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Abstract—This paper proposes nonlinear adaptive filter-bank 

(NAFB) based algorithm for inverse modeling of nonlinear 

systems. Inverse modeling has been an important component for 

sensor linearization, adaptive control, channel equalization in 

communication system and active noise control. Under practical 

situations, the plant/system behaves nonlinearly which can be 

modeled as both parallel and cascaded structures of linear and 

nonlinear transfer functions. These linear and nonlinear transfer 

functions can be either static or dynamic, time variant or time 

invariant. The proposed NAFB algorithms are applied to 

generate the inverse model of different types of nonlinear 

systems and their convergence performances are evaluated. 

These nonlinear inverse models can be suitably applied to many 

engineering applications. 

 

Index Terms—Nonlinear System, Adaptive System, Adaptive 

Inverse Model, Filter-Bank 

 

I.  INTRODUCTION 

In many engineering applications, the system (plant) is 

nonlinear in characteristic. A sensor/actuator is nonlinear 

when it is operated beyond its operating range [1-4]. The 

communication channels are often nonlinear which 

demand a nonlinear channel equalization to get reduced 

bit-error-rate [5-7]. Optical communication system also 

has nonlinear distortion due to the nonlinear 

characteristics of the laser diodes, which needs to be 

compensated in order to enhance the performance [8-10]. 

A typical control system with a nonlinear plant needs 

linearization for performance improvement [11-15]. In 

active noise control, the nonlinear secondary path needs 

linearization for effective noise control [16-20]. In many 

cases the inverse model to the nonlinear transfer function 

(the physical system) is found out offline or periodically 

and placed at suitable location in the control/monitoring 

system to nullify the nonlinear effect of the system. 

Different types of nonlinear inverse models have been 

proposed for different applications. The nonlinear inverse 

model of a sensor using artificial neural network is 

proposed for pressure sensors [1]. To linearize the sensor 

model, subtle circuits are designed using simple and 

compact multiplier/divider and vector multiplier circuits 

that comprise of op-amps and MOS transistors [2]. 

Nonlinear compensation algorithms for extending the 

linear range of linear variable differential transformer are 

proposed in [3-4]. A number of nonlinear channel 

equalization algorithms are proposed which includes 

Kalman filter-trained recurrent neural equalizers [5], 

radial basis function networks [6], artificial neural 

network trained by particle swarm optimization [7]. A 

higher order adaptive filter based predistortion system is 

used to compensate the nonlinear effect of fiber links [9]. 

In [11], an adaptive finite impulse response (FIR) filter 

based controller has been proposed for the tracking of a 

ferric ball under the influence of magnetic force. This 

adaptive filter is adapted to model the inverse system. 

Neural network based inverse model of nonlinear plants 

have been proposed for control applications [12-13]. A 

position control system has been proposed in [14] using 

an inverse model. The functional link artificial neural 

network is applied to find the inverse kinematics to 

control a robotic manipulator [15]. Active noise control 

(ANC) is a process by which antinoise is generated by a 

loudspeaker system to control the noise using principle of 

destructive interference. The loudspeaker system is a 

nonlinear system when it is driven beyond its dynamic 

range. In [16], usage of inverse model of the secondary 

path is used for better noise cancellation and sound 

reproduction. A linear equivalent of nonlinear inverse at 

every time instant is evaluated using a derivative method 

to find a time varying inverse model of the nonlinear 

secondary path for ANC application [17]. The same 

method is applied with advanced control architectures for 

nonlinear secondary path in [18-19]. An adjoint method 

to compensate the effect of linear secondary path is 

proposed for virtual active noise control [20]. The 

nonlinear systems can be static or dynamic. It can also be 

recursive. The physical nonlinear systems are modeled 

using either continuous or discrete equations. The 

nonlinear system models are realized as Wiener or 

Hammerstein types. These nonlinear systems may be 

time invariant or time varying. For linearization, an 

inverse model can be placed either before the plant 

(nonlinear system) or after the plant. When it is placed 

before the plant, it is called predistorter and when it is 

placed after the plant, it is called postdistorter. In a 

control application, mostly predistorter type inverse 

models are used, whereas for sensor and communication 

systems where the input is a physical quantity and the 

output is an electrical signal, the postdistorter type 

inverse model is preferred. In this case, the inverse model 

is followed by the nonlinear system or plant. 

