
I.J. Intelligent Systems and Applications, 2015, 11, 60-65
Published Online October 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.11.08

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 60-65

Finding Representative Test Case for Test Case

Reduction in Regression Testing

Sudhir Kumar Mohapatra
Research Scholar, SOA University, Bhubaneswar, Odisha, India

E-mail:sudhirmohapatra@hotmail.com

Srinivas Prasad
Dept. of Computer Science &Engineering, GMR Institute of Technology, Andhra Pradesh

E-mail: srinivas_prasad@hotmail.com

Abstract—Software testing is one of the important stages

of software development. In software development,

developers always depend on testing to reveal bugs. In

the maintenance stage test suite size grow because of

integration of new technique. An addition of new

technique force to create new test case which increase the

size of test suite. In regression testing new test case may

be added to the test suite during the whole testing process.

These additions of test cases create possibility of

presence of redundant test cases. Due to limitation of

time and resource, reduction techniques should be used to

identify and remove them. Research shows that a subset

of the test case in a suit may still satisfy all the test

objectives which is called as representative set.

Redundant test case increase the execution cost of the test

suite, in spite of NP-completeness of the problem there

are few good reduction techniques have been available. In

this paper a new approach for test case reduction is

proposed. This algorithm use genetic algorithm technique

iteratively with varying chromosome length to reduce test

case in a test suit by finding a representative set of test

cases that are fulfill the testing criteria.

Index Terms—Genetic Algorithm, Software testing, Test

suite reduction, Test suite minimization.

I. INTRODUCTION

Retesting of software is done frequently during the

software development lifecycle and in particular in

regression testing. In regression testing software grows

and evolves that create new test cases and added them to

a test suite to exercise the latest changes in the software.

Due to many versions of the development of the projects,

the possibility of redundant test cases in test suite is

more .The redundant test case may in respect to the

testing requirements for which they were generated. Due

to limitation of time and resource for retesting the

software every time before a new version is released, it is

really important to search for techniques that ensure

manageable test suites size by removing redundant test

cases without hampering the performance of the software.

This process is popularly called test suite minimization.

The test suite minimization problem [1] can be formally

stated as follows:

Given. A test suite T of test cases {t1,t2,t3,…..,tm}, a set of

testing requirements {r1,r2,r3….,rn} that must be satisfied

to provide the desired test coverage of the program, and

subsets {T1,T2,..,Tn} of T, one associated with each of the

ri’s such that any one of the tests tj belonging to Ti

satisfies ri.

Problem. Find a minimal cardinality subset of T that

exercises all ri’s exercised by the unminimized test suite T.

The ri’s can represent either all of the program’s test

case requirements or those requirements related to

program modifications. A representative set of test cases

that satisfies the ri’s must contain at least one test case

from each Ti. Such a set is called a hitting set of the group

of sets Tl, T2, . . . , T. A maximum reduction is achieved

by finding the smallest representative set of test cases.

However, this subset of the test suite is the minimum

cardinality hitting set of the T,’s and the problem of

finding the minimum cardinality hitting set is NP-

complete [2]. Therefore, since we are unaware of any

approximate solution to the problem, we develop a

heuristic [3,4] to find a representative set that

approximates the minimum cardinality hitting set.

The development team if able to find out redundant test

case and eliminate them from the test case then the test

suite size can be reduced. while finding the

representative set the team must ensure that all test

requirements are satisfied by the reduced test suite, to

make testing more efficient. That is, given the original

test suite T={t1, t2, t3, ..., tn} and a set of test

requirements R={r1, r2, r3, ..., rm}, the goal is to find a

subset of the test suite T, denoted by a representative set

RS, to satisfy all the test requirements satisfied by T.

The process of finding the representative set is called test

suite reduction [5], [6].

The organization of this paper is as follows. In section

II we have specified the Existing Test Case Reduction

Techniques. In section III an algorithm based on the

genetic algorithm for test case reduction is proposed and

discuss. The proposed algorithm is discussed in details

followed by its implementation in section IV. The

conclusion and future work is discussed in section V.

