
I.J. Intelligent Systems and Applications, 2015, 12, 32-42
Published Online November 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.12.03

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

Formal and Informal Modeling of Fault Tolerant

Noc Architectures

Mostefa BELARBI
LIM (Mathematics and Computer Science) Research Laboratory – University of Tiaret – Algeria

Email: mbelarbi@univ-tiaret.dz

Abstract—The suggested new approach based on B-Event

formal technics consists of suggesting aspects and

constraints related to the reliability of NoC

(Network-On-chip) and the over-cost related to the

solutions of tolerances on the faults: a design of NoC

tolerating on the faults for SoC (System-on-Chip)

containing configurable technology FPGA (Field

Programmable Gates Array), by extracting the properties

of the NoC architecture. We illustrate our methodology by

developing several refinements which produce QNoC

(Quality of Service of Network on chip) switch

architecture from specification to test. We will show how

B-event formalism can follow life cycle of NoC design

and test: for example the code VHDL (VHSIC Hardware

Description Language) simulation established of certain

kind of architecture can help us to optimize the

architecture and produce new architecture; we can inject

the new properties related to the new QNoC architecture

into formal B-event specification. B-event is associated to

Rodin tool environment. As case study, the last stage of

refinement used a wireless network in order to generate

complete test environment of the studied application.

Index Terms—Self-Organized Network-On-Chip NoC,

Testability, Formal proof, Event-B, Code generation,

VHSIC Hardware Description Language VHDL.

I. INTRODUCTION

Reconfigurable FPGA-based Systems on Chips (or SoC)

have a high degree of modularity and flexibility that are

responding with the implementation development growth

and are dynamically replaced using a hardware

reconfiguration mechanism. This relocation or

substitution is possible by combining a self-organizing

mechanism, achieving dynamic and adaptive processes

that interact and work independently and without external

control [1], with the ability to partially or completely

reconfigure FPGAs [2]. Indeed, these NoCs, which

correspond to routers and interconnects for

communication between units (Processor Elements - PEs,

IPs- intellect properties, memory controllers, etc.)

constituting the embedded SoCs, ensure the data exchange

following a routing algorithm partially or fully adaptive

[3]. The result is an intelligent, self-organized and safe

operation, able to manage the transfer of tasks performed

within an adaptive and reconfigurable NoC. In this case,

reliability or dependability is a key aspect carried-out of

the evolution and the high complexity of SoC.

The specification of this representation is not easy: the

algorithms used by the systems are upgraded targeting

data collection required properties. During the

redevelopment of an algorithm, several models of the

system using the algorithm are specified and

interconnected by a relationship called refinement and step

by step models are developed and proven using Event-B

method with the tool-set Rodin [4]. After checking

formally for all possibilities of this distributed system, the

generation of the VHDL code will respect new constraints

about the NoC system.

This complex architecture could be seen as a particular

distributed system where its different properties will be

represented formally using a vertex coloring algorithm,

which will help to control all the system even to generate

the code of this architecture respecting all auto-self

organized MPSoC system functionalities [5]. B-Event

models provide templates for communication constraints

and guarantee the communication correctness. This work

shows the importance of how to employ one of these

models for reasoning about the communication

correctness of the XY-routing algorithm.

Three-dimensional Networks-on-Chip (3DNoC)

represents the stacking of multiple layers of

two-dimensional NoCs. We restrict ourselves in the

present work to XY algorithm [6].

In this paper, we propose an approach which enables us

to represent NoC architecture from a refinement point of

view. During design process we have to add new elements

(functions) to an existing system: incrementality notion [7].

Research works which deal the complexity process of

incrementality versus refinement by introducing the

notion of pre-validated types like graph theory are for

example [6, 8, 9, 10], that try to decrease specification

complexity. In the case of this paper, there are several

phases of implementation which we exploit to improve the

system by optimizing our architecture. We exploit

interactivity between VHDL code simulation and Rodin

specification refinement. The feedback from VHDL code

to B-event specification [11] will be also exploited.

The paper is organized as follows: Section II presents

the related works. Section III introduces the notions of

NoC architecture and especially QNoC. Section IV

describes the B-event terminology and functionalities.

Section V presents the steps for formalizing the QNoC

system. Section VI describes the environment test using

 Formal and Informal Modeling of Fault Tolerant Noc Architectures 33

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

wireless network auto-organized. In section VII, we

present some criteria in order to compare informal and

formal methods dealing with NoC architectures. Finally, at

the last section, we summarize the methodology

mechanisms which we introduced in this paper and some

perspectives of this work.

II. RELATED WORK

Using the embedded systems concept, we can process

microelectronic aspects of integrated circuits on the SoC.

Different research works have been brought to propose a

new paradigm: the network on chip (NoC). Because of the

complexity of several applications and the integration,

inventors get on more and more resource of calculation (i.

e. IPs) in a system on chip. However, it returns the

manufacture test of these systems more difficult, notably

systems on chip based on networks on chip

QNoC(Quality of service of Network on Chip). To

perform the routing communication, we must use several

routing algorithms but this can make some main problems:

the failure routing decision errors and the dropped node on

the way problem which yielded the failing of the material.

We propose in this document to develop a methodology

that used the B method [12,13] for the verification of the

system on chip field. The objective is to propose a formal

model with the help of the language B-event to verify the

network on chip architecture [14-17].

There are research works [15] which allow to model

NoC using declarative assertions to specify expected

functional and temporal properties of modules and\or their

environment by the recognizing what’s valuable such as

the constraint for the correctly-use of a node (or IP) and it

delivered result even the correct behavior from the design.