In summary, such nonlinear inverse models can be 

offline identified by using a nonlinear structure and a 
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parameter optimization algorithm. The most popular 

nonlinear structure is a neural network and its variants. 

The optimization algorithms such as LMS and 

evolutionary computing algorithms are also used. The 

neural network architecture is a complex network and 

involves more computational complexity. The parameter 

update algorithm is also computationally intensive in this 

case. Therefore, in this paper, a simple adaptive algorithm 

is proposed for finding the nonlinear inverse of a 

nonlinear plant where the plant follows the nonlinear 

inverse model so that the over-all response is linear. The 

proposed filterbank based algorithm is simple to 

implement compared to the multilayer neural network 

algorithm. 

Organization of this paper is as follows. Section II 

presents models of different types of nonlinear systems. 

A filter bank based nonlinear adaptive algorithm is 

proposed in Section III, for adaptively finding the inverse 

of a nonlinear system. Section IV deals with the 

simulation experiments to evaluate the performance of 

the proposed algorithms. Section V presents the 

conclusion. 

 

II.  NONLINEAR SYSTEMS 

Different types of nonlinear systems exist. In some 

systems the input is a physical quantity and the output is 

an electrical signal and in others, the input is an electrical 

signal and output is a physical quantity. There are 

systems where both input and outputs are either physical 

or electrical signals. The physical systems are generally 

continuous and to use digital signal processing, the input 

and output of the systems are discretized by analog to 

digital converters and may be represented in a discrete 

domain with a sample index n . Different types of systems 

and the mathematical relationship of the output of the 

system ( )y n  with the input of the system ( )x n  is 

presented below. 

A. Static nonlinear system 

The system whose output is a nonlinear function of the 

present input only and is represented as 

( ) ( ( ))y n f x n ,                                                          (1) 

where n  represents the sample time index, (.)f  is the 

nonlinear function. ( )x n  and ( )y n  are the input and 

output of the system, respectively. Many practical 

systems and sensors have static nonlinearity. The block 

diagram of a static nonlinear system is shown in Fig. 1 (a) 

B.  Dyanamic nonlinear system 

Dynamic nonlinear system: The system whose output 

is a nonlinear function of the present and past inputs and 

is represented as [21] 

( ) ( ( ),  ( 1),..., ( 1))y n f x n x n x n N    .                    (2) 

The output of a dynamic system may also depend on 

the past outputs which is also called as recursive system 

and is represented as 

( ) ( ( ),  ( 1),..., ( 1),y n f x n x n x n N     

( 1), ( 2),..., ( 1))y n y n y n M    .                             (3) 

The dynamic nonlinear systems may be modelled as a 

linear combination of nonlinear functions of present and 

past inputs and past outputs and are represented as 

0 1 1( ) ( ( )) ( ( 1)),..., ( ( 1)),Ny n f x n f x n f x n N      

1 2 3( ( 1)), ( ( 2)),..., ( ( 1))g y n g y n g y n M               (4) 

The block diagram of a dynamic nonlinear system is 

presented in Fig. 1 (b). 

C. Cascade system 

The static and dynamic nonlinear system may be 

cascaded with a linear system to form another type of 

nonlinear system. A physical system may have a linear 

part and nonlinear part. The system when excited by 

certain range of input signal may behave linearly and 

beyond this range it becomes nonlinear. In literature [22] 

two such system are well studied: Wiener and 

Hammerstein. 

The Wiener system is also called as Linear-Nonlinear 

(LN) system, where a static nonlinear model is followed 

by a dynamic linear system. This is expressed as 

1

0

( ) ( )
N

k

k

z n h x n k




                                                      (5) 

( ) ( ( ))y n f z n ,                                                           (6) 

where ( )z n  is the output of the linear dynamic system 

represented here as a finite impulse response (FIR) filter 

and (.)f  is a static nonlinear function operates on the 

output of the linear system to generate the output of the 

Wiener system. The block diagram of a Wiener system is 

shown in Fig. 1 (c). 

