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Abstract—Differential evolution algorithm (DE) 

constitutes one of the most applied meta-heuristics 

algorithm for solving global optimization problems. 

However, the contributions of applying DE for large-

scale global optimization problems are still limited 

compared with those problems for low and middle 

dimensions. DE suffers from slow convergence and 

stagnation, specifically when it applies to solve global 

optimization problems with high dimensions. In this 

paper, we propose a new differential evolution algorithm 

to solve large-scale optimization problems. The proposed 

algorithm is called differential evolution with space 

partitioning (DESP). In DESP algorithm, the search 

variables are divided into small groups of partitions. Each 

partition contains a certain number of variables and this 

partition is manipulated as a subspace in the search 

process. Selecting different subspaces in consequent 

iterations maintains the search diversity. Moreover, 

searching a limited number of variables in each partition 

prevents the DESP algorithm from wandering in the 

search space especially in large-scale spaces. The 

proposed algorithm is tested on 15 large- scale 

benchmark functions and the obtained results are 

compared against the results of three variants DE 

algorithms. The results show that the proposed algorithm 

is a promising algorithm and can obtain the optimal or 

near optimal solutions in a reasonable time.  

 

Index Terms—Differential evolution algorithm, 

evolutionary algorithms, large-scale optimization, globe 

optimization. 

 

I.  INTRODUCTION 

Meta-heuristics can be classified into population based 

methods and point-to-point methods. Differential 

evolution (DE) is a population based meta-heuristics 

method.  DE and other population based meta-heuristics 

methods such as Ant Colony Optimization (ACO) [6], 

Artificial Bee Colony [15], Particle Swarm Optimization 

(PSO) [16], Bacterial foraging [31], Bat algorithm [39], 

Bee Colony Optimization (BCO) [36], Wolf search [35], 

Cat swarm [4], Firefly algorithm [40], Fish swarm/school 

[21], etc have been developed to solve global 

optimization problems.  

Due to the efficiency of these methods, many 

researchers have applied these methods to solve global 

optimization problems such as genetic algorithms [9, 13, 

23], evolution strategies [21], evolutionary programming 

[18], tabu search [24], simulated annealing [2, 12], 

memetic algorithms [20, 28, 29], differential evolution [3, 

5, 32, 37], particle swarm optimization [1, 22], ant colony 

optimization [34], variable neighborhood search [9, 26], 

scatter search [14, 17], and hybrid approaches [7, 38]. 

The performance of these methods is powerful when they 

applied to solve low and middle dimensional global 

optimization problems. However, these methods lost their 

efficiency when they applied to solve high dimensional 

(large-scale) global optimization problems.  

In the literature, some works have been made to solve 

high dimensional problems, see BGA [27], TSVP[10],  

AEA [30], FEP [41], OGA/Q [19], MAGA [42] and 

GAMCP [11] . 

In this paper, we propose a new DE algorithm in order 

to solve large-scale global optimization problems. The 

proposed algorithm is called differential evolution with 

space partitioning (DESP). In DESP, The space is divided 

into groups of spaces. Each partition contains a certain 

number of variables and individuals and is treated as a 

subspace in the search process. The DE operators are 

applied on each partition in order to increase the search 

diversity. The space partitioning process represents the 

dimension reduction mechanism in the proposed 

algorithm.   

The general performance of the proposed algorithm is 

tested on 15 benchmark functions and compared against 

three variants DE algorithms. The obtained numerical 

results reported later show that the proposed algorithm 

producing high quality solutions with low computational 

costs. 

The paper is organized as follows. The definition of the 

unconstrained optimization problem is presented in 

Section II. In Section III, we give an overview of a 
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differential evolution algorithm. Sections IV discuss the 

implementation of the proposed algorithm. The numerical 

experimental results are reported in Section V. The 

conclusion makes up Section VI. 

 

II.  UNCONSTRAINED GLOBAL OPTIMIZATION PROBLEMS 

Mathematically, the optimization is the minimization 

or maximization of a function of one or more variables 

subject to constrains on its variables. By using the 

following notations: 

 

 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛  a vector of variables or function 

parameters; 

 𝑓 the objective function that is to be minimized or 

maximized; a function of 𝑥; 

 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝑛)  and  𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛)  the 

lower and upper bounds of the definition domain 

for 𝑥; 

 𝑐  a set of functions of 𝑥  that represent the 

constraints; 

 

The optimization problem (minimization) can be 

defined as: 

 

min𝑙≤𝑥≤𝑢 𝑓(𝑥)                              (1) 

 

Subject to: 

 

𝑐𝑖(𝑥) = 0, 𝑖 ∈ 𝐼 (equality constraints) 

 

𝑐𝑗(𝑥) = 0, 𝑗 ∈ 𝐽 (inequality constraints) 

 

In this work, we consider the unconstrained 

optimization case; thus, the constraint 𝑐   will not be 

present. 