PSL (property specification language) [22] is a formalism

ease writing temporal and logical properties, the online

embedded testing using technique for synthesis from the

assertion and properties for a monitor, this work use the

notion of monitor to pinpoint erroneous transactions

between modules that belong to different clock domains

concept suggested which is coded using VHDL or Verilog

as language.

In some work researches [19] established abstraction by

using modeling techniques like SLOOP or System Level

design with Object Oriented Process. SLOOP employs

four UML (Unified Modeling Language) models which

detailing those three aspects the target system

functionality, structure and timing. Each model is used to

develop a system before software and hardware

implementation. Conceptual Model is the result of the

analysis of requirements to avoid non-functional

constraint for a costumer. Functional model are suggested

for the representation of structure of function and the task

of level of parallelism carrying of computing workload

and communication workload. Architectural model

represent the physical resources of architecture it consist

the processing resources and communication resources

also it parameterize each resource using the concept of

class. Performances model which maps process of

functional model onto processing resources of

architectural model, this model valuates the performances

of the selected architecture using statistics, it helps the

designer to improve the system which satisfies the

requirements of the design.

NoC investigation can be dealt using tests with on-line

and off-line modes. It proposes a new reliable router

allowing accurate online error detections in dynamic

Network on Chip. The proposed router has the capability

to detect and localize accurately inner or outer data packet

errors of the router while distinguish between temporary

and permanently errors. The error detection mechanisms

of the proposed switches and advantages with regards to

the other main already proposed router approaches are

detailed while proving the feasibility and efficiency

through several simulations online detection cases. [21]

Asynchronous NoC Platform established to perform test in

which each router associated to wrapper do asynchronous

test: the purpose is increasing controllability and

observability and there for all network elements were

tested.

A proposal for a new self-organizing mechanism [20] to

the fault tolerance of adaptive NoC structures considered

dynamic parts or reconfigurable system in reconfigurable

multi-node network. Specifically, the proposed approach

is based on self-test by detection and correction of errors in

the NoC nodes structures communicating with a network

system. This approach makes tests and reliability of static

and dynamic parts of the reconfigurable nodes

mechanism.

The reliability of the static parts based on inter-node

tests by peer-to-peer communications, leading to

deactivation of a failed node from other nodes in the

network. For dynamic parts, the proposed approach is

offline-based testability technique (DFT Design for

Testability) injection of test vectors in the nodes of NoCs

previously detected as faulty network. The main

originality is that the IP test is dynamically implemented

as a non-failed node to test node detected as faulty by an

online technique node (online) detection of errors during

the work of the node. The procedure for implementation of

the IP tester in a remote node based on the ability of

self-organization of multi-node system to implement fault

detection of a disabled NoC to locate and isolate defective

parts that could lead to an overall system failure.

III. QNOC ARCHITECTURE OVERVIEW

A. Technology Evolution

In order to improve router performances on which

QNoC architecture was based such architecture transits

from several kind of design: This next table demonstrates

the difference between a Q-Switch and a Cu-Switch:

Table 1 Different kind of NoC

Q-Switch Cu-Switch

Unidirectional bus Bidirectional bus

One buffer for each input one buffer for 4 inputs

The priority on right for the

arbitration Policy.

Arbitration Policy is based on

the priority on right.

34 Formal and Informal Modeling of Fault Tolerant Noc Architectures

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

Remark: It may that several flits take the same way-out

direction. In this case the switch takes 3 flits at maximum.

A policy of arbitration must be adopted for the logic

routing which manages the priority of sending of the flits.

This policy is based on the rule of “the priority on right”. It

is built individually for each port of Q-Switch (Fig.1-a).

Fig.1–a. Architecture of Cu-Switch

B. Qnoc Architecture Topology

The topology of a QNoC architecture is usually a Mesh.

The network has a grid-like form: boundary switches are

connected to two or three neighbors, whereas other nodes

are connected to four neighbors. The role of a switch is to

pass data packets between elements (routers) of a QNoC

architecture.

The switch (see Fig.1-b) is composed of:

Fig.1-b. Structure of a Switch

• Input Register: Each incoming packet is stored in

an input register when the Routing logic, computes

the next direction of the packet (whether N, E, S or

W). At maximum three packets are allowed per

direction. The packets are transmitted to the output

logic following the arbitration policy based on the

rules of right priority which define priorities

between packets stored and the next direction of the

packets (See Fig.2).

• The Output Logic is made up of a semi crossbar

composed of three inputs and four outputs; out- put

buffer which consists of registers and a finite state

machine (FSM). Incoming packets are stored into

inputs according to priorities. If the neighbors of a

switch are not busy, the first output of the semi

crossbar is one of the adjacent switches. These

packets are stored to registers, in the case where

more than one packet choose the same output

(direction). At maximum three messages can be

stored in a output buffer. The finite state machine

manages control signals and its role is also to avoid

packets collisions. Moreover, it provides a central

logic with information about the states of adjacent

switches (wait situation, out signal, etc.).

• The Control Logic manages connections between

the input and output ports of a switch, also handles

the storage of packets that cannot be transferred to

next directions, and informs the neighbors (which

have sent the switch packets) that the switch cannot

accept any other packets.

C. Routing Process

The XY routing algorithm (see figure 1-c) defines

packets transmission: The packet travels first along x

dimension, until the destination or elements unable to

transmit in this x dimension, then it travels along y

dimension using a reconfiguration mechanism ensures that

for each transiting packet, either a path leading to the

destination of the packet always exists or, if the packet is

stored in some node unable to transmit data, the link

between this node and the destination of the packet will

eventually be restored.

Fig.1-c. Right Priority

IV. B-EVENT

The main reason to choose Event B [12] as a modeling

language is the refinement, which allows a progressive

development of models. When Event B also is supported

by a complete toolset: RODIN [4] which provides features

like refinement, proof obligations generation, proof

assistants and model-checking facilities.