The Hammerstein system is also called as Nonlinear- 

Linear (NL) system, where a static nonlinear model 

follows a dynamic linear system. This is expressed as 

( ) ( ( ))z n f x n                                                            (7) 

1

0

( ) ( )
N

k

k

y n h z n k




  ,                                                  (8) 

where ( )z n  is the output of the static nonlinear system 

which is fed to a finite impulse response (FIR) filter to 

generate the output of the Hammerstein system. The 

block diagram of a Hammerstein system is shown in Fig. 

1 (d). 

A Wiener system can be concatenated with a 

Hammerstein system to generate a structure which is 

equivalent to linear-nonlinear-linear (LNL) combination 

of systems. The block diagram of a LNL system is shown 

in Fig. 1 (e). 

 y(n) x(n) 
f(x(n)) 

(a)Static nonlinear System 
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  f(x(n), x(n-1), ...) 

x(n) 

x(n-1) 
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y(n) 

(b)Dynamic nonlinear System 
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Fig. 1. Schematic diagram of different system 

 

In addition to this, these static nonlinear systems may 

be dynamic based on the nonlinear phenomena in a 

physical system. 

D. Parallel system 

Unlike the cascaded systems, where the linear and 

nonlinear systems are combined in series, they can be 

combined in parallel. If the input of a system sees both 

nonlinear and linear effects on its path, till it reaches the 

output. The block diagram of a parallel system is shown 

in Fig. 1 (f). 

 

III.  PROPOSED ALGORITHM FOR ESTIMATING NONLINEAR 

INVERSE MODEL 

The linear adaptive filter consists of a finite impulse 

response (FIR) filter which is excited by a direct input 

signal. The coefficient of this adaptive FIR filter is 

updated using some adaptive algorithms such as least 

mean square (LMS) algorithm. However, these linear 

adaptive filters are not suitable for finding the inverse of 

a nonlinear system. 

 

In case of a nonlinear adaptive filter, a bank of parallel 

FIR filters is present. Each of these filters in the filter 

bank are excited by the nonlinearity modulated input 

signal. In other words, the input signal x(n) can be 

represented as, 

( ) { ( ),  sin( ( )),  cos( ( )),...,f

iy n y n y n y n   

sin( ( )),  cos( ( )) }P y n P y n                                        (9) 

This is also termed as FLANN based algorithm [23-27]. 

Using power series, the x(n) is expanded as, 

2 3 4( ) { ( ),  ( ),  ( ),  ( ),..., ( )}f M

iy n y n y n y n y n y n         (10) 

Using a second order Volterra series the x(n) 

expanded as, 

2( ) { ( ),  ( ),  ( ) ( 1),  ( ) ( - 2), ,f

iy n y n y n y n y n y n y n    

( ) ( 1) }y n y n N                                                      (11) 

Each of these elements of the functionally expanded 

element of the above series ( )f

iy n  acts as an input of an 

individual FIR filter. Since these series are created by 

nonlinear functions operated on ( )y n and are input to 

individual filter, such a structure is named as a nonlinear 

adaptive filter. The outputs of each of these adaptive 

filters are summed up to generate the output of the 

nonlinear adaptive filter ˆ( )x n . 

1

,

1 0

ˆ( ) ( ) ( )
M N

f

i i j

i j

x n y n j h n


 

  .                                  (12) 

Here right hand side summation is a convolution 

operation which represents the filtering operation. N  

represents the length of these filters which is either fixed 

for every type of input or variable. The Volterra series 

expansion uses a variable order filters where as the 

trigonometric and the power series expansion uses a fixed 

order filters. M is the total number of functionally 

expanded coefficients. The adaptive structure of the 

proposed algorithm to model the inverse of a nonlinear 

system is presented in Fig. 2. The output of this model, 

ˆ( )x n  is compared with a direct or delayed version of the 

actual excitation signal of the nonlinear plant, ( )x n to get 

ˆ( ) ( ) ( )e n x n x n   .                                             (13) 

where   is an integer delay which can be 0, 1, …D. 