 

III.  AN OVERVIEW OF DIFFERENTIAL EVOLUTION 

ALGORITHM 

Differential evolution algorithm (DE) proposed by 

Stron and Price in 1997 [33]. In DE, the initial population 

consists of number of individuals, which is called a 

population size N. 

Each individual in the population size is a vector 

consists of D dimensional variables and can be defined as 

follows: 

 

𝐱𝑖
(𝐺)

= {𝑥𝑖,1
(𝐺)

, 𝑥𝑖,2
(𝐺)

, … , 𝑥𝑖,𝐷
(𝐺)

},          𝑖 = 1,2, … , 𝑁       (2) 

 

Where G is a generation number, D is a problem 

dimensional number and N is a population size. DE 

employs mutation and crossover operators in order to 

generate a trail vectors, then the selection operator starts 

to select the individuals in new generation G+1. The  

 

 

 

overall process is presented as shown in the following 

subsections: 

A.  Mutation Operator 

A trail mutant vector v𝑖 is generated as follows. 

 

𝐯𝑖
(𝐺)

= {𝑣𝑖,1
(𝐺)

, 𝑣𝑖,2
(𝐺)

, … , 𝑣𝑖,𝐷
(𝐺)

}          𝑖 = 1,2, … , 𝑁     (3) 

 

DE applied different strategies to generate a mutant 

vector as follows: 

 

DE/rand/1:     𝐯𝑖
(𝐺)

= 𝐱𝑟1
(𝐺)

+ 𝐹 ∙ (𝐱𝑟2
(𝐺)

+   𝐱𝑟3
(𝐺)

)        (4) 

 

DE/best/1:    𝐯𝑖
(𝐺)

= 𝐱𝑏𝑒𝑠𝑡
(𝐺)

+ 𝐹 ∙ (𝐱𝑟1
(𝐺)

+   𝐱𝑟2
(𝐺)

)        (5) 

 

DE/Currenttobest/1:   𝐯𝑖
(𝐺)

= 𝐱𝑖
(𝐺)

+ 𝐹 ∙ (𝐱𝑏𝑒𝑠𝑡 
(𝐺)

−  𝐱𝑖
(𝐺)

) 

          +𝐹 ∙ (𝐱𝑟1 −  𝐱𝑟2)               (6) 

 

DE/best/2:        𝐯𝑖
(𝐺)

= 𝐱𝑏𝑒𝑠𝑡
(𝐺)

+ 𝐹 ∙ (𝐱𝑟1
(𝐺)

−  𝐱𝑟2
(𝐺)

) 

          +𝐹 ∙ (𝐱𝑟3 −  𝐱𝑟4)              (7) 

 

DE/rand/2:     𝐯𝑖
(𝐺)

= 𝐱𝑟1
(𝐺)

+ 𝐹 ∙ (𝐱𝑟2
(𝐺)

−  𝐱𝑟3
(𝐺)

) 

          +𝐹 ∙ (𝐱𝑟4 −  𝐱𝑟5)              (8) 

 

Where  𝑟𝑑 , 𝑑 = 1,2, … , 5 , represents random integer 

indexes, and they are different from index i, F is a 

mutation scale factor, 𝐹 ∈ [0,2], 𝐱𝑏𝑒𝑠𝑡
(𝐺)

 is the best vector 

in the population in the current generation G. 

B.  Crossover Operator 

A crossover operator starts after mutation in order to 

generate a trail vector according to target vector 𝐱i and 

mutant vector 𝐯i  as follows:  

 

𝑢𝑖𝑗 = {
𝑣𝑖𝑗 , 𝑟𝑎𝑛𝑑 (0,1)  ≤  𝐶𝑅   or   𝑗 =  𝑗rand

𝑥𝑖𝑗 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
      (9) 

 

Where CR is a crossover factor, 𝐶𝑅 ∈ [0,2], 𝑗𝑟𝑎𝑛𝑑  is 

a random integer and 𝑗𝑟𝑎𝑛𝑑  ∈ [0,1]. 

C.  Selection Operator 

The DE algorithm applied greedy selection, selects 

between the trails and targets vectors. The selected 

individual (solution) is the best vector with the better 

fitness value. The description of the selection operator is 

presented as follows: 

 

𝐱𝑖
(𝐺+1)

= {
𝐮𝑖

(𝐺)
,                       𝑓(𝐮𝑖

(𝐺)
) ≤ 𝑓(𝐱𝑖

(𝐺)
)

  𝐱𝑖 ,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
  (10) 

 

D.  Differential Evolution Algorithm  

In this subsection, we present the differential evolution 

algorithm and its main steps as shown in Algorithm 1.  
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Algorithm 1. Differential evolution algorithm 

1: Set the initial value of  F and CR 

2: Set the generation counter 𝐺 ≔ 0. 

3:Generate an initial population 𝑃𝐺  of size N 

randomly. 