 Formal and Informal Modeling of Fault Tolerant Noc Architectures 35

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

The Event B modeling language can express safety

properties in two main structures: Contexts that express

static parts of the model and machines that express

dynamic parts.

The Event B model is defined by a machine contains

events (or actions) that modify variables state and uses

static information defined in a context. The general form of

an event is expressed as follows

Fig.2-a. Event B General form

These basic structures are extended by the refinement of

models and this relates an abstract model and a concrete

model by adding new events or variables, also allows to

develop gradually Event-B models and to validate each

decision step using the proof tool. The refinement

relationship should be expressed as follows: a model M is

refined by a model P, when P simulates M . The final

concrete model is close to the behavior of real system that

executes events using real source code. The refinement of

a formal model allows us to enrich and ensure the model

via a step-by-step approach and is the foundation of our

correct-by-construction approach.

We have shortly introduced the Event B modeling

language and the structures proposed for organizing the

development of models. In fact, the classical

refinement-based development of Event B requires a very

careful derivation process, integrating possible tough

interactive proofs for discharging generated proof

obligations, at each step of development.

A. Context Structure

The Context contain many clauses introduced by a

specific keywords as they are shown within Rodin

platform, some clauses are introducing with modeling

elements with labels (theorem axioms) which is generated

automatically in the Rodin platform, such as “Sets” which

defines the carrier set of the Context, “Constants” is the

list of various constants introduced in the context,

“Axioms” lists of the various predicates which will be

present as hypotheses in all the proof obligations,

“Theorems” lists of theorem which have to be proved

within the context, “Extend” defines if a context is the

extension of another (if exist).

B. Machine Structure

As the same of context, the machine had a specific

keywords with labels introducing and automatically

generated in the Rodin platform; “Refines” contains (if

any) the machine which this machine refines; “Sees” list of

contexts referenced by the machine, “Variables” lists the

various variables introduced in a machine, “Invariants” the

list of predicates which the variables must obey, “Events”

lists various event in a machine (and they had a predefined

syntax on the Rodin platform).

Fig.2-b. B-Event Concepts

C. Proof Obligations

The proof obligations define what is to be proved for an

Event-B model. These proofs concern Invariant

preservation, Feasibility, Fusion, … They are

automatically generated by Rodin platform tool called the

proof obligation generator, just to check contexts and

machines texts and decide what is to prove in these texts,

there are eleven rules for the proof obligation all defined

and labeled inside the Rodin platform.

V. MODELING QNOC ARCHITECTURE

The complexity of the architecture encourages us to

break our formalization in different levels of observation.

Our basic architecture is carried out by a mixing of two

types of Switch (see figure one.) characterized by

particular architectures represented in figure four.

A. First Architecture Design

There by, six levels are present here:

1) Abstract specification M0

The first model M0 is an abstract description of the

service offered by the NoC architecture: the sending of the

packet (p) by the switch source and the receiving of (p) by

a switch destination. A set of switches (NODES) , a set of

packets (MSG), a function src, associating packets and

their sources, a function dst, coupling packets and their

destinations, are defined in context C0. The machine

xyM0 uses (sees) the contents of the context C0, and with

these, describes an abstract view of the service provided

by the NoC architecture:

- An event SEND presents the sending of a

packet(m), by its source(s), to switch

destination(d).

- An event RECEIVE depicts the receiving a sent

packet (m) by its destination (d).

Moreover, the model xyM0 allows us to express some

properties and invariants:

Ran(received)  ran(sent) , this invariant expresses that

each packet received by a switch destination has been sent

by a switch source.

ANY x

 WHERE G(x, u)

THEN u: | (P (u, u0)

END

36 Formal and Informal Modeling of Fault Tolerant Noc Architectures

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

2) First refinement M1: Network introduction

The machine M1 refines M0 and introduces a network

(a graph) between the sources and the destinations of

packets. Some properties on the graph are defined in

context C1: graph is non-empty, non-transitive and it is

symmetrical.

The events in xyM0 are refined

- Event SEND: when a source sends a packet, the

packet is put in the network.

- Event RECEIVE: a packet is received by its

destinations, the packet has reached the destination.

New events are also introduced by M0:

- Event FORWARD: in the network a packet(p)

transits from a node (x) to another node (y), until

the destination (d) of the packet (p) is reached.

- Event DISABLE: A node is disabled. The node is

not allowed to communicate with its neighbours

(failure, etc). During the disabling of some nodes,

we ensure that the packets transiting in the network

will eventually reach their destinations (either after

a reconfiguration of the network or by always

letting a path to destinations available).

- Event RELINK: this event models the

reconfiguration of the network. Disabled nodes are

re-enabled: the links between nodes are re enabled:

the links between and their neighbors are restored,

therefore allowing communications and packets of

transfers. The reconfiguration of the network helps

in demonstrating the safety of data transmission

between a switch source and a switch destination.

The machine M1 also presents some properties of the

system: ran(received)  ran(store) ≠, this Invariant

demonstrates that a packet (p) sent by a source is either

travelling in the network (store) or is received by the a

destination.

3) Second refinement M2: channels introduction

This second refinement decomposes the event

FORWARD of M1 into two events:

- A refinement of the event FORWARD depicts the

passing of a packet (p) from a switch (x) to channel

(ch), leading to a neighbour(y).

- An event FROM_CHANNEL_TO_NODE models

the transfer of a packet (p) from a channel (ch) to a

connected switch(n).

The machine M2 also defines some properties: ran(c) 

ran (switch) = : this invariant expresses that each sent

packet is either in a channel or in a switch. A sent packet

cannot be in a channel and in a switch at the same time.

