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Abstract— Algorithms inspired from natural phenomena are 

seem to be efficient to solve various optimization problems. 

This paper investigates a new technique inspiring from the 

animal group living behavior to solve traveling salesman 

problem (TSP), the most popular combinatorial optimization 

problem. The proposed producer-scrounger method (PSM) 

models roles and interactions of three types of animal group 

members: producer, scrounger and dispersed. PSM considers a 

producer having the best tour, few dispersed members having 

worse tours and scroungers. In each iteration, the producer 

scans for better tour, scroungers explore new tours while 

moving toward producer’s tour; and dispersed members 

randomly checks new tours. For producer’s scanning, PSM 

randomly selects a city from the producer’s tour and rearranges 

its connection with several near cities for better tours. Swap 

operator and swap sequence based operation is employed in 

PSM to update a scrounger towards the producer. The proposed 

PSM has been tested on a large number of benchmark TSPs and 

outcomes compared to genetic algorithm and ant colony 

optimization. Experimental results revealed that proposed PSM 

is a good technique to solve TSP providing the best tours in 

most of the TSPs. 

 

Index Terms— Traveling Salesman Problem, Animal Group 

Living, Swap Sequence, Swap Operator 

 

I. INTRODUCTION 

Algorithms inspired from natural phenomena are seem 

to be efficient to solve various optimization problems. 

Among them, genetic algorithm, inspired by biological 

systems’ fitness improvement through evolution, is the 

pioneer one and widely used to solve many scientific and 

engineering problems [1,2]. Recently, swarm intelligence 

(SI), inspired from the collective behavior of animals, has 

drawn attraction to solve computational problems [3-6]. 

Among various SI algorithms, ant colony optimization 

(ACO) [7,8] and particle swarm optimization (PSO) [9,10] 

are famous methods. ACO is inspired from ants’ foraging 

behavior and PSO is developed mimicking behavior of 

bird flocking or fish schooling. Some other methods are 

bee colony optimization [11], bacterial foraging 

optimization algorithm [3], firefly algorithm [4], 

glowworm optimization [5], etc. 

The optimization problems solved by the SI algorithms 

are mostly in two categories: combinatorial and 

numerical. In combinatorial category, traveling salesman 

problem (TSP) is the most popular which requires to find 

the shortest circular tour visiting every city exactly once 

from a set of given cities [12]. TSP is an important 

problem because it has many real world applications such 

as drilling a printed circuit board, computer wiring, order 

picking problem in warehouses, vehicle routing, X-Ray 

crystallography [12]. To solve TSP, ACO is the pioneer 

one and is shown to perform well. Some other methods, 

those were originally proposed for numerical and/or other 

optimization problems are also tested on TSP with 

necessary variations and/or modifications [10]. 

Considering TSP as a general test bench, interest has been 

grown in recent years to solve it new ways. 

This paper investigates a new technique to solve TSP 

inspiring from the group living animal behavior. In animal 

kingdom, group living is a widespread phenomenon where 

group members benefit from sharing information with 

each other [13]. When animals forage in groups, the food 

discoveries of a few can lead to the feeding of many. 

Based on such phenomenon, group search optimizer (GSO) 

has been investigated for function optimization recently 

and found competitive to other methods [14,15]. In GSO, 

there different types members are stated in a group and 

transformed activities of each member type to solve 

function optimization. In the present study, producer-

scrounger model of group living animal has been 

transformed to solve TSP. The proposed method is shown 

to produce better solution than other prominent methods 

in solving benchmark TSPs. 

The outline of the paper is as follows. Section II briefly 

explains animal group living phenomenon and then 

presents proposed producer-scrounger method for TSP in 

detail. Section III is for experimental studies of the 

proposed method comparing performance with other 

methods in solving benchmark TSPs. We conclude the 

paper with some future directions of the proposed method 

in Section IV. 

 

II. PRODUCER-SCROUNGER METHOD TO SOLVE TSP 

This section first explains animal group living 

phenomenon where group members benefit from sharing 

information with each other [13] and then describes the 
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proposed producer-scrounger based method to solve TSP. 