4:Evaluate the fitness function of all individuals in 

𝑃𝐺. 

5:repeat 

6:    Set  𝐺 = 𝐺 + 1 

7:    For ( 𝑖 = 0; 𝑖 < 𝑁; 𝑖 + + ) do 

8:    Select random indexes 𝑟1, 𝑟2,𝑟3, where 𝑟1 ≠ 𝑟2 ≠
𝑟3 ≠ 𝑖 

9:         𝐯𝑖
(𝐺)

= 𝐱𝑟1

(𝐺)
+ 𝐹 × (𝐱𝑟2

(𝐺)
− 𝐱𝑟3

(𝐺)
)     

10:       𝑗 = 𝑟𝑎𝑛𝑑(1, 𝐷) 

11:       For (𝑘 = 0; 𝑘 < 𝐷; 𝑘 + +) do 

12:           If (𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅) or 𝑘 = 𝑗 then 

13:                𝑢𝑖𝑘
(𝐺)

= 𝑣𝑖𝑘
(𝐺)

         

14             else 

15:                 𝑢𝑖𝑘
(𝐺)

= 𝑥𝑖𝑘
(𝐺)

 

16:           end if 

17:        end for 

18:        if (𝑓(𝐮𝑖
(𝐺)

) ≤ 𝑓(𝐱𝑖
(𝐺)

)) then 

19:            𝐱𝑖
(𝐺+1)

= 𝐮𝑖
(𝐺)

 

20         else 

21:            𝐱𝑖
(𝐺+1)

= 𝐱𝑖
(𝐺)

 

22:       end if 

23:    end for 

24:  until termination criteria satisfied.   

25: Produce the best obtained solution  

 

The main steps of the differential evolution algorithm 

in Algorithm 1 can be summarized as follow. 

 

Step 1. The algorithm starts by setting the initial values 

of its main parameters such as mutation factor F, 

crossover rate CR and the initial iteration counter G. (line 

1-2). 

Step 2. The initial population 𝑃𝐺  is generated 

randomly. (line 3). 

Step 3. Each individual (solution) in 𝑃𝐺  is evaluated 

by calculating its fitness function (line 4). 

Step 4. The following process are repeated until 

termination criteria satisfied.  

Step 4.1. The iteration counter is increased (line 6) 

Step 4.2. For each individual in the population, a 

mutation operator is applied as shown in Equation 4. (line 

7-9). 

Step 4.3. The crossover operator starts to update the 

variables in the trail individuals according to target vector 

𝐱i and mutant vector 𝐯i as shown in Equation 9. (line 11-

17). 

Step 4.4. The greedy selection is applied by selecting 

between the trails and targets vectors to produce the best 

 

 

 

 

 

vector with the better fitness value as shown in Equation 

10. (line 18-23). 

Step 5. Finally, the algorithm produces the overall best 

obtained solution. (line 25). 

 

IV.  DIFFERENTIAL EVOLUTION WITH SPACE 

PARTITIONING (DESP) 

In this section, we propose a modified version of DE in 

order to solve large scale global optimization problem. 

The proposed algorithm is called deferential evolution 

with space partitioning algorithm (DESP). The main idea 

of DESP algorithm is based on space partitioning by 

dividing the search variables into groups of partitions. 

Each partition contains a certain number of variables and 

this partition is manipulated as a subspace in the search 

process. The main components of the proposed algorithm 

are presented in the following subsection as follow. 

A.  Space Partitioning 

DESP starts with an initial population 𝑃0of size N. In 

𝑃0 a row is representing an individual and each column 

represents a variable in all individuals. The variables in 

the space are partitioned into ν × N partitions, where ν 

represents the number of variables in each partition and N 

is the population size. An example of the space 

partitioning process at ν = 5 (each partition contains 5 

variables) is presented in Figure 1. 

 

 

Fig.1. Space partitioning mechanism 

B.  The Proposed DESP Algorithm 

The main steps of the proposed DESP algorithm are 

show in Algorithm 2. 
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Algorithm 2. DESP algorithm   

1: Set the initial value of  F and CR, 𝜈 

2: Set the generation counter 𝐺 ≔ 0. 

3:Generate an initial population 𝑃𝐺  of size N 

randomly. 

4:Evaluate the fitness function of all individuals in 

𝑃0. 

5:repeat 

6:    Set  𝐺 = 𝐺 + 1. 

7:    repeat 

8:        Partition  the variables in 𝑃𝐺 into partitions. 

9:        Apply DE mutation as shown in Equation 4.      

10:      Apply DE crossover as shown in Equation 9.   

11:  until (all partitions are visited ) 

12: Apply greedy selection in all population 𝑃𝐺  as 

shown in Equation 10. 

13:until termination criteria satisfied.   

14: Produce the best obtained solution.  

 

The overall process of the proposed algorithm are 

presented as follow. 