4) Third refinement M3: output logic

This refinement allows us to introduce the structure of a

switch gradually. We express, in M13, that switches

possess output ports. The abstract event FORWARD is

further decomposed:

- The refinement of event FORWARD adds the fact

that a packet(p), which is leaving a switch(x) and

heading for a neighbour(y), first enters the output

logic(op) of the switch(x) leading to (y).

Moreover, new properties and invariants are defined in

M3:

Inv 1: ran(chan)  ran(sent)

Inv 2: ran(routingl)  ran(chan) = 

The invariant inv1 expresses that each packet transiting

in a channel (ch) has been sent by a source(s); inv2

presents the fact that a packet is either in an output port or

in a channel, the packet cannot be in an output port and a

channel between two switches at the same time.

5) Fourth refinement M4: Input register

introduction

This refinement (xyM4) adds input ports to the structure

of a switch:

- The event SEND is refined: when a switch source

(s) sends a packet (p), the packet(p) is put in an

input port (ip) of the switch(s).

- The actions described by the abstract event

FORWARD are decomposed :

o The event SWITCH_CONTROL, a refinement

of FORWARD, models the passing of a packet

(p), from an input(p), from an output port(op),

to a channel (ch) leading to a target switch(n).

The machine xyM4 also presents properties and

invariants:

Inv1: ran(inputbuffer)  ran(sent)

Inv2 = ran(inputbuffer)  ran(chan) = 

The invariant exposes that each packet transiting in an

input port(ip) has been sent by a source(s); inv2 presents

the fact that a packet is either in an input port or in a

channel, the packet cannot be in an input port and in a

channel between two switches at the same time.

6) Fifth refinement M5: number of messages per

switch

This refinement introduces the storage of packets in a

switch: each output port of a switch can store a number of

packets up to a limit (output places) of three messages.

Packets can be blocked in a switch, because of wait or

occupation signals from neighbors.

The event SWITCH_CONTROL is refined and adds the

fact that following the transition of a packet from an input

port of a switch (x) to an output port, if the switch (x) is not

busy anymore, it sends a release signal to the previous

switch linked to the input port. A new event

RECEIVE_BUFFER_CREDIT models the receiving of

 Formal and Informal Modeling of Fault Tolerant Noc Architectures 37

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

a release signal by a switch(n).

Fig.3. General Refinement Scheme

7) Sixth refinement M6: Algorithm XY

The last model describes the architecture of the network

(graph): graph has a mesh topology. A numerical limit

(nsize) is introduced to bound the number of routers in the

dimensions x and y of the network topology; the network

will be a regular 2D-Mesh, with a size (nsize x nsize); each

switch is coupled with unique coordinates (x,y) with x 

[0..nsize-1] and y  [0-nsize-1]. This model gives a

fine-grained description of the structure of a switch.

- A switch has generally four output ports and four

input ports (usually N, S, E and W), used for

communication with neighbor’s.

- However, two cases are distinguished :

o Boundary switches in the corner have two

outputs, and two input ports (N-E, N-W, S-E,

and S-W).

o Other boundary switches have three output

ports and three input ports (N-S-E, N-S-W

The cases of the XY routing algorithm are matched with

refinements of event SWITCH_CONTROL:

- SWITCH_CONTROL_LEFT case 1: a packet (p)

is transmitted from an input port of a switch (x), to

an output port, leading to neighbor (y), located at W.

This event is triggered if the x-coordinate of the

destination (d) (of the packet(p)) is inferior to the

x-coordinate of the current node (x).

- SWITCH_CONTROL_RIGHT models Case 2: a

packet (p) is transmitted from an input port of a

switch (x) to an output port, leading to a neighbor

(y) located at E. This event is triggered if the

x-coordinate of the destination (d) (of the packet(p))

is superior to the x-coordinate of the current

node(x).

- SWITCH_CONTROL_UP models Case 3: a

packet (p) is transmitted, from an input port of a

switch (x) to an output port, leading to a

neighbor(y), located at N. This event is triggered if

the y-coordinate of the destination (d) (of the

packet (p)) is superior to the y-coordinate of the

destination (d) is equal to the x-coordinate of the

current node(x), or the packet (p) cannot transit

along the x-axis.

- SWITCH_CONTROL_DOWN models Case 4: a

packet (p) is transmitted, from an input port of a

switch(x), to an output port, leading to a neighbor

(y), located at S. This event is triggered if the

y-coordinate of the destination (d) (of the packet(p))

is inferior to the y-coordinate of the current node(x),

and either, if the x-coordinate of the destination (d)

is equal to x-coordinate of the current node(x), or if

the packet (p) cannot transit along the x-axis.

B. Second Architecture Design

1) VHDL code generation

This section shows the results of VHDL generated code

allows us to have the possibility of blocs reusing.

Fig.4-a. Easyswitch Architecture

Fig.4-b. VHDL code Simulation

The file workbench is difficult because it is not

automatically generated.

During Xilinx tool simulation we observe that:

38 Formal and Informal Modeling of Fault Tolerant Noc Architectures

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

- We need quantity of time of 15 ns in order to send

between flits (piece of message);

- If we conserve the flit then the power consuming

increases;

- All flits which arrive on one time slot will be routed

before time slot period (strategy of output buffers).

- The phenomenon of head-of-line-blocking is

detected when data on the top of the file cannot

access to output port and block all following data in

the file.

Consequently: Deduced results after simulation: All

flits need to be memorized. To deal with this problem, we

introduce out buffers.

2) Improvement of architecture design

We present in this section formal design of CU-QNoC

which represents the refinement of the specification

presented on section IV.1 using decision design extracted

from VHDL code simulation. We have introduced out

buffers. The global schema of refinement is represented in

figure 4 and the associated proof obligations are

represented in table 2.