 Finding Representative Test Case for Test Case Reduction in Regression Testing 61

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 60-65

II. RELATED WORK

The Greedy algorithm [9,10] removes the test case

continuously. The algorithm stop when a representative

set i.e RS which covers the entire requirement is derived.

In Chen and Lau [11] algorithm choose all important test

case first then apply greedy algorithm over the remaining

test case for rest of test case selection from that. In [5]

Jeffrey and Gupta produce representative set for test suite

reduction using selective redundancy. Harrold, Gupta

and Soffa [1] find representative test cases for each subset

and include them in the representative set. In [14] the

authors use irreplaceability to evaluate the importance of

tests and present an algorithm that ultimately produces

reduced test suites with a substantially decrease in the

execution cost. Using genetic algorithm in paper [13, 15]

the authors are able to minimize test case which cover the

entire requirement that can be covered by all the test

cases. Izzat Alsmadi, Sascha Alda discuss a method of

test case reduction for web service[16] which can be

implemented for object oriented program. In [17] Md.

Nasar, Prashant Johri, Udayan Chanda discuss resource

allocation in software testing. Harish Kumar, Naresh

Chauhan [18] give a GA based test case prioritization

technique.

III. PROPOSED GA TECHNIQUE FOR TEST CASE

REDUCTION

Before creation of initial population, the algorithm

needs a test requirement matrix. Test requirement matrix

(TR) is a two dimensional 0-1 matrix of size (m * n).

The test suite T= { t1, t2, t3 …..,tm} is represented in row

and the requirement R={r1, r2,…..,rn} is represented in

the column. That is each row of the matrix represent

requirements fulfill by a particular test case. Entry into

the TR matrix is determined by

TR(i,j) {

In table no1 a test suite of four test case and their six

requirements are given. Each test case is representing in

row where as the requirement fulfilled by the test case are

marked as 1 in the requirement column otherwise 0.

Table 1. An example of test case and requirements fulfill by it

Test

case
Requirements to be satisfied

No r1 r2 r3 r4 r5 r6

t1 1 1 1 0 0 0

t2 0 1 1 1 1 0

t3 1 0 0 0 0 1

t4 0 0 1 0 0 1

From Table no 1 the following TR matrix is derived

 (

)

Fig.1. Test case reduction algorithm process.

Start

Initialize initial population using TR (Test requirement matrix) of size n X l

where n=population size and l=chromosome length

Chromosome length l ←2

Select From the initial population using Roulette wheel method

Evaluate fitness of each chromosome

If a subset of test case T which

cover all requirements is

arrive

Apply single point crossover with Pc=0.6

Apply mutation with Pm=0.6

From the subsets of test case choose the test case

set which cost is minimum

Show the Results

Stop

Yes

No

No of Epoch more

then 100

Set l ←l + 1

No

62 Finding Representative Test Case for Test Case Reduction in Regression Testing

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 60-65

As for the 0-1 matrix with m rows and n columns, it is

essential to select a subset of rows to cover all of the

columns in the matrix with minimal cost. Suppose the

vector element represents the row i in the vector x is

selected and xi=0 means not, therefore, the set coverage

problem can be represented as standard optimization

problem:

Min z(x)=∑

s.t ∑

 i=1,2,3,4,……

(Ensure that every column is covered by at least one row)

xj { } j=1, 2, 3,……..

The test suite reduction problem is converted to set

coverage problem, and then converted to standard

optimization problem. The idea of proposed algorithm

start from this optimization problem. It is an optimization

algorithm that can use genetic algorithm to solve this

reduction problem. The GA process is represented in the

flow chart given in figure 1.

The algorithm is divide in to two sub algorithm, the

first algorithm create population with different

chromosome length starting from length two and

ultimately call the GA () to find representative set. The

GA () method apply selection, crossover and mutation to

retune representative set. Then the main algorithm

compare cost of the representative set if satisfy stop and

return it otherwise it will further generated the new

population with chromosome length of one more of size

then the previous one.

Algorithm 1 (Test case Reduction)

Algorithm 2 GA ()

The above algorithm describe how a representative set

which is a sub set of T is derived using GA. The first

algorithm search a cost optimal representative set using

genetic algorithm. The second algorithm which is an

elaboration of the GA process describe that when it is

called it create representative set of given size.