The D represents the overall delay of the nonlinear 

system and its inverse. D is nonzero when the nonlinear 

plant has some inherent delay. This delay   can be 

minimized only when the inverse model is estimated with 

a predictable input signal. The coefficients of these filters, 

, ( )i jh n of the model of the inverse of the nonlinear 

system are updated using a least mean square (LMS) 

algorithm. 

( 1) ( ) ( ) ( )f

i i in n e n n  h h y                                 (14) 

where    ,0 ,1 , 1( ) { , ,..., }i i i i Nn h h h h                           (15) 
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is the time varying coefficient vector of the i th filter 

and ( )f

i ny is the corresponding input signal vector 

defined as 

( ) { ( ), ( 1),..., ( 1)}f f f f

i i i in y n y n y n N   y .         (16) 

 is the step-size parameter. This control structure can 

also be updated by other suitable algorithms such as 

recursive least square (RLS) and derivative free 

algorithms such as genetic algorithms and particle swarm 

optimization. The proposed algorithm assumes that there 

exists a suitable inverse model of the nonlinear plant and 

the inverse model has a nonlinear structure. Accordingly, 

the output of the nonlinear system is functionally 

expanded to most possible nonlinear operation to cope 

with the nonlinear inverse model requirement. 

 

 

IV. SIMULATION 

To evaluate the performance of the proposed nonlinear 

inverse modeling algorithm, several nonlinear 

systems/plants are chosen. Both second order Volterra 

series presented in (12) and trigonometric series (FLANN) 

using series in (10) are simulated for each nonlinear 

system and the mean square errors in dB are plotted for 

both the algorithms. 

A. Simulation 1 

Here the nonlinear system is chosen as 

2 3 4( ) 0.5 ( ) 0.1 ( ) 0.3 ( ) 0.5 ( )y n x n x n x n x n    .       (17) 

This is a static nonlinear system as the ( )y n  does not 

depend on any past values of ( )x n . This nonlinear 

system is excited by a random white noise generated 

between -0.5 to 0.5. The comparative convergence plot is 

shown in Fig. 3 where both second order Volterra series 

and trigonometric series (FLANN) based inverse models 

are simulated using LMS algorithm. Step size for 

Volterra and FLANN systems are chosen as 0.5 and 0.5 

respectively. This figure shows that the FLANN based 

inverse model has superior performance compared to the 

second order Volterra based inverse model. 

 

Fig. 3. Convergence characteristic of MSE for a static nonlinear 

system(Simulation-1) 

Fig. 2. Estimation of nonlinear inverse model using filter bank based nonlinear adaptive structure 
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B. Simulation 2 

In this simulation, the  nonlinear system is chosen as, 

( ) ( ) 0.5 ( 1) 0.9 ( 2)y n x n x n x n    
 

0.5 ( ) ( 1) 0.4 ( ) ( 2)x n x n x n x n    .                          (18)

 
This is a dynamic nonlinear system as the 

( )y n depends on past value of ( )x n . This nonlinear 

system is excited by a random white noise generated 

between -1 to 1. The comparative convergence plot is 

shown in Fig. 4. Step size for Volterra and FLANN 

systems are chosen as 0.005 and 0.005 respectively. This 

figure shows that the Volterra based inverse model has 

slightly superior performance compared to the FLANN 

one. This is because the Volterra series involves cross 

terms and this nonlinear system possess cross terms. 

 

Fig. 4. Convergence characteristic of MSE for a dynamic nonlinear 

system(Simulation-2) 

C. Simulation 3 

Here the cascaded linear-nonlinear system is chosen as 

( ) ( ) 0.6 ( 1) 0.05 ( 2)z n x n x n x n                         (19) 

( ) tanh( ( ))y n z n                                                       (20)
 

 

Fig. 5. Convergence characteristic of MSE for a Wiener 

system(Simulation-3) 
 

This is a Wiener system as the ( )z n  represents linear 

part of the system and ( )y n represents the nonlinear part. 