The refinement is represented in figure three. We

remark that for context C’5 and the machine M4, there are

more interactive proofs than automatic ones. This

explained by the fact that a majority of these interactive

proofs are quasi-automatic: the proofs did not need tough

efforts (neither importing hypotheses nor simplifying

goals etc.) , the mere usage/running of provers (provided

by RODIN platform) allowed us to discharge these

obligations. Contrary to the verification by simulation

only, our work provides a framework for developing the

network-on-chip architecture and the XY routing

algorithm using essential safety properties together with a

formal proof that asserts its correctness.

Fig.5. Auto Self-Reconfiguration Using IP Test on NoC Multi-node

Fig.6. Auto-self Organized Wireless Network on Chip

VI. TESTABILITY OF WIRELESS SELF-ORGANIZED NOC

Our system is inspired from the model proposed by [1]

it is a system of self-reconfigurable multi-node, this net is

composed of a set of self-organized wireless nodes that

communicate using Zigbee network protocol (as shown in

Figure five and six). Each node is independent. This

allows maintenance and operational reliability of the

system in case of failure. The model is based on the

occupancy time of the router by sending a test packet to

see if the router fails. The objective is to create an

intelligent self-organizing system based on wireless

technologies capable of self-management or

self-distribution of tasks among different nodes. Dynamic

task organization (IPs) is secured within the

reconfigurable nodes through the NoC, while allowing the

possibility of transferring the IPs to other nodes in case of

failure detection. The dynamic self-organization is based

on requests and responses generated between the different

nodes of the network [2].

The architecture of a node is related to an FPGA circuit

with a portion corresponding to a dynamic reconfigurable

area implementing a multiprocessor system-on-chip

(MPSoC)-based or adaptive 2D Mesh QNoC [3]. A node

also integrates a Zigbee IP transmission protocol to ensure

the inter-node communications system.

A. Reconfiguration Mechanism

The NoC structure of each node includes a mechanism

for error detection line to achieve a detection mechanism

out specific line. It is assumed in this case that the study of

static parts of a failed node are faultless. When an error is

detected within a NoC, the node is identified faulty. In the

proposed approach, the offline IP tester is reconfigured in

a delocalized non-faulty node to ensure the accuracy of

test results. Thus, when a node is found defective, a test

packet transmitted by transmission from the failed node. A

volunteer node then handles the offline node failed the test.

A node is designated volunteer if it satisfies the following

rules:

Rule 1: Do not be a faulty node.

 Formal and Informal Modeling of Fault Tolerant Noc Architectures 39

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

Rule 2: have the material resources to implement IP

tester.

Rule 3: have the test packet configuration IP tester.

Rule 4: Do not be occupied by a priority.

Each potential node corresponding to these four rules

can test the failed node. The failed node confirms the

availability of the first test received, leading to the

designation of the tester node. This latter implements IP

tester through a dynamic partial reconfiguration using a

packet from local test configuration. The off-line failed

node test starts when the tester is configured IP

(considered a priority). The tests are then made through

the inter-node communications as the ZigBee protocol and

the test method given in [1]. The node tester injects and

receives via a router with its own NoC vectors answers to

diagnose the failed node.

The test vectors and responses are injected into the NoC

test using a TAS (Test Access Switch) and compared

locally to identify faulty routers. Responses to test vectors

defective routers are transmitted to the IP tester to be

analyzed. The tester then determines the IP routers and

defaulting parties erroneous router through position or

erroneous bits in / responses to vectors. It follows a

decision on the failed node (router reconfiguration, partial

or complete deactivation).

B. Vertex Colored Algorithm

A distributed system is considered as a set of events

composed of local events related to the agents and their

local computations and global events like the use of the

communication channel, messages sending/receiving...

and is often seen as a graph (see figure seven), where the

vertices are the nodes and the edges, direct communication

links between them

Fig.7. SoC Formalization onto Graph.

Symmetry breaking has always been a central problem in

distributed systems. Several techniques have been

developed in order to achieve it, such as Maximal

Independent Set (MIS) algorithms, graph coloring

algorithms [9]. In this section, we will focus on

graph/vertex coloring algorithms. A vertex coloring

algorithm is a method of graph labelling: its goal is to assign

labels to the vertices of the graph. The labels are often

assimilated to colors. Consequently, it is called graph coloring

algorithm.
The coloring/labelling is done in such a manner that no

two adjacent vertices of the graph share the same

label/color: a proper coloring of a graph G = {V,E} (with

V the set of the vertices of G and E the set of its edges),

using a set of colors (COLORS ⊂N | COLORS = {1..N}),

is a function f such as (f : V→ 𝛿 COLORS |f(i) 𝛿= f(j) if

i↔j∈E). In this work, we focus on the development of

algorithms using distributed techniques. In fact, there is

little or no verification of the accuracy of previous

algorithms considering some random numbers to define

the process of secure coloration.'s Main contribution is

still analyzing complexity and it can be done later on our

models.

Fig.8. Abstract formal view of the system

C. Formalization using Event-B

As we explain previously the Wireless reconfigurable

system could be represented as a graph, there are many

practical applications of algorithms colored graph that

include:

 Planning algorithms graph coloring can be used to

control a set of nodes. Two nodes are considered

adjacent when they may occur simultaneously.

The aim is to prevent adjacent nodes occur at the

same time. But in our case there may be two nodes

that have the same job but two test nodes cannot

even fix the failed node at the same time.

 Each node must be correctly colored in green, the

correct node is a node that can send and receive

packets.

 Each failed node must be colored red, a failed node

is a node that cannot send or receive packets or one

of the two.