 

Step 1. The algorithm starts by setting the initial values 

of its main parameters such as mutation factor F and 

crossover rate CR, variable number in each partition 𝜈 

and the initial iteration counter G. (line 1-2). 

Step 2. The initial population 𝑃𝐺  is generated 

randomly. (line 3). 

Step 3. Each individual (solution) in 𝑃𝐺  is evaluated 

by calculating its fitness function (line 4). 

Step 4. The following process are repeated until 

termination criteria satisfied  

Step 4.1.The following process are repeated until all 

partitions are visited. 

Step 4.1.1. The space is partitioning by dividing the 

search variables into groups of partitions. (line 8). 

Step 4.1.2. The DE mutation is applied on each 

partition as shown in Equation 4. (line 9) 

Step 4.1.3. The DE crossover is applied on each 

partition as shown in Equation 9. (line 10) 

Step 4.2. The greedy selection is applied on the overall 

population 𝑃𝐺 as shown in Equation 10. (line 12) 

Step 5. Finally, the algorithm produces the overall best 

obtained solution. (line 14). 

 

V.  NUMERICAL EXPERIMENTS 

The general performance of the proposed DESP 

algorithm is tested on 15 benchmark functions 𝑓1 − 𝑓15, 

with different properties (uni-model, multi-model) which 

are reported in Table 1. DESP was programmed in 

MATLAB. The results of DESP for each function are 

averaged over 50 runs. This section presents the 

numerical results and comparisons of DESP against three 

DE based algorithms. Before discussing the results, the 

parameter tuning and performance analysis of DESP are 

reported as follows. 

 

 

A.  Parameter Settings 

The parameters of the proposed DESP algorithm are 

summarized with their assigned values in Table 2. These 

values are based on the common setting in the literature 

or determined through our preliminary numerical 

experiments.  

Table 1. Classical benchmark function 

𝑓 Fun_name Bound 
Optimum 

Value 

𝑓1 Sphere [−100,100]𝐷 0 

𝑓2 Rosenbrock [−100,100]𝐷 0 

𝑓3 Ackley [−32,32]𝐷 0 

𝑓4 Griewank [−600,600]𝐷 0 

𝑓5 Rastrigin [−5.2,5.2]𝐷 0 

𝑓6 Schwefel's 2.26 [−500,500]𝐷 -418.98 n 

𝑓7 Salomon [−100,100]𝐷 0 

𝑓8 Whitely [−100,100]𝐷 0 

𝑓9 Penalized 1 [−50,50]𝐷 0 

𝑓10 Penalized 2 [−50,50]𝐷 0 

𝑓11 Schwefel’s 2.22 [−100,100]𝐷 0 

𝑓12 Schwefel's 2.21 [−100,100]𝐷 0 

𝑓13 SumSqure [−5,10]𝐷 0 

𝑓14 Step [−100,100]𝐷 0 

𝑓15 Zakhrof [−5,10]𝐷 0 

Table 2. Parameter settings 

Parameters Definitions Values 

N Population size 25 

𝜈 
Number of variables 

in each partition 
5 

F Mutation factor 0.5 

CR Crossover rate 0.9 

 

The parameters in Table 2 can be summarized as 

follow. 

 

 Population size parameters (N) 

The initial population of candidate solutions is 

generated randomly across the search space. The 

experimental studies show that, the best number of 

population size is N = 25. Increasing this number will 

increase the function evaluation value without much 

improving in the function values. 

 Number of variables in each partition ( 𝜈) 

The variables in the search space are divided into small 

groups (partitions), each partition has a small number of 

variables. The experimental studies show that the best 

function values can be obtained when the number of 

variables in each partition is set to 𝜈 =5. 

 Mutation factor (F) 

The mutation factor F is a real number in order to 

control the amplification of the difference vectors 

𝐱𝑟2
(𝐺)

+   𝐱𝑟3
(𝐺)

 in the mutation operator and evolving rate of 

the population. The range of F is set to 𝐹 ∈ [0,2], 

according to Storn and Price [17]. The experimental 
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studied show that the best F value is set to F = 0.5. 

 Crossover rate (CR) 

The crossover probability constant is used in the 

crossover process in order to control the diversity of the 

population. If the value of CR is high, this will 

increasethe diversity of the population and will accelerate 

the convergence. On the other hand, if the value of CR is 

small, this will increase the possibility of stagnation and 

slow down the search process.  

B.  Performance Analysis 

In this subsection, we highlight the general 

performance of the proposed DESP algorithm and proof 

the efficiency of it when it applies to solve large-scale 

optimization problems.  