When animals forage in groups, the food discoveries of a 

few can lead to the feeding of many. In most living 

animals, joining of resource undiscovered by others is 

omnipresent. Joining is also referred as conspecific 

attraction [16], kleptoparatism [17], tolerated theft [18], 

etc. where group members that have not participated in the 

hunt still obtain a share of the dead body of the animal 

[19]. Joining not only increase foraging rates but also 

reduce the variance of foraging success. Two models have 

been proposed to analyze the optimal policy of joining: 

information sharing (IS) [20] and producer-scrounger (PS) 

[21]. Between these two, PS model is more feasible than 

IS model in term of joining policy as shown for ground-

feeding birds [19]. Group foragers are assumed to use two 

mutually exclusive tactics for food-producing - 1) 

producer: searches for food for themselves and then eating 

it and 2) scrounger: never searching for food but rather 

surveying the producers and look for opportunities to join. 

In PS model individuals are either producer or scrounger 

at any one moment and alternate between these two tactics. 

Moreover, some group members are dispersed or ditched 

from the group and perform random walk. In PS model 

such dispersed group members are also considered that are 

few in number. 

The proposed method of this study models roles and 

interactions of all three types of group members (i.e., 

producers, scroungers and dispersed members) to solve 

TSP. Each group member represents a complete tour and 

performs activities based on in which type it belongs. A 

producer searches better tour, a scrounger explores new 

tours while moving toward producer’s position; and a 

dispersed member randomly checks new solutions points 

i.e., tours. At each iteration, the member(s) that have the 

best and the worst fitness values are chosen as the 

producer and the dispersed member, respectively and 

others are marked as scroungers. In general, the number of 

producer and dispersed members are few with respect to 

the number of scroungers. In the simplest form, a group 

conceives a single producer heaving the best tour. Since 

role of a member depends on its performance (i.e., fitness) 

a member may switch its role in different iterations. The 

coming section briefly explains the actions and roles of 

the members to solve TSP. 

A. Producer Scanning for Better Tour 

The producer is the best member in a group having the 

best tour. In nature, producer performs scanning to 

explore better food in his surroundings. Scanning is a 

process by which animals try to capture information from 

the environment [22,23] and can be accomplished in many 

ways, such as through physical contact, by visual 

mechanism etc. A visual search based greedy approach 

has been incorporated in the present study to solve TSP in 

which producer checks (i.e., scans) several alternative 

tours based on current tour. The producer at first randomly 

selects a city (e.g., C) in its tour. Then select some nearest 

cities from C according to distance. Suppose one of the 

nearest cities is N1. Now the producer will create 

connection between these two cities C and N1. There are 

four alternative ways to connect the two selected cities. 

Removing C from its current location and placing before 

and after N1 will provide two new tours. Similarly, 

removing N1 from its current location and placing before 

and after C will provide other two new tours. After 

scanning with several cities, the producer will conceive 

the best scanned tour if it is better than the current tour. 

Number of nearest cities to check may be defined as a 

parameter. 

An example with sample tour might clear the proposed 

producer scanning mechanism. Suppose the tour of 

producer is 1-2-3-4-6-5-7-8-9-10 and the randomly 

selected city is 6. Let, 7 is the nearest city of 6 according 

to distance. Connection between 6 and 7 might improve 

performance and according to the description above, the 

producer will scan four new tours. These are: 

a. 1-2-3-4-5-6-7-8-9-10 

b. 1-2-3-4-5-7-6-8-9-10 

c. 1-2-3-4-7-6-5-8-9-10 

d. 1-2-3-4-6-7-5-8-9-10 

If another nearest city is 5, then it will have only one 

new tour (i.e., e. 1-2-3-4-5-6-7-8-9-10) because there is a 

direct connection already exists between 6 and 5 in the 

tour. If d is the best among the scanned tours and is better 

than current tour, the producer will conceive it, i.e., 

producer move to new tour 1-2-3-4-6-7-5-8-9-10. Through 

scanning producer will explore its surrounding for optimal 

solution. 

B. Scrounging to follow the Producer 

Scroungers search for opportunities to join the 

resources found by the producer. Among different 

scrounging techniques, area copying behavior is adopted 

in the current model that is commonly observed among 

house sparrows [21]. In area copying, scrounger moves 

across to search in the intermediate area around a producer. 

To solve TSP, a scrounger tries to explore better tour 

between tours of the scrounger itself and the producer. 

Swap operator (SO) and swap sequence (SS) based 

operation is employed in this study to adapt scrounging 

behavior. A SO indicates two cities in a tour those 

positions will be swapped. Suppose, a TSP problem has 

ten cities and a solution is 1-2-3-6-4-5-7-8-9-10. A SO(4,6) 

gives the new solution S’. 