 Each node test should be colored blue, a test node

is a node chosen to correct the failed node.

1) Abstract level

We start with an abstract specification of the system by

defining the role of the network send and receive packets

(as shown in figure eight). So two sets will be defined in

this level; existing nodes (NODES) and packets (packets)

sent by a single source (src) and received by a single

destination (dst). Sources are different destinations. The

following axioms are described in the context of the

abstract level as follows:

Fig.9. Set of Invariants

axm1 : NODES ≠ ∅

axm2 : PACKETS ≠ ∅

axm3 : src ∈ PACKETS → NODES

axm4 : dst ∈ PACKETS → NODES

axm5 : ∀ p· p∈ PACKETS ⇒ src(p) ≠ dst(p)

inv1 : sent ∈ NODES ↔ PACKETS

inv2 : rcvd ∈ NODES ↔ PACKETS

inv3 : ran(rcvd) ⊆ ran(sent)

inv4 : ∀ s,p· s∈NODES ∧ p∈ PACKETS ∧ s↦p ∈ sent

⇒ s = src(p)

inv5 : ∀ d,p· d∈NODES ∧ p∈ PACKETS ∧ d↦p ∈ rcvd

⇒ d = dst(p)

inv6 : ∀ s1, s2, p· s1∈NODES ∧s2∈NODES ∧ p∈PACKETS

∧ s1↦p∈ sent ∧ s2↦p∈sent⇒ s1=s2

inv7 :
∀ d1, d2, p· d1∈NODES ∧d2∈NODES ∧ p∈PACKETS ∧
 d1↦p∈rcvd ∧ d2↦p∈rcvd⇒ d1=d2

40 Formal and Informal Modeling of Fault Tolerant Noc Architectures

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

We define the variables rcvd and sent that allow us to

perform the SEND and RECEIVE actions. The following

invariants are described in the abstract level the machine

contains initial values of variables which are empty, the

event SEND apply the action act1: sent≔ sent∪ {s↦p},

when the event receive apply the action act1: rcvd≔ rcvd

∪{d↦p}.

Fig.10. Initialisation

2) Vertex colored graph introduction

We assume that the graph is given a set of nodes. Next,

we define a set of colors (Red_Color, Green_Color,

Blue_Color), whose components are the colors selected by

the nodes during the execution of the algorithms of a graph

coloring. We specify some properties of these constants:

Fig.11. Constants

Fig.12. Axioms

- Axm5 axiom expresses that all vertices belong to

the graph GRAPH, they are not isolated,

- Expresses axm6 axiom that the graph of the graph

is irreflexive: the neighbor of a peak in GRAPH be

another vertex, and not itself,

- Axm7 axiom expresses that the graph of the graph

is symmetric,

- Axm8 axiom expresses that the graph graph is

connected.

 Correct Node:

In this refined machine level abstract level we will

consider all node can send and receive packet thus

allowing us to colored green (as shown in Figure thirteen).

CCorrecteNode the variable is defined with the following

property:

inv1: CCorrectNode ∈ NODES ⇸ COLOR

This property defines a node as part of all the colored

nodes, then all the net will be colored in green applying the

event green_color:

Fig.13. Corrected Node Coloration in the System

 Faulty Node:

Now the question is to calculate the function of

coloration with red and we need to find an inductive

property simulate the calculation of this function. Two

variables will be added at this level; FaultyNode

CFaultyNode and which are defined with the following

properties:

Fig.14. Invariants

Faulty node is a failed node therefore be colored with

red (as shown in Fig fourteen) the action will be as follow:

Fig.15. Faulty Node Coloration in the System

 IP Test Node :

In this level the calculation of the selection function of

the node test is specified in a simple way to break the

complexity of the role of this node, then just follow the

rules of choice of the node test and the rest is considered

procedure to apply after selecting the node test

Fig.16. Blue Color Node

- Rule 1: Do not be a faulty node. This is defined in

the grd9

INITIALISATION ≙

act1 : sent ≔ ∅

act2 : rcvd ≔ ∅

CONSTANTS

GRAPH

Red_Color

Green_Color

Blue_Color

axm1 : GRAPH ∈ NODES ↔ NODES

axm2 : GRAPH ≠ ∅

axm3 : COLOR ≠ ∅

axm4 : ∀c·c∈COLOR⇒ c=Red_Color ∨

c=Green_Color ∨ c=Blue_Color

axm5 : ∀ n·n∈ NODES ⇒ n∈dom(GRAPH)

axm6 : NODES◁id ∩GRAPH =∅

axm7 : GRAPH = GRAPH∼

axm8 : ∀ s·s⊆ NODES ∧ s ≠ ∅ ∧ GRAPH[s]⊆s⇒ NODES ⊆s

green_color ≙
WHEREgrd5 : GrnClr ∉ CCorrectNode[GRAPH[{node}]]

grd6 : CorrectNode↦p ∈ sent

grd8 : CorrectNode↦p ∈rcvd

THEN

act1 : CCorrectNode(node) ≔GrnClr

INVARIANTS

inv1 : FaultyNode ∈ NODES

inv2 : CFaultyNode ∈ NODES ⇸ COLOR

red_color ≙

WHERE

grd3 : rdClr ∈ COLOR

grd4 : node ∈ dom(GRAPH)

grd5 : node = FaultyNode

grd6 : rdClr ∉ CFaultyNode[GRAPH[{node}]]

grd7 : FaultyNode ↦p ∉sent

grd8 : FaultyNode ↦p ∉rcvd

THEN

act1 : CFaultyNode(node) ≔rdClr

blue_color ≙
WHERE

grd4 : node ∈ dom(GRAPH)

grd5 : node = TestNode

grd6 : blClr ∉ CTestNode[GRAPH[{node}]]

grd7 : TestNode ↦p ∉sent

grd8 : TestNode ↦p ∉rcvd

grd9 : TestNode ≠ FaultyNode

grd10 : src(BitstreamPacket)= TestNode

grd11 : dst(BitstreamPacket)= TestNode

THEN

act1 : CTestNode(node) ≔blClr

 Formal and Informal Modeling of Fault Tolerant Noc Architectures 41

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

- Rule 2: have the material resources to implement IP

tester.