A. Initial Population

Each chromosome of the initial population represents a

set of test case i.e a test suite. The initial population is

built up randomly using the test case pool. First a

population of size two is created which increases

gradually till a representative set is not found. We use

permutation encoding for encoding the chromosomes.

Each chromosome contains a set of test case as given in

fig 2

Fig. 2. Chromosome using permutation encoding.

B. Selection

We use rank selection to select the chromosome to go

to the next epoch. Elitism is used as test show that best

population are selected.

Input: Initial Population P of size i

Output : Representative set of size i

Begin

j 1

repeat

Pj null;

repeat

Pj  Pj U { Randomly from T }

until | Pj |=i

jj+1

until j=i

g  1

repeat

j1

repeat

Fi CalculateFitness(Pi)

jj+1

until ji

P1 ChooseParent(P[random()]).

P2  ChooseParent(P[random()]).

 C1, C2Crossover(pC, P1, P2)

 C1Mutation(pM, C1)

 C2Mutation(pM, C2)

gg+1

until g=dmax

return RS of size i

Input T: the set of test cases

 R: the set of requirements

 S: the relation between T and R, S={(t, r)| t satisfies

r, t ϵ T, and r ϵ R}

 rsi: representative set i rsi ϵ RS

 RS: set of representative set(Sub set of T)

Output : Sub set(Representative Set) of T which

satisfy all requirements

Begin

RS = { };

i 2

while (no new rs is generated)

 {

 rsi GA()

 RS=RS U rsi

i i+1

}
Calculate cost of each rs

return optimal RS;

end

 Finding Representative Test Case for Test Case Reduction in Regression Testing 63

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 60-65

C. Crossover

After the chromosomes are selected we applied single

point crossover with crossover probability of 0.6 to

generate new child from the selected parent.

Fig.3. Single Point Crossover.

Let’s take this example, where P1 and P2 are two

individuals represented as:

P1 = <T1; T3; T6; T4> and P2 = <T2; T3; T5; T9; T4>.

If 1 is chosen, P1 and P2 could be crossed over after

the first locus in each to produce two off springs as P1

=<T1; T3; T5; T9; T4> and P2=<T2; T3; T6; T4>. A

crossover selection process is depicted in Fig 3.

D. Mutation

Mutation is used to replace the duplicate test case

present in the test suite. For duplicate test case the

algorithm randomly select a test case from the existing

set that are not included in the chromosome with a

mutation a probability of 0.2.

Fig.4. Mutation Operation.

The fitness value of each chromosome is calculated by

performing and operation among all the requirement sets

of individual test case.

Then fitness the result is converted into a percentage

which denotes how much percentage of requirements is

covered by the chromosome. This percentage is

calculated using equation no 1.

F(x)=

 X 100 (1)

F(x) is fitness of chromosome x. The following

example gives a clear picture about how it works.

Using the TR matrix, initial population of the

algorithm is generated. The algorithm first generate test

suite of size 2, 3, 4… . The fitness is calculated for these

test suite by performing OR operation of the requirements.

For test suite T= {t2, t4}, fitness value will be

So for the said test suite no of requirement not fulfilled

is=1. Total no of requirement =6. Its fitness is =(1/6*100)

=83.33%

IV. EMPIRICAL STUDIES

In order to verify our test suite reduction we take the

TR matrix derived from TABLE1.

 (

)

From this we select initial population with

chromosome length l ≥ 2, 3, 4… m where m is the total

no of test case present. In our TR matrix no of test case is

5. The algorithm in each iteration chooses population of

size n X l where n is the population length. In every

iteration GA is applied over the population. In any

iteration if the fitness of one or more chromosome is 100%

our algorithm stops. Out of all the chromosome produced

by the algorithm we choose that chromosome whose cost

is minimum as representative set.

For example by taking population size=5, Pc=0.6,

Pm=0.2 from the above TR matrix, we get the following

result.

Iteration # 1

l=2

Randomly choose 5 chromosomes of length 2 and

calculate their fitness.