𝑆’ =  𝑆 +  𝑆𝑂(4,6) 

=  (1 − 2 − 3 − 6 − 4 − 5 − 7 − 8 − 9 − 10)
+ 𝑆𝑂(4,6) 

= 1 − 2 − 3 − 5 − 4 − 6 − 7 − 8 − 9 − 10          (1) 

Here ‘+’ means to apply SO(s) on the solution. 

A swap sequence is made up of one or more swap 

operators. 

𝑆𝑆 = (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, . . . 𝑆𝑂𝑛),                                     (2) 

where 𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, . . . 𝑆𝑂𝑛  are the swap operators. 

Implementation of a SS means apply all the SOs on the 

solution in order. The order of SOs in a SS is important 

[10] because implication of same SOs in different order 

may give different solutions from the original solution. It 

is notable that different SSs acting on a solution may 

produce the same new solution. Moreover, if applying 
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swap sequence SS on tour A gives tour B (i.e., B=A + SS) 

then 

𝑆𝑆 =  𝐵 − 𝐴.                          (3) 

To move a scrounger towards the producer, first SS is 

calculated using Eq. 3 from tours of the scrounger and the 

producer; and then a portion of the SS is applied on the 

scrounger. Implication of a portion of SS with several SOs 

rather than entire SS (with all SOs) ensures the scrounger 

to explore a new tour towards the producer. For simplicity, 

SS portion (i.e., number of SOs from the beginning) is 

considered picking a random number between 1 and total 

SOs in the calculated SS. Such random selection of SS 

portion might help to explore different tours by different 

scroungers as well as increase diversity in the population. 

A scrounger will be producer in the next iteration if it 

finds a better tour than the current producer and other 

scroungers. 

C. Dispersion Operation with Random Swap Sequence 

Dispersion is also take part in the animal group living; 

some group members are dispersed from the group and 

perform random walk. In a group, members with worst 

solutions are considered as dispersed members those are 

few in number. A dispersed member will move to new 

tours based on randomly generated SS. Suppose the tour 

of a dispersed member is D. If the randomly generated 

swap sequence with several randomly generated SOs is SS 

then the new solution D’ is 

D’ = D + SS.                          (4) 

Since a dispersed member introduces new random tour, 

disperse operation plays important role to avoid local 

minima. A dispersed member will be a scrounger (even 

the producer) in the next iteration if it finds a very good 

tour. 

D. Algorithm of Producer-Scrounger Method for TSP 

This section demonstrates the above idea of producer-

scrounger method (PSM) for TSP in terms of an algorithm; 

Fig. 1 is the pseudo-code of the algorithm. In the 

initialization phase it is required to identify the 

termination criteria, population size (i.e., number of 

members in the group), and rate of near cities 

consideration by producer for scanning. Total iteration is 

considered as the termination criteria of the method as it is 

found in many exiting studies. For simplicity, worst 20% 

of members are considered as dispersed member. 

Therefore, 80% of the members (except producer) are 

considered as scrounger.  
 

 

 
Fig. 1. Pseudo code of producer-scrounger method (PSM) to solve TSP 

 

In each iteration, producer scans for better tour (Step. 

2.a), each scrounger moves towards producer (Step. 2.b) 

and each dispersed member move to a new tour with 

randomly generated SS (Step. 2.c). Producer’s tour is the 

outcome of PSM when it reaches termination criteria. 

 

III. EXPERIMENTAL STUDIES 

This section first gives description of the benchmark 

TSPs and experimental settings on which proposed PSM 

has been tested. It then presents experimental results of 

PSM and compares with the popular exiting methods to 
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identify the effectiveness of PSM for solving TSP. This 

section also presents an experimental analysis to identify 

variation effect of parameter values on performance. 

A. Benchmark Problems and Experimental Setup 

In this study, a suite of 25 benchmark problems are 

considered from TSPLIB [24] where number of cities 

varied from 14 to 150 and give diverse test bed. A 

numeric value in the problem name presents the number 

of cities in that tour. For example, burma14 has 14 cities. 

A city is represented as a coordinate in a problem. 

Therefore, the cost is found after calculating distance 

using the coordinates. 

For proper understanding, we also solved the 

benchmark problems with genetic algorithm (GA) [1,2], 

ant colony optimization (ACO) [3,6-8]. GA is the popular 

and pioneer method for optimization task and ACO is the 

prominent swarm intelligence based method for TSP. The 

algorithms are implemented on Visual C++ of Visual 

Studio 2013. The experiments have been done on a PC 

(Intel Core i5-3470 CPU @ 3.20 GHz CPU, 4GB RAM) 

with Windows 7 OS. 