- Rule 3: Bitsream have the configuration of the IP

tester. The grd10 grd11 and respect this rule

because if the node does not have the file

reconfiguration may receive from our a node.

- Rule 4: do not be occupied by a priority. The grd7

and grd8 means that this node is not busy with

sending or receiving packets.

After follow the rules node can be chosen as test node

(as shown in Figures 15 and 16) and the action of the blue

color attribution for a node test will be performed.

VII. COMPARATIVE STUDY BETWEEN INFORMAL AND

FORMAL APPROACHES

a- Informal approach:

Using heuristics to improve QNoC architecture: several

years to improve architecture:

Non-existence of support worked as container on which

we can improve architecture. We must really implement to

test it efficiency.

Advantages: temporal constraints can be measured.

Disadvantages: real implementation of cell tests,

limitation of node number under NoC. (5 to 6 nodes order)

 Auto-organized wireless network [1]:

 Platform : ML 507 / Virtex 5 FX70 Digilent

Nexys 3 board / Spartran 6

 Tools : Xilinx/ Xbee protocol

 Constraints : 5x5 2D-mesh NoC

 Wireless network

 Test ANoC platform [22]

 Routers and wrappers were modeled using

System C and VHDL or Verilog netlist.

 Co-simulation was realized by ModelSim tool

of Mentor Graphics [26].

 Constraints: 3 x 3, 3 x 4 , 4x5 2 D-mesh

 Single Soc.

b- Formal approach:

It is characterized by

- General approach on which we can designing

architecture from complete high level point of

view.

- Rigorous syntax to describe problem.

- Possibility to generate code

- Using high level object (graph theory) to reason

about some problems.

VIII. CONCLUSION

The paper aims to define a new design flow for the

future on chip communications. The main goal of this is to

provide a formal language of software and hardware

platform for design space exploration of such architectures.

Regular-topology NoC is proposed as on-chip

communication architectures primarily using switching

and routing techniques.. NoCs are a rather new field of

research. Regular topology NoCs are developed as they

are inspired by general purpose multicomputer networks.

 Our method concerns the horizontal and vertical

validation between design layers. We refer us to formal

method event-B [6, 2] to structure embedded system

design life cycle. Event-B is a method for specifying,

designing and coding software systems: the concept of

generalized substitution and on structuring mechanisms

(machine, refinement, and implementation). The concept

of refinement is the key notion for developing B models of

(software) systems in an incremental way.

There are several phases which we exploit to improve

the systems by optimizing our architecture. We exploit

interactivity between VHDL code simulation and Rodin

specification refinement. The feedback from VHDL code

to B-event specification will be also exploited. [11]

A case study for the formalization of the most abstract

level of the NoC to the lowest level in event-B was

presented in a hierarchical way. The B-event helps to

identify invariants for reliable systems. It finds invariants

for a correct and meaningful model represents a significant

challenge, for it ensures the safe operation of various

systems. In summary, we have proposed a switch NoC

architecture and its proof process (B formalism). The

results of the proof process have made it possible to

validate the operations of our architecture. The

refinement allows us to give different views of our

architecture and to validate. We can integrate our

approach in general frame work of FPGA NoC based

Design using formal refinements and produce formal

specifications of particular architecture which helps to

document all the design process.

As future perspectives, we project to establish

formal rules to SoC which are heterogeneous and

application-specific/domain-specific. In SoC,

computation nodes (units) have often different

communications requirements and geometry. There are

several limitations in using regular-topology NoC for

heterogeneous application/domain-specific SoC such as

poorly supported communication locality, treated equally

communication requirements of function units, a low

utilization of abundant network resource, and

different-sized function units which do not fit correctly in

floor plans. This research work will focus on irregular

topology NoCs and FPGA dynamic reconfiguration by

taking into account the algorithm specifications and any

potential parallelism. It appears interesting to analyse the

complete design flow from algorithm specifications till the

VHDL (RTL) generation of irregular NoCs topologies that

support dynamic reconfiguration. Dynamic

reconfiguration can be considered at different levels:

inserting/ removing of processing units, dynamic

scheduling, topology modification and network size

changes, adaptation of the buffer size.

42 Formal and Informal Modeling of Fault Tolerant Noc Architectures

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 32-42

REFERENCES

[1] M. Heil and C. Tanougast: “Fault-tolerant self-organized

mechanism for networked reconfigurable MPSoC”

Codit’14. Metz.

[2] Killian, C. Tanougast, F. Monterio, and A. Dandache, “A

new efficient and reliable dynamically Reconfigurable

Network-on-Chip", Journal of Electrical and Computer

Engineering, special issue Design and Automation for

Integrated Circuits and Systems, Volume 2012, Article ID

843239, 16 pages, Hiwdawi, 2012.

[3] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, “QNoC: QoS

architecture and design process for network on chip”

Journal of Systems architecture. 2003.

[4] Project RODIN. Rigorous open development environment

for complex systems. http://www.eventb.org/, 2004-2010.

[5] M. Kamali, Luigia Petre, K. Sere, M. Daneshtalab

Refinement-Based Modeling of 3D NoCs 2011 14th

Euromicro Conference on Digital System Design.