1)  The Efficiency of the Space Partitioning 

In order to test the efficiency of the space partitioning 

mechanism, two versions of DESP algorithm (with and 

without space partitioning) are compared as shown in 

Figure 2. The dotted line represents the results of DESP 

without space partitioning while the solid line represents 

the ones of DESP with space partitioning.  Figure 2 gives 

the general performance of DESP for four of the 

functions f2, f13, f14 and f15 (randomly picked) with 30, 100, 

500 dimensions after 2D iterations. It can be observed 

that DESP with space partitioning is rapidly converging 

as the number of generations increases compared to 

DESP without space partitioning. 
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Fig.2. The efficiency of the space partitioning mechanism 

2)  The General Performance of DESP on Large-Scale 

Optimization Problems 

The efficiency of the space partitioning DESP is tested 

on 15 benchmark functions. The benchmark functions are 

scalable on number of dimensions as shown in Table 1. 

50 runs were performed for each function. In order to 

observe the ability to scale up well with the size of the 

problem, the best, worst, mean, and standard deviations 

(Std) for D = 10, 30, 100, 200, 500 dimensions are 

reported in Tables 2. The main termination criterion is the 

number of iterations is set to 2500 × 𝐷.  

Table 3. Experimental results of DESP for  f1- f15 at D=10, 30, 100, 200, 

500 

D=10 

 Best Worst Mean Std 

𝑓1 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

𝑓2 4.488E-11 1.75E-09 4.63E-10 8.73E-10 

𝑓3 0.0E+00 2.22E-15 5.18E-16 9.55E-16 

𝑓4 0.0E+00 7.02E-12 1.88E-12 2.56E-12 

𝑓5 0.0E+00 1.13E-13 1.61E-14 3.26E-14 

𝑓6 6.22E-29 1.34E-21 9.08E-21 4.94E-20 

𝑓7 0.407931 0.407931 4.08E-01 2.82E-16 

𝑓8 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

𝑓9 9.25E-32 1.25E-32 5.24E-32 2.24E-32 

𝑓10 8.45E-32 5.14E-32 7.58E-32 3.45E-32 

𝑓11 1.84E-53 1.76E-25 1.37E-26 4.54E-26 

𝑓12 5.77E-13 0.000471 1.57E-05 8.61E-05 

𝑓13 8.32E-65 6.46E-60 2.51E-61 1.17E-60 

𝑓14 0.00E+0 0.00E+00 0.00E+00 0.00E+00 

𝑓15 3.6E-177 9.07E-57 3.02E-58 1.65E-57 

D=30 

𝑓1 0.0E+00 0.0E+00 0.0E+00 0.0E+00 

𝑓2 4.77E-11 6.96E-11 1.13E-10 1.54E-10 

𝑓3 0.0E+00 0.00E+00 5.18E-16 1.39E-15 

𝑓4 0.0E+00 9.42E-13 1.01E-11 7.43E-12 

𝑓5 0.0E+00 0.00E+00 1.19E-13 1.96E-13 

𝑓6 6.92E-58 3.89E-56 1.03E-09 4.24E-09 

𝑓7 1.225941 1.225941 1.23E+00 2.25E-16 

𝑓8 7.15E-03 5.48E-02 4.89E-02 6.45E-02 

𝑓9 8.59E-32 5.28E-32 7.56E-32 9.48E-32 

𝑓10 9.48E-32 3.48E-32 7.58E-32 7.14E-32 

𝑓11 9.11E-26 8.55E-14 2.85E-15 1.56E-14 

𝑓12 1.92E-10 0.000571 4.84E-05 2.49E-06 

𝑓13 3.00E-63 3.73E-46 1.25E-47 6.81E-47 

𝑓14 0.00E+0 0.00E+00 0.00E+00 0.00E+00 

𝑓15 2.28E-82 3.40E-11 1.13E-12 6.20E-12 

D=100 

𝑓1 5.32E-23 8.69E-17 2.90E-18 1.58E-17 

𝑓2 8.84E-11 3.21E-05 5.45E-06 1.91E-05 

𝑓3 0.0E+00 2.65E-08 3.84E-09 6.74E-09 

𝑓4 3.44E-11 9.56E-11 5.90E-11 2.20E-11 

𝑓5 0.0E+00 2.16E-12 8.22E-13 6.34E-13 

𝑓6 9.28E-13 6.73E-06 5.34E-07 1.59E-06 

𝑓7 3.111166 3.111166 3.11E+00 1.35E-15 

𝑓8 5.48E-01 3.45E+01 4.75E+01 2.79E-02 

𝑓9 8.46E-32 5.24E-32 6.89E-32 5.89E-32 

𝑓10 7.89E-32 3.82E-32 5.73E-32 4.76E-32 

𝑓11 4.4E-08 3.15E-05 1.13E-06 5.73E-06 

𝑓12 1.51E-05 0.000865 4.89E-04 7.58E-04 

𝑓13 3.11E-26 7.74E-10 1.54E-10 1.74E-10 

𝑓14 0.00E+0 0.00E+00 0.00E+00 0.00E+00 

𝑓15 3.08E-22 2.05E-13 1.63E-14 6.25E-14 
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The results in Tables 2 show that DESP returns a 

solution with good fitness value within the prescribed 

number of iterations. For example, DESP obtained 

mean value equal to zero in three cases for D =10, two 

cases for D = 30 and one case for D = 100, 200, 500 and 

lower than 10-6 in ten cases for dimension D = 10, 30, 

100 and in six cases for D =200, 500. However, the 

DESP algorithm seems to encounter some difficulties 

while optimizing f2  for D =500, f7 for D = 30, 100, 200, 

500 and f8 for D = 100, 200 and 500.  