For the fair comparison, the number of iteration was set 

at 500 for the algorithms. The population size was 100 for 

GA and PSM; whereas it was equal to number cities in 

ACO as it desire. For GA, tournament selection was used, 

mutation rate was 10% and crossover rate was varied from 

10% to 20%. Enhanced edge table based crossover [25] 

was considered in this study. In ACO, alpha and beta 

were set to 1 and 3, respectively. On the other hand, the 

RNC (rate of near cities consideration) for producer 

scanning was varied from 10% to 20%. The selected 

parameters are not optimal values, but considered for 

simplicity as well as for fairness in observation. 

B. Experimental Results 

This section compares proposed PSM with GA and 

ACO on the basis of experimental results on the 

benchmark problems. Table 1 presents average and 

minimum (i.e., best) tour costs achieved by the methods 

for 20 individual runs. For a particular problem, the best 

one (i.e., smallest value) among the three algorithms is 

shown in bold-face type and worst one (i.e., largest value) 

is shown in italic-underlined face type. Bottom of the table 

shows average cost over all 25 problems and best/worst 

summary indicating on how many problem instances a 

method gave best/worst result among the three methods. 

 
Table 1. Average and best tour cost comparison among GA, ACO and PSM over twenty (20) individual runs 

  
Average Tour Cost (Standard Deviation) Best Tour Cost 

Sl. Problem GA ACO PSM GA ACO PSM 

1 burma14 31.83 (0.89) 31.21 (0.0) 30.89 (0.07) 30.87 31.21 30.87 

2 ulysses16 74.79 (0.73) 77.13 (0.0) 74.2 (0.24) 74.0 77.13 73.99 

3 gr17 2458.36 (157.25) 2332.58 (0.0) 2375.39 (66.24) 2332.58 2332.58 2332.58 

4 gr21 3033.82 (337.79) 2954.58 (2.0) 2838.22 (248.07) 2672.27 2949.81 2672.27 

5 ulysses22 79.62 (4.29) 86.81 (0.08) 76.68 (1.0) 76.09 86.74 75.51 

6 gr24 1402.01 (122.53) 1267.13 (0.0) 1372.57 (71.18) 1249.82 1267.13 1249.82 

7 fri26 689.49 (27.43) 646.48 (0.0) 675.24 (36.24) 647.78 646.48 635.58 

8 bayg29 9936.54 (424.19) 9964.78 (0.0) 9915.52 (394.53) 9275.9 9964.78 9074.15 

9 bays29 9981.49 (490.87) 9964.78 (0.0) 9917.59 (391.84) 9336.82 9964.78 9076.98 

10 hk48 16033.31 (1170.13) 12731.07 (81.41) 13870.94 (952.95) 14040.66 12699.86 12239.3 

11 att48 46128.16 (3720.7) 39020.95 (77.85) 38575.51 (3016.38) 39117.24 38989.37 35053.6 

12 eil51 592.3 (31.61) 504.83 (3.07) 474.58 (21.23) 524.18 499.92 438.7 

13 berlin52 10413.61 (690.02) 8088.95 (11.58) 8865.08 (407.97) 9184.19 8046.06 8109.91 

14 st70 1203.35 (76.16) 748.65 (7.23) 845.4 (47.65) 1015.0 734.19 767.65 

15 eil76 926.4 (48.47) 601.77 (3.12) 631.58 (27.84) 805.78 595.58 591.89 

16 pr76 201225.0 (11803.96) 127371.7 (0.0) 131822.5 (9029.29) 172626.6 127371.7 113204.4 

17 gr96 1092.04 (75.36) 590.67 (7.61) 618.68 (37.33) 950.18 567.52 564.47 

18 rat99 2711.88 (102.96) 1369.09 (0.77) 1465.94 (69.95) 2531.68 1367.76 1384.36 

19 kroa100 57940 (3568.51) 24623.01 (80.58) 30210.57 (2164.08) 51446.82 24504.9 26419.88 

20 rd100 20297.46 (1010.1) 9420.75 (81.44) 10309.35 (666.93) 17943.14 9210.67 9412.83 

