

Please note that as some of the original images were 

rotated to create a larger database for training, validation, 

and testing; thus inferring that some level of prior 

knowledge on rotation of characters have been built into 

the network; nevertheless the performance of the trained 

networks was still verified on rotational invariance. 

Also important,  is that the only variance introduced 

into each database A3, A4, A5, and A6 is the particular 

invariance of interest correspondingly, as this allows the 

sole observation of network tolerances on a particular 

invariance. Below are the network training parameters 

and achieved error rates. 

 
Table 1. Training parameters for networks 

No. of  hidden neurons 1st layer 2nd layer 

BPNN – 1 layer 65 0 

BPNN – 2 layers 95 65 

DAE – 1 layer 100 0 

SDAE – 2 layers 95 65 

DBN - 2 layers 200 150 

 

Table 2. Error rates for training and validation data 

Nets. Train Validate 

BPNN – 1 layer 0.0433 0.0734 

BPNN – 2 layers 0.0277 0.0639 

DAE – 1 layer 0.0047 0.0679 

SDAE – 2 layers 0.0028 0.0567 

DBN - 2 layers 0.0023 0.0377 

 

It can be seen from table 2 that the DBN achieved the 

lowest error rate on both the train and validation data. 

The SDAE comes second in performance to the DBN on 

classification error rates. While the AE outperformed the 

BPNN-1 on both train and validation error rates, it can be 

inferred that the pre-training schemed allowed the 

weights initialization of the AE to occur in a weight space 

which was more favourable to the convergence of the 

network to a better local optimum, as compared to 

BPNN-1 without pre-training. 

 
Table 3. Error rates for network architectures on variances 

Nets. Translation Rotation Scale 

BPNN – 1 layer 0.8571 0.3140 0.3571 

BPNN – 2 layers 0.8286 0.2729 0.3658 

DAE – 1 layer 0.8000 0.2486 0.3057 

SDAE – 2 layers 0.7429 0.2214 0.2743 

DBN - 2 layers 0.8143 0.1986 0.2329 

 

The simulation results on the considered invariances 

for the different trained networks are shown in table 3. It 

can be seen that the SDAE has the lowest error rate on 

translation, while the DBN outperformed other networks 

on rotational and scale invariances. 

It can be observed that the two best networks in 

invariance learning (DBN and SDAE) are of 2 hidden 

layers, hence we can conjure that these networks were 

able to explore a more complex space of solutions while 

learning to the deep nature; since hierarchical learning 

allows more distributed knowledge representation. 

 
Table 4. Error rates for network architectures on noise 

Nets. 2.5% 5% 10% 

BPNN – 1 layer 0.3214 0.3486 0.3471 

BPNN – 2 layers 0.2943 0.3158 0.3414 

DAE – 1 layer 0.2843 0.3243 0.4357 

SDAE – 2 layers 0.2586 0.3043 0.3857 

DBN - 2 layers 0.2371 0.2771 0.3843 

 
Table 5. Error rates for network architectures on noise 

Nets. 20% 30% 

BPNN – 1 layer 0.4129 0.4829 

BPNN – 2 layers 0.4486 0.5586 

DAE – 1 layer 0.5986 0.6843 

SDAE – 2 layers 0.5386 0.6371 

DBN - 2 layers 0.6414 0.7729 

 

The figure below shows the performance of the 

different network architectures at 0%, 2.5%, 5%, 10%, 

20%, and 30%  noise densities added to the test data. 

 

Fig. 15. Performance of networks on noise levels 
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DBN and SDAE have low error rates at relatively low 

noise levels, but their performances seem to degrade 

drastically from 7% and 10% noise densities respectively 

(see fig.15). BPNN-1 was observed to have the best 

performance at 30% noise level. 