Also, Figure 3 show the general performance of the 

proposed DESP algorithm by plotting the function 

values versus the number of iterations after 2D 

iterations at D= 30, 100, 500 for functions f1, f3, f4, f12 .  

We can conclude from Figure 3 that the proposed 

DESP algorithm can obtain optimal or near optimal 

solution in a few numbers of iterations. 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

D=200 

𝑓1 2.42E-16 5.16E-15 5.69E-15 1.18E-15 

𝑓2 1.72E-09 2.77E-02 1.05E-02 0.02557 

𝑓3 4.44E-15 8.37E-07 4.24E-08 1.50E-07 

𝑓4 8.27E-12 2.86E-10 8.55E-11 7.38E-11 

𝑓5 2.13E-04 9.59E-04 0.00064 0.00023 

𝑓6 9.28E-13 3.29E-04 4.78E-05 8.27E-05 

𝑓7 5.07041 5.07041 5.07E+00 9.03E-16 

𝑓8 1.78E+01 7.89E+01 4.15E+01 4.78E+01 

𝑓9 9.78E-32 2.78E-32 4.83E-32 6.59E-32 

𝑓10 4.45E-32 1.67E-32 3.76E-32 5.68E-32 

𝑓11 5.53E-05 0.00022 1.17E-04 6.07E-05 

𝑓12 9.08E-05 0.02431 1.19E-02 5.43E-02 

𝑓13 1.40E-16 9.78E-10 4.39E-10 4.69E-10 

𝑓14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝑓15 3.04E-13 0.004084 1.40E-04 0.000745 

D=500 

𝑓1 4.75E-12 2.73E-11 8.72E-11 5.73E-13 

𝑓2 786.1707 1551.946 1.06E+03 227.0103 

𝑓3 2.22E-10 6.60E-10 3.09E-10 9.08E-11 

𝑓4 3.45E-10 0.0442 3.76E-03 0.011493 

𝑓5 5.64E-11 0.995 4.97E-01 0.50600 

𝑓6 0.0027 0.186010 1.62E-02 0.037936 

𝑓7 9.0373 9.0373 9.04E+00 1.78E-06 

𝑓8 5.76E+02 9.73E+02 4.75E+02 5.48E+02 

𝑓9 4.58E-28 5.78E-27 4.73E-28 2.84E-28 

𝑓10 5.76E-29 6.48E-28 1.43E-29 5.48E-29 

𝑓11 1.74E-10 2.91E-08 2.20E-09 6.37E-09 

𝑓12 1.28E-06 0.00036 1.43E-05 6.56E-05 

𝑓13 2.88E-18 5.02E-16 2.06E-17 9.08E-17 

𝑓14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

𝑓15 1.70E-06 0.00013 2.99E-05 2.43E-05 
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Fig.3. The general performance of DESP algorithm 

C.  DESP Compared Against other Algorithms 

The proposed DESP algorithm is tested on ten 

benchmark functions and compared against three DE 

algorithms with different mechanisms. The three 

compared DE algorithms can be described as follow.  

 

 DE (differential evolution). Is the standard 

differential evolution algorithm [33].  

 DEahcSPX (Accelerating differential evolution 

using an adaptive local search) [29].   

 ADE (An alternative differential evolution 

algorithm) [25]. 

 

In the following subsection, we highlight the general 

performance of the proposed algorithm and the other DE 

algorithms for functions f1- f10 at dimensions 10, 50, 100, 

200. 

1)  DESP Compared to other Algorithms on the Classical 

Functions 

The general performance of the proposed DESP 

algorithm is investigated by comparing its results against 

the results of the other three DE algorithms at dimensions 

D = 10, 50, 100, 200 for functions f1-f10 , which are 

reported in Table 1. In order to make a fair comparison, 

we have applied the same termination criteria, which the 

other competitor algorithms are applied. The main 

termination criterion for all competitor algorithms is 

chosen as the maximum number of iterations is set 

to  10000 × 𝐷 . The population size for the other 

competitor algorithms was chosen as N = 30 for D = 10 

dimensions and for all other dimensions, it was selected 

as N = D. However, the population size of the proposed 

DESP algorithm is set to 25. The results of the four 

competitor algorithms are reported in Tables 4, 5, 6, 7 at 

dimensions D = 10, 50, 100, 200, respectively. The 

averaged results (Mean) and the standard deviation (Std) 

of the function values are reported over 50 independent 

runs in Tables 4, 5, 6 and 7. The best results are reported 

in boldface text. The results in Tables 4, 5, 6 and 7 show 

that the proposed algorithm can obtain the optimal or near 

optimal solutions in  most cases. For example the 

proposed DESP algorithm results are better than the other 

competitor algorithms for functions f1, f3, f4, f5, f6, f8,f9,f10 

at dimension D =10 and  for all functions at dimension D 

=50, 100, 200 except functions f2, f9 at dimension D =100 

the ADE obtains better values than the proposed 

algorithm. It is worth to mention that the proposed 

algorithm is cheaper than the other competitor algorithms 

due to its number of population size in all cases. 