21 eil101 1334.75 (65.63) 736.22 (5.88) 770.2 (37.24) 1207.42 723.12 711.43 

22 lin105 38552.0 (2269.09) 15654.67 (395.47) 19392.46 (1398.8) 34637.39 15364.58 16592.74 

23 ch130 18886.99 737.45 7004.44 (53.21) 8237.76 (486.6) 17586.23 6881.57 7449.77 

24 gr137 2062.5 (75.77) 925.92 (11.77) 888.75 (51.61) 1912.88 896.07 811.36 

25 ch150 23389.15 (688.55) 6906.96 (48.22) 9200.5 (620.37) 22053.85 6869.62 8125.9 

 Average 18819.07 11345.0 12138.24 16531.17 11305.72 10684.0 

 Best/Worst 0/21 16/4 9/0 3/17 9/7 15/0 
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The average tour costs presented in the Table 1 indicate 

that PSM and ACO are very much competitive and both 

are better than GA. GA is shown on average largest tour 

cost over the problems (i.e., 18819.07) showing worst for 

21 problems out of 25 cases. ACO is found best for 16 

cases and achieved the best average tour cost of 11345.0. 

However, ACO is found worst for four cases. On the other 

hand, proposed PSM is shown best for nine cases but 

worst for none. The average tour cost of PSM (i.e., 

12138.24) is also found competitive to ACO. 

ACO is the prominent method for solving TSP and 

considers population size as the number cities in a given 

problem. ACO starts placing different ants in different 

cities and its initialization does not differ among 

individual runs. Therefore, the tour costs achieved by 

ACO in different runs are found consistent showing lower 

Standard Deviation (SD) values. For several problems, 

especially small sized problems (e.g., burma14, ulysses16, 

gr17), ACO is shown same tour cost in all 20 individual 

runs and therefore SD of average tour cost is shown as 

zero in the Table 1. For any problem, GA gave most 

variant outcomes among different runs showing largest 

SD value. However, GA and PSM (with SD values larger 

than ACO but lower than GA) achieved better average 

tour costs than ACO for several problems. As an example, 

ACO achieved average tour cost of 77.13 with zero SD for 

ulysses16 problem. On the other hand, for the same 

problem GA and PSM achieved tour costs are 74.79 (with 

SD 0.73) and 74.2 (with SD 0.24), respectively. Since 

outcome of ACO does not change much in different runs 

and it is unable to work with population size larger than 

number of cities, PSM might be a good choice to achieve 

better outcome from several runs. 

Achieved best tour costs (from 20 individual runs) 

presented in Table 1 indicates the effectiveness of the 

proposed PSM. PSM is shown on average lowest tour cost 

over the 25 problems (i.e., 10684.0). The average 

minimum tour costs are 16531.17 and 11305.72 for GA 

and ACO, respectively. On the basis of best/worst 

summary, PSM is shown to achieve best tour with shortest 

path for 15 cases showing worst for none. For gr96 

problem, as an example, PSM achieved best tour path with 

tour cost of 564.47. For the same problem, tour costs for 

GA and ACO were 950.18 and 567.52, respectively. GA 

is shown best for only three problems for which PSM also 

achieved the same result of GA. GA also found worst for 

17 cases. ACO is shown best tours for nine problems but 

it was also performed worst for seven cases. At a glance, 

PSM outperformed GA and ACO achieving the best tour 

from several runs and showed average tour cost 

competitive to ACO. 

C. Experimental Analysis 

This section investigates the performance of the PSM 

varying parameters (i.e., population size and number of 

iteration) and compares with GA and ACO. The results 

presented in Table 1 were for the fixed number of 

population size (=100) and iteration (=500) for all the 

problems. It is interesting to observe how the methods 

perform on the variation of both the parameters. The 

experiments performed on the same machine explained 

before. Three problems with different size were selected 

for the analysis in this section; the problems are eil51, 

eil76 and gr99. 

Figure 2 shows the achieved tour cost for different 

population sizes that varied from 20 to 500 while total 

iteration was fixed at 500. The presented results are the 

average for ten independent runs. Since ACO uses 

population size equal to number of cities, the results 

presented in the figure for ACO were for different runs 

only with fixed population size for a particular problem. 

Therefore, ACO is shown almost invariant performance. 