 

VII.  CONCLUSION 

This research is meant to explore and investigate some 

common problems that occur in recognition systems that 

are neural network based. It will be seen that the deep 

belief networks on the average, performed best compared 

to the other networks on variances like translation, 

rotation and scale mismatch; while its tolerance to noise 

decreased noticeably as the level of noise was increased 

as shown in table 4, table 5, and fig.15. 

A noteworthy attribute of the patterns (Yoruba vowel 

characters) used in validating this research is that they 

contain diacritical marks which increases the achievable 

variations of each pattern, and as such, recognition 

systems designed and described in this work have been 

tasked with a harder classification problem. 

The performances of the denoising auto encoder (DAE-

1 hidden layer) and stacked denoising auto encoder 

(SDAE-2 hidden layer), on the average with respect to the 

variances in character images seems to second the deep  

belief network. 

The performance of  the denoising auto encoder is 

lower than that of the stacked denoising auto encoder, it 

can be conjured that the stacked denoising auto encoder is 

less sensitive to the randomness of the input; of course the 

training and validation errors for the SDAE are also lower 

to the DAE, and the tolerance to variances introduced into 

the input significantly higher. i.e. a kind of higher 

hierarchical knowledge of the training data achieved. 

It is the hope that machine learning algorithms and 

neural network architectures, which when trained once, 

perform better on invariances that can occur in the 

patterns that they have been trained with can be explored 

for more robust applications. This also obviously saves 

time and expenses in contrast to training many different 

networks for such situations. 

Furthermore, building invariances by the inclusion of 

all possible pattern invariances which can occur when 

deployed in applications during the training phase is one 

solution that has been exploited; unfortunately this is not 

always feasible as the capacity of the network is 

concerned. i.e. considering number of training samples 

enough to guarantee that proper learning has been 

achieved. 

It can be seen that the major problem in deep learning is 

not in obtaining low error rates on the training and 

validation sets (i.e. optimization) but on the other 

databases which contain variant constraints of interest (i.e. 

regularization). These variances are common  constraints 

that occur in real life recognition systems for handwritten 

characters, and some of the solutions have been 

constraining the users (writers) to some particular possible 

domains of writing spaces or earmarked pattern of writing 

in order for low error rates to be achieved. 

It is noteworthy that from the error rates obtained in 

table 2 to 5, it can be inferred that while pre-training has 

both optimization and regularization effect as has been 

observed by researchers [14], this research reinforces that 

the optimization effect is larger; this is seen in that lower 

error rates were obtained from the deep networks that 

were pre-trained (DAE, SDAE, DBN) compared to the 

networks without pre-training (BPNN 1-layer and BPNN 

2-layers). In addition, it will be seen that as the level of 

added noise was increased, the errors on the deep 

networks began to rise; at 30% noise level, the shallow 

network (BPNN 1-layer) has the lowest error rate, which 

can be explained by the fact that it has the lowest number 

of network units (neurons) and therefore a lower 

possibility of overfitting data. See table 4 & 5. It will be 

noticed that even though the stacked auto encoder has 

more units than the denoising auto encoder, hence should 

have had higher error rates as noise was increased (i.e. 

due to overfitting) as observed in the deep belief network, 

the SDAE was pre-trained using the drop-out technique, 

and which success in fighting overfitting can be seen as 

the relatively lower error rates achieved at 20% and 30% 

noise levels compared to the DBN (table 4 & 5, and 

fig.15). 

It has been shown that another flavour of neural 

networks, “convolutional networks” and its deep variant 

give very motivating performance on some of these 

constraints [25], however the complexity of these 

networks is somewhat obvious. 

This work reviews the place of deep learning, a simpler 

architecture (with no invariant features extraction pre-

processing techniques applied), in a more demanding 

sense, that is, a “train once-simulate all” approach; and 

how well these networks accommodate the discussed 

invariances. It is the hope that with the emergence of 

deep learning architectures and learning algorithms that 

can extract features that are less sensitive to these 

constraints,  a new era in deep learning, neural networks 

and machine learning field could emerge in the near 

future. 
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