We can conclude form the results in Tables 4, 5, 6 and 

7 that the proposed DESP algorithm is a promising 

algorithm and capable to solve large-scale optimization 

problems.  

Table 4. Comparison of DE, DEahcSPX, ADE and DESP for  f1- f10 at 

D=10 in term of function value 

Fun  DE DEahcSPX ADE DESP 

𝑓1 
 

Mean 3.26E-28 1.81E-38 0.00E+00 0.00E+00  

Std 5.83E-28 4.94E-38 0.00E+00 0.00E+00  

𝑓2 
Mean 4.78E-01 3.19E-01 1.59E-29 4.48E-11 

Std 1.32E+00 1.10E+0 2.61E-29 1.75E-09 

𝑓3 
Mean 8.35E-15 2.66E-15 5.32E-16 0.00E+00 

Std 8.52E-15 0.00E+00 1.77E-15 0.00E+00 

𝑓4 
Mean 5.75E-02 4.77E-02 4.43E-4 0.00E+00 

Std 3.35E-02 2.55E-02 1.77E-03 0.00E+00 

𝑓5 
Mean 1.85E+00 1.60E+00 0.00E+00 0.00E+00 

Std 1.68E+00 1.61E+00 0.00E+00 0.00E+00 

𝑓6 
Mean 14.2127 4.7376 0.00E+00 0.00E+00 

Std 39.2815 23.6876 0.00E+00 0.00E+00 

𝑓7 
Mean 0.1078 0.0998 0.0998 9.03E-03 

Std 0.0276 3.47E-08 7.60E-12 5.12E-10 

𝑓8 
Mean 18.1122 18.0069 0.00E+00 0.00E+00 

Std 15.8578 13.1127 0.00E+00 0.00E+00 

𝑓9 
Mean 3.85E-29 4.71E-32 4.71E-32 9.23E-32 

Std 7.28E-29 1.12E-47 1.11E-47 2.25E-47 

𝑓10 
Mean 1.49E-28 1.35E-32 1.34E-32 3.25E-32 

Std 2.20E-28 5.59E-48 1.10E-47 4.15E-47 



 Differential Evolution Algorithm with Space Partitioning for Large-Scale Optimization Problems 57 

Copyright © 2015 MECS                                                           I.J. Intelligent Systems and Applications, 2015, 11, 49-59 