On the other hand, GA showed worst tour cost at 

population size 50 and improved with respect to 

population size for any problem. As an example, for eil51 

problem, GA achieved tour cost of 77.45 at population 

size 20. At 20 population size ACO and PSM achieved 

tour costs of 508.24 and 483.85, respectively for eil51. On 

the other hand, for the same eil51 problem, GA showed 

best tour cost (i.e., 491.72) that is better than ACO (i.e., 

505.77) and competitive to PSM (i.e., 486.317) at 450 

population size. For all three problems, PSM also found 

less variant performance when population varied from 20 

to 500. This indicates that PSM work well and give 

suitable performance with relatively small population size. 

In PSM producer perform scanning for better tour in 

every iteration and might be helpful to deliver better 

outcome with small population. 

Figure 3 compares the variation of termination criteria 

(i.e., total iteration) on tour costs among GA, ACO and 

PSM. The number of iterations varied from 50 to 1000 

while population size was fixed at 100. The presented 

results are the average for ten independent runs. It is seen 

from the figure that both GA and PSM are shown the 

worst tour costs at iteration 50, improved with iteration up 

to a certain value, and after that improvement was not 

significant. However, PSM improved rapidly up to 300 or 

400 iteration and after that showed invariant tour costs. On 

the other hand, GA is shown to improve up to 700 

iteration but unable to outperform ACO and PSM. But 

ACO is shown most invariant for iteration variation and 

indicates its convergence ability within 50 iterations for 

the selected problems. Fig. 3 reveals that PSM belongs 

faster convergence than GA and competitive to ACO. As 

an example, for gr96 problem, at iteration 50, ACO and 

PSM showed tour costs 588.78 and 1157.72, respectively; 

and at iteration 300, ACO showed tour cost 587.85 (i.e., 

improvement is not significant) but PSM achieved tour 

cost 631.89 (i.e., significant improvement). For iteration 

larger than 300, no significant improvement has been 

observed for ACO and PSM as well as both the methods 

showed competitive performance. On the other hand, GA 

showed very high tour cost (i.e., 1658.88) at iteration 50 

and achieved 935.97 at iteration 300; the achieved tour 

cost much worse (i.e., larger) than ACO or PSM. 

Although tour cost improved gradually with iteration for 

GA but it was unable to compete ACO or PSM. For same 

gr96 problem, GA showed tour cost 935.97 at iteration 

1000 and the value is worse than any value achieved by 

ACO or PSM in iteration variation. 
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(a) eil51 

 
(b) eil76 

 
(c) gr96 

Fig. 2. Variation effect of population size on tour cost. 

 

The Figs. 2 and 3 reveal that PSM is better than ACO to 

achieve best tour from several runs although both are 

competitive on the basis of average tour cost. In the 

figures, SD values for 10 runs are placed as vertical bars 

on the average tour cost and the bars are found larger for 

PSM with respect to ACO. Small sized SD bars for ACO 

at any population as well as iteration indicates its invariant 

feature in the different runs. It is observed from the figures 

that lower SD bar level of PSM crosses the average as 

well as lower SD bar level of ACO in most of the cases. 

This indicates the ability of PSM to achieve better single 

best tour than ACO from different runs. 

 
(a) eil51 

 
(b) eil76 

 
(c) gr96 

Fig. 3. Variation effect of iteration on tour cost. 

 

IV. CONCLUSIONS 

In this paper, we have proposed a new optimization 

method to solve traveling salesman problem (TSP) based 

on animal group living behavior. The proposed producer-

scrounger method (PSM) mimicked activities of three 

different animal group members (i.e., producer, scrounger 

and dispersed) for TSP. In PSM, a member heaving the 

best tour is considered as producer which also tried to 

improve its tour through random scanning. Scroungers 

followed the producer and a swap sequence based 

scrounging operation is presented for such operation. 
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Random swap sequences are applied on the worst 

performed dispersed members to avoid entrapment in 

local minima. The PSM has been tested on a large number 

of benchmark TSPs and compared with GA and ACO on 

the basis of achieved average and best tour costs. PSM is 

shown outperform both GA and ACO on the basis of best 

tour cost. 

Several potential future research directions are also 

opened from this study. In this study, simplest 

mechanisms are considered to model roles and 

interactions of the animal group members to solve TSP. 

Producer’s scanning is performed rearranging connections 

of a randomly selected city with its nearby cities. A 

different scanning mechanism to improve producer’s 

operation might be interesting. A better technique instead 

of swap sequence based scrounger operation might 

improve PSM performance. Moreover, only the best 

suited member is considered as the producer in this study 

but several producers may exist in a real animal group. 

Therefore, modification and/or update of PSM for multi-

producers will give better result. 
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