[6] M Belarbi: Formal Modelling of Real-Time Embedded

Automotive Architecture. Society of Design and Process

Science Journal. JIDP, Volume 13, Number 2, 2009.

[7] H. Daoud, C. Tanougast, M. Belarbi and D. Mery, "Formal

verification properties for Rapid Prototyping Using Fault

Tolerant NoC-based Architecture", First International

Workshop on Mathematics and Computer Science, Dec.

2012, University Ibn Khaldoun of Tiaret.

[8] Butler MJ (2009) Decomposition structures for Event-B. In:

Leuschel M, Wehrheim H (eds) Proceedings of 7th

international conference on integrated formal methods,

IFM2009, Dusseldorf, Germany, February 16–19, 2009.

Lecture notes in computer science, vol 5423. Springer,

Berlin, pp 20–38.

[9] M. B. Andriamiarina, D. Méry, and N. K. Singh. Revisiting

Snapshot Algorithms by Refinement-based Techniques. In

PDCAT. IEEE Computer Society, 2012.

[10] A. Hariche. M. Belarbi. and H. Daoud(2013), new

Operators-Based Approach for the Event-B Refinement:

QNoC Case Study IEEE ICM’2013, Beirut 15-18 Dec.

2013.

[11] A. Hariche. M. Belarbi. and H. Daoud(2012), Based B

Extraction of QNoC architecture properties IWMCS’2012,

Tiaret 16-17 Dec. 2012. Published by MomaJournal, Vol 1,

Issue 2 (2012). ISSN N° 2253-0665.

[12] Abrial J.-R., The B book: assigning programs to meanings,

Cambridge University Press, 1996.

[13] Abrial, J-R, Butler MJ, Hallerstede S, Hoang TS, Mehta F,

Voisin L (2010) Rodin: an open toolset for modelling and

reasoning in Event-B. STTT 12(6):447–466.

[14] Bjerregaard and S. Mahadevan. A Survey of Research and

Practices of Network-on-Chip. ACM Computer Surveys,

38(1), 2006.

[15] K. Goossens. Formal Methods for Networks on Chips. In

Proceedings of the Fifth International Conference on

Application of Concurrency to System Design, ACSD’05,

pages 188–189. IEEE Computer Society, 200.

[16] Killian, C. Tanougast, F. Monterio, and A. Dandache,

“Online routing fault detection for reconfigurable noc,” in

International Conference on Field Programmable Logic

and Applications, 2010.

[17] Killian, C. Tanougast, F. Monterio, and A. Dandache.

Online routing fault detection for reconfigurable noc. In

International Conference on Field Programmable Logic

and Applications, 2010.

[18] J.S. Chenard, S. Bourduas, N. Azuelos, M. Boul é, and Z.

Zilic. Hardware Assertion Checkers in On-line Detection

of Network-on-Chip Faults. In Proceedings of the

Workshop on Diagnostic Services in Networks.

[19] Zhu, Q. and Matsuda, A. and Kuwamura, S. and Nakata, T.

(2002) An Object-Oriented Design Process for

System-on-Chip using UML Proceedings of 15th

International Symposium on System Synthesis, New York,

2-4 October 2002, pp. 249-254.

doi:10.1145/581199.58125.

[20] H.Daoud, C.Tanougast, M.Belarbi_, M. Heil_ “Formal

Specification and Verification of wireless networked

self-organized Systems on Chip” Cofid’14. Metz.

[21] X.-T. Tran, J. Durupt, Y. Thonnart, F. Bertrand, V.

Beroulle, and C. Robach. Implementation of a

Design-for-Test Architecture for Asynchronous

Networks-on-Chip. In Proceeding of the 1st ACM/IEEE

International Symposium on Networks-on-Chips, NOCS

2007, pp. 216{216, New Jersey, USA, May 2007.

[22] Morin-Allory, K. and Fesquet, L. and Borroine, D

slopp(2006) Asynchronous Assertion Monitors For

Multi-clock domain system verification, 14-16 June.

Seventeenth IEEE International Workshop on Rapid

System Prototyping.

[23] R. Allur, D.L. Dill, “A theory of timed automata”,

Theoretical Computer Science. 1994, Vol. 126, pp.

183-235.

[24] M. Butler and I. Maamria “Mathematical Extension in

Event-B through the Rodin Theory Component” Research

report 8 June 2010.

[25] Mentor Graphics www.mentorgraphics.com.

[26] M. Hosseinabady, A. Banaiyan, M.-N. Bojnordi, Z. Navabi

«A Concurrent Testing Method for NoC Switches”. in

Proceedings of the conference on Design, automation and

test in Europe: Proceedings, ser. DATE ’06. European

Design and Automation Association, 2006, pp. 1171–

1176.

Author’s Profile

Mostefa BELARBI Computer Science

Department Faculty of Mathematics and

Computer Science. LIM Laboratory.

Ibn Khaldoun University of Tiaret–Algeria.

Doctor in Computer Science. Title of thesis:

temporal validation of real-time multitasking

applications based on communicating timed

automata. INSA, LYON (France) 2003.

Master in Software Engineering. University of Sciences and

Technology of Oran- Algeria (with highest honours), title of

thesis: An algebraic approach for program construction.Nov

1997.

Engineer of state in computer science, University of Senia,

Oran-Algeria. Sep.1988.

Member of LIM (Computer science and mathematics)

Laboratory – University Ibn Khaldoun of Tiaret.. Domains of

research: applied formal methods, Parallel Computing Design

and Validation, Verification of Embedded and Real Time

Systems.

http://www.researchgate.net/researcher/65027413_Luigia_Petre
http://www.researchgate.net/researcher/64602847_Kaisa_Sere
http://www.researchgate.net/researcher/21753527_Masoud_Daneshtalab