Table 5. Comparison of DE, DEahcSPX, ADE and DESP for  f1- f10 at 

D=50 in term of function value 

Fun  DE DEahcSPX ADE DESP 

𝑓1 
 

Mean 5.91E-02 8.80E-09 6.40E-94 0.00E+00 

Std 9.75E-02 2.80E-08 2.94E-93 0.00E+00 

𝑓2 
Mean 1.13E+10 1.63E+02 9.27E-06 6.34E-11 

Std 2.34E+10 3.02E+02 2.00E-05 2.32E-09 

𝑓3 
Mean 2.39E-02 1.69E-05 5.15E-15 0.00E+00 

Std 8.90E-03 8.86E-06 1.64E-15 0.00E+00 

𝑓4 
Mean 7.55E-02 2.96E-03 0.00E+00 0.00E+00 

Std 1.14E-01 5.64E-03 0.00E+00 0.00E+00 

𝑓5 
Mean 6.68E+01 3.47E+01 0.00E+00 0.00E+00 

Std 2.36E+01 9.23E+00 0.00E+00 0.00E+00 

𝑓6 
Mean 1.07E+03 9.56E+02 0.00E+00  0.00E+00  

Std 5.15E+02 2.88E+02 0.00E+00  0.00E+00  

𝑓7 
Mean 1.15E+00 4.00E-01 2.27E-01 1.25E-02 

Std 1.49E-01 1.00E-01 4.53E-02 5.24E-01 

𝑓8 
Mean 1.43E+05 1.41E+03 3.01E+02 9.25E+01 

Std 4.10E+05 2.90E+02 2.12E+02 3.25E+01 

𝑓9 
Mean 3.07E-02 2.49E-03 1.42 E-32 4.25E-32 

Std 7.93E-02 1.24E-02 1.35E-32 3.78E-32 

𝑓10 
Mean 2.24E-01 2.64E-03 4.85E-32 9.25E-32 

Std 3.35E-01 4.79E-03 5.57E-32 6.14E-32 

Table 6. Comparison of DE, DEahcSPX, ADE and DESP for  f1- f10 at 

D=100  in term of function value 

Fun  DE DEahcSPX ADE DESP 

𝑓1 
 

Mean 4.28E+03 5.01E+01 6.37E-45 5.32E-35 

Std 1.27E+03 8.94E+01 1.12E-44 8.69E-27 

𝑓2 
Mean 3.33E+08 1.45E+05 8.90E+01 8.84E-11 

Std 1.67E+08 1.11E+05 3.46E+01 3.21E-05 

𝑓3 
Mean 8.81E+00 1.91E+00 6.21E-015 0.00E+00 

Std 8.07E-01 3.44E-01 0.00E+00 0.00E+00 

𝑓4 
Mean 3.94E+01 1.23E+00 0.00E+00 0.00E+00 

Std 8.01E+00 2.14E-01 0.00E+00 0.00E+00 

𝑓5 
Mean 8.30E+02 4.75E+02 0.00E+00 0.00E+00 

Std 6.51E+01 6.55E+01 0.00E+00 0.00E+00 

𝑓6 
Mean 2.54E+04 2.48E+04 0.00E+00 0.00E+00 

Std 2.15E+03 2.14E+03 0.00E+00 0.00E+00 

𝑓7 
Mean 1.02E+01 3.11E+00 3.03E-01 7.34E-02 

Std 7.91E-01 5.79E-01 1.97E-02 4.13E-01 

𝑓8 
Mean 5.44E+15 4.06E+10 7.70E+02 4.75E+01 

Std 5.07E+15 6.57E+10 8.69E+02 6.14E+01 

𝑓9 
Mean 6.20E+05 4.34E+00 9.18E-33 7.25E-33 

Std 7.38E+05 1.75E+00 8.09E-33 5.47E-33 

𝑓10 
Mean 4.34E+06 7.25E+01 6.40E-32 8.14E-32 

Std 2.30E+06 2.44E+01 5.87E-32 6.58E-32 

 

 

 

 

 

Table 7. Comparison of DE, DEahcSPX, ADE and DESP for  f1- f10 at 

D=200 in term of function value 

Fun  DE DEahcSPX ADE DESP 

𝑓1 
 

Mean 1.26E+05 7.01E+03 4.28E-22 1.45E-35 

Std 1.06E+04 1.07E+03 4.50E-22 2.45E-35 

𝑓2 
Mean 2.97E+10 1.11E+08 2.33E+02 1.72E-09 

Std 3.81E+09 2.63E+07 2.52E+01 2.77E-02 

𝑓3 
Mean 1.81E+01 8.45E+00 7.12E-13 4.44E-15 

Std 2.26E-01 4.13E-01 3.44E-13 8.37E-14 

𝑓4 
Mean 1.15E+03 6.08E+01 2.37E-16 8.27E-16 

Std 9.22E+01 9.30E+00 2.03E-16 2.86E-16 

𝑓5 
Mean 2.37E+03 1.53E+03 1.03E+01 9.59E-04 

Std 7.24E+01 8.31E+01 3.59E+00 2.13E-04 

𝑓6 
Mean 6.66E+04 6.61E+04 0.00E+00 0.00E+00 

Std 1.32E+03 1.44E+03 0.00E+00 0.00E+00 

𝑓7 
Mean 3.69E+01 1.10E+01 4.33E-01 3.58E-02 

Std 1.80E+00 4.38E-01 4.78E-02 4.59E-02 

𝑓8 
Mean 3.13E+18 4.21E+13 1.26E+03 1.58E+01 

Std 9.48E+17 1.74E+13 8.07E+02 2.58E+01 

𝑓9 
Mean 3.49E+08 2.27E+01 1.31E-20 5.48E-32 

Std 7.60E+07 5.73E+00 2.83E-20 4.89E-32 

𝑓10 
Mean 8.08E+08 6.24E+04 1.31E-20 9.84E-31 

Std 1.86E+08 4.77E+04 1.36E-20 5.48E-32 

 

VI.  CONCLUSION 

A new DE algorithm has been proposed in this paper in 

order to solve large-scale global optimization problems. 

The proposed algorithm is called deferential evolution 

with space partitioning (DESP). The use of space variable 

partitioning effectively assists the proposed algorithm to 

explore the search space and accelerate the search. The 

partitioning mechanism works as dimensional reduction 

mechanism. The proposed algorithm has been applied on 

different classical benchmark functions and compared 

against three variant DE algorithms. The numerical 

resuluts show that the proposed algorithm is a promising 

algorithm and it is cheaper than the other DE algorithms 

and can obtain the optimal or near optimal solution for 

large-scale optimization problems in reasonable time.  
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