This nonlinear system is excited by a random white noise 

generated between -1 to 1. The comparative convergence 

plot is shown in Fig. 5. Step size for Volterra and 

FLANN systems are chosen as 0.05 and 0.05 respectively. 

From the figure it is seen that the FLANN filter 

outperforms the Volterra based system for inverse 

modeling. 

D. Simulation 4 

Here the cascade system is chosen as 

( ) tanh( ( ))z n x n                                                       (21) 

( ) ( ) 0.2 ( 1) 0.5 ( 2)y n z n z n z n                           (22) 

This is a Hammerstein system as the ( )z n  represents 

the output of the nonlinear part of the system and 

( )y n represents the output of the linear part. This 

nonlinear system is excited by a random white noise 

generated between -1 to 1. The comparative convergence 

plot is shown in Fig. 6. Step size for Volterra and 

FLANN systems chosen are same as in simulation-3. This 

figure show that the FLANN based inverse model and the 

second order Volterra based inverse model has the same 

performances. 

 

Fig. 6. Convergence characteristic of MSE for a Hammerstein 

system(Simulation-4) 

 

E. Simulation 5 

Here the cascade system is chosen as 

1( ) ( ) 0.6 ( 1) 0.5 ( 2)z n x n x n x n                          (23) 

2( ) tanh( 1( ))z n z n                                                   (24) 

( ) 2( ) 0.2 2( 1) 0.5 2( 2)y n z n z n z n                     (25) 

This is a LNL system as the 1( )z n  represents the 

output of first linear system and 2( )z n represents the 

output of the static nonlinear part and ( )y n  represents the 

output of the final linear part. Therefore, this is an LNL 

system. This nonlinear system is excited by a random 

white noise generated between -1 to 1. The comparative 

convergence plot is shown in Fig. 7. Step size for 

Volterra and FLANN systems are chosen as 0.01 and 

0.01 respectively. Here the convergence performances of 

both the algorithms are almost same. 
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Fig. 7. Convergence characteristic of MSE for a LNL 

system(Simulation-5) 

 

F. Simulation 6 

Here the parallel system is chosen as 

1( ) ( ) 0.6 ( 1) 0.5 ( 2)z n x n x n x n                          (26) 

2( ) tanh( ( ))z n x n                                                    (27) 

( ) 1( ) 2( )y n z n z n                                                   (28) 

This is a parallel system as the 1( )z n  represents the 

output of the linear part of the system and 

2( )z n represents the output of the nonlinear part and 

( )y n  represents the final output of the parallel 

combination of both of them. This nonlinear system is 

excited by a random white noise generated between -0.5 

to 0.5. The comparative convergence plot is shown in Fig. 

8. Step size for Volterra and FLANN systems are chosen 

as 0.005 and 0.05 respectively. Here also the 

performances of both the algorithms are almost same. 

 

Fig. 8. Convergence characteristic of MSE for a LN system in 

parallel(Simulation-6) 

 

V.  CONCLUSION 

In many practical applications, the system is nonlinear 

and hence its control is difficult. These nonlinear systems 

can be linearized by placing its nonlinear inverse model 

either before or after the said system. This paper proposes 

a generalized filter bank implementation of nonlinear 

adaptive filter algorithm. This algorithm can use any 

nonlinear series expansions of a signal and can be 

suitably applied without any modification in the weight 

update algorithm. This algorithm is applied to estimate 

the nonlinear inverse of any nonlinear system to achieve 

overall linearization. The nonlinear system cascaded with 

this inverse model becomes linear and helps engineers to 

use suitable linear techniques. 

In this paper, a number of synthetic plants were chosen 

for performance evaluation of the proposed algorithm 

used as an inverse model. It is found that FLANN and 

Volterra series based filters behave almost similarly in 

many cases. However, the second order Volterra filters 

has lower mean square error compared to FLANN filter 

when the nonlinear system have cross-terms. The 

FLANN achieves better performance under higher order 

nonlinearity cases. The proposed algorithms can be 

suitably applied in channel equalization, control, 

instrumentation and active noise control problems. 
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