Figure 4: Initial population with fitness value of our

example.

RS={T2,T3}

t2={ }

t4={ }

 OR {0 1 1 1 1 1 }

66

83

50

66

100

T1 T4

T2 T4

T4 T5

T5 T1

T2 T3

Initial

Populati

on

Fitness

value

64 Finding Representative Test Case for Test Case Reduction in Regression Testing

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 60-65

The test suite T={T2,T3} gives 100% fitness value

that’s why it is the representative set(RS) of

T={T1,T2,T3,T4,T5}. Hence our algorithm stops after

1st iteration. For the above example in iteration#1 no

cross over or mutation operation of GA needed. In this

case the representative set is derived in 1 epoch.

Otherwise we have to go for a fixed no of epoch in

iteration#1. In the next iteration chromosome length 2

will be increased to 3 and again GA will be applied. This

process will continue till RS is produce.

The algorithm is implemented in the working platform

MetLab. After getting RS, the test case are run using an

environment of JUnit, Ant and Eclipse Emma using IDE

Eclipse. Table 2 shows the details of subject programs

and the collected test case-requirement matrices. Column

1 lists all the subject programs. Column 2 lists the

number of lines of code (LOC) of each subject program.

Column 3 lists the size of the corresponding subject

program’s test suite pool where T denotes the number of

all the test cases and R denotes the number of test

requirements. Three programs were studied, ranging from

501 to 1114 lines of code (LOC). These three Java

programs in our experiment are AVL tree (AVL) with all

operation and application, Mutation Tool (MU),

transmission control (TC). The feature of these programs

has been given in Table 2.

Table 2. Summary of programs used in experimentation

Program
Source file

(LOC)

Test suite pool

(T X R)

AVL 501 109 X 45

MU 876 112X 87

TC 1114 132 X 85

Fig.5. Execution time of the programs

Fig.6. Reduction of test case size in five instance

In figure 5 it is shown that the execution of reduce test

case save the time. In figure 6 five instance of of

execution of the test case are recorded and seen that all

the time the reduce test case size approximately remain

same.
The efficiency of the algorithm in terms of time and space

complexity is determined in the following graph.In the

figure 6 X-axis represents (Number of generation,

Population size), Y-axis represents time of execution of the

GA algorithm. The test programs are taken in the experiment.

The algorithms take maximum 11.66 minute for MU

program. The memory requirement is less the 100KB as it is

found in the MATLAB implementation of the program.

Fig.7. Time and space complexity comparison

V. CONCLUSION

In this paper an algorithm for test cases reduction is

presented and implemented. It is compared with other

existing techniques. It finds out representative set of the

test case from the given set of test case. It uses a simple

109 112 132 109 112
0

10

20

30

40

50

60

70

80

90

Select Test Suit Size

R
e
p
re

s
e
n
ta

ti
v
e
 S

iz
e

AVL

MU

TC

 Finding Representative Test Case for Test Case Reduction in Regression Testing 65

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 60-65

GA method to reduce the test case in regression testing.

Moreover, the generated test suite is minimized greatly.

Therefore it can reduce test cost of regression testing and

improve the efficiency of the software with the optimized

test suite. The limitation of the implementation is that it is

implemented for a program of maximum 1000 line of

code which will be implemented with program of more

line of code in future.

ACKNOWLEDGMENT

I render my acknowledgement to Prof. (Dr.) Birendra

Kumar Nayak for his advice, suggestions, inspiration and

guidance for this work. I am also thankful to Gandhi

Institute for Technological Advancement, Bhubaneswar

for providing research facility in their research lab.

REFERENCES

[1] M.J. Harrold, R. Gupta, and M.L. Soffa, ―A Methodology

for Controlling the Size of a Test Suite,‖ ACM Trans.

Software Eng. And Methodology, vol. 2, no. 3, pp. 270-

285, July 1993.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,

Introduction to Algorithms, second ed. MIT Press, Sept.

2001.

[3] GUPTA, R. A reconfigurable LIW architecture and its

compiler. Tech. Rep. 87-3. Dept. Computer Science, Univ.

Pittsburgh, Pittsburgh, Pa., 1987.

[4] GumA, R., AND SOFFA, M. L. Compile-time techniques

for improving scalar access performance in parallel

memories. IEEE Trans. Parallel and Distributed Systems

2, 2 (Apr.1991), 138-148.

[5] D. Jeffrey and N. Gupta, ―Improving Fault Detection

Capability by Selectively Retaining Test Cases During

Test Suite Reduction,‖ IEEE Trans. on Software

Engineering, Vol. 33, No. 2, pp. 108-123, February 2007.

[6] J. W. Lin and C. Y. Huang, ―Analysis of Test Suite

Reduction with Enhanced Tie-Breaking Techniques,‖

Information and Software Technology, Vol. 51, No. 4, pp.

679-690, April 2009.

[7] M.R. Garey and D.S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Completeness.

Freeman and Company, 1979.

[8] R. M. Karp, ―Reducibility among Combinatorial

Problems,‖ Complexity of Computer Computations,

Plenum Press, pp. 85-103, 1972.

[9] V. Chvatal, ―A Greedy Heuristic for the Set-Covering

Problem,‖ Mathematics Operations Research, Vol. 4, No.

3, pp. 233-235, August 1979.

[10] S. Yoo and M. Harman, ―Regression Testing

Minimization, Selection and Prioritization: a Survey,‖

Software Testing, Verification and Reliability, Vol. 22,

No. 2, March 2012.

[11] T. Y. Chen and M. F. Lau, ―A New Heuristic for Test

Suite Reduction,‖ Information and Software Technology,

Vol. 40, No. 5-6, pp. 347-354, July 1998.

[12] J. A. Jones and M. J. Harrold, ―Test-Suite Reduction and

Prioritization for Modified Condition/Decision Coverage,‖

IEEE Trans. on Software Engineering, Vol. 29 No. 3, pp.

195-209, March 2003.

[13] Ma, X.y., He, Z.f., Sheng, B.k., Ye, C.q.: ―A genetic

algorithm for test-suite reduction‖. In: Proc. the

International Conference on Systems, Man and

Cybernetics, pp. 133–139, October 2005

[14] Chu-Ti Lin, Kai-Wei Tang, Cheng-Ding Chen, and

Gregory M. Kapfhammer. ―Reducing the Cost of

Regression Testing by Identifying Irreplaceable Test

Cases‖. In Proc. Of the 6th ICGEC ’12.

[15] Y Zhang, J Liu, Y Cui, X Hei , ―An improved quantum

genetic algorithm for test suite reduction ‖, IEEE

International Conference on Computer Science and

Automation Engineering (CSAE), 2011

[16] Izzat Alsmadi, Sascha Alda, ―Test Cases Reduction and

Selection Optimization in Testing Web Services‖, I.J.

Information Engineering and Electronic Business, 2012, 5,

1-8

[17] Md. Nasar, Prashant Johri, Udayan Chanda, ― Software

Testing Resource Allocation and Release Time Problem:

A Review‖, I.J. Modern Education and Computer Science,

2014, 2, 48-55

[18] Harish Kumar, Naresh Chauhan, ― A Module Coupling

Slice Based Test Case Prioritization Technique‖, I.J.

Modern Education and Computer Science, 2015, 7, 8-16

Authors’ Profiles

Sudhir Kumar Mohapatra an

M.Tech(Computer Science) holder from

Utkal University is currently persuing P.hD

from SOA University,Odisha, India in the

department of Computer Science & Engg. His

research areas include Software Testing, Soft

Computing, Parallel Computing & Computer

Programming.

Srinivas Prasad has done his PhD in

Computer Science, UU, Orissa. He has 20

years of experience in industry as well as

institution. Currently he is working as

professor and Heads of Department in Dept.

of Computer Science &Engineering, GMRIT,

Andhra Pradesh, India. His Research areas

include Internet Technologies, Software

Engineering, Object-Oriented Technologies, Operating Systems,

Software Testing, Soft Computing and Big data.

Manuscript received January 16, 2009; revised June 21,

2009; accepted July 12, 2009.

