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Abstract—Weighted frequent itemset mining is more 

practical than traditional frequent itemset mining, because 

it can consider different semantic significance (weight) of 

items. Many models and algorithms for mining weighted 

frequent itemsets have been proposed. These models 

assume that each item has a fixed weight. But in real 

world scenarios, the weight (price or significance) of the 

items may vary with time. Therefore, reflecting these 

changes in item weight is necessary in several mining 

applications, such as retail market data analysis and web 

click stream analysis. Recently, Chowdhury F. A. et al. 

have introduced a novel concept of adaptive weight for 

each item and propose an algorithm AWFPM (Adaptive 

Weighted Frequent Pattern Mining). AWFPM can handle 

the situation where the weight (price or significance) of 

an item may vary with time. In this paper, we present an 

improved algorithm named AWFIMiner. Experimental 

computations show that our AWFIMiner is more efficient 

and scalable for mining weighted frequent itemsets using 

adaptive weights. Moreover, because it only requires one 

single database scan, the AWFIMiner is applicable for 

mining these itemsets on data streams. 

 

Index Terms—Data mining, Knowledge discovery, 

Weighted frequent itemset mining, Adaptive weight, 

Pattern growth techninque. 

 

I.  INTRODUCTION 

Data mining discovers hidden and potentially useful 

information from databases. Frequent itemset (or frequent 

pattern) mining is an important technique of data mining. 

Finding frequent itemsets is a powerfull tool in mining 

association rules, closed itemsets, functional dependen- 

cies, … [1,4,5,6,7]. 

In recent years, weighted frequent itemset mining has 

been studied by many people [2,3,9-15]. Weighted fre- 

quent itemset mining is different from traditional frequent 

itemset mining in which we are not only interested in the 

number of times items appearing in the database but also 

interested in the degree of different significance (weight) 

of items. In many pratical applications, items in a tran-

saction can have different degree of importance. For 

example, in retail market analysis, even though expensive 

products do not appear in a large number of transactions, 

they contribute a larger portion of overall revenue. 

Therefore, weighted frequent itemset mining plays more 

pratical role in the real world scenarios than traditional 

frequent itemset mining [1, 5,6,7]. 

Even though, weighted frequent itemset mining consi-

der different weights of each item during the mining 

process, it is not enough to reflect the real world 

enviroment where the weight of an item can vary with 

time. In our real world scenarios, the significance (weight) 

of an item might be widely affected by many factors. 

Customer’s buying behaviors (or interests) are changing 

with time, so they affect the significances (weights) of 

products in retail markets. The weights of seasonal 

products may also vary when the season changes from 

summer to winter or winter to summer. Web click stream 

analysis can be another example of this matter. The 

significance of each website may change with time 

depending on the popularity, political issues, public 

events and so on. 

Recently, in [3], Chowdhury F. A. et al. have introdu-

ced a new approach for weighted frequent itemset mining 

with an assumption that weights of items can vary with 

time and proposed the algorithm AWFPM (Adaptive 

Weighted Frequent Pattern Mining). 

In this paper, we present an improved algorithm named 

AWFIMiner. Experimental computations show that our 

AWFIMiner is more efficient and scalable than AWFPM 

algorithm. 

The remainder of this paper is organized as follows. In 

Section II, we describe some recent related works. In 

Section III, we state the problem of adaptive weighted 

frequent pattern mining and explain our proposed 

algorithm AWFIMiner. In Section IV, our experimental 

results are presented and analyzed. Finally, in Section V, 

conclusions are drawn.  

 

II.  RELATED WORKS 

Weighted frequent itemset mining was first proposed 

and studied by Cai C. H. et al. in [2]. In this work, the 

authors have introduced a concept of weighted support 

and proposed the MINWAL algorithm. A weighted 

support of an itemset is defined as the resultant value of 

multiplying its support with the average weight of the 

member items. The main challenging problem of 

weighted frequent itemset mining relates to the down-

ward closure property (also known as Apriori property). 

This property tells that if an itemset is infrequent then all 

of its supersets must be infrequent. This property is
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broken if different weights are applied to the items. To 

maintain the downward closure property, MINWAL defi-

ned an upper bound, called k-support. Support of itemsets 

generated in level k must be greater or equal to the k-

support bound. MINWAL is based on the Apriori 

algorithm in traditonal frequent itemset mining, but most 

of the candidates are infrequent. Moreover, according to 

[13, 14], it takes too long to use the k-support bound for 

satisfying the downward closure property. After 

MINWAL, some other models and algorithms have been 

proposed. Most of them are based on the Apriori [1] 

algorithm. 

In [10], Tao F. has proposed the WARM algorithm. 

The problem of the breaking the downward closure 

property is solved by using a weighted support and 

developing a weighted downward closure property. 

However, the meaning of weighted support is different 

from that defined in MINWAL. Weighted support of 

itemset "ab" in WARM is the fraction of the weight of 

transactions containing both "a" and "b" to the weight of 

all transactions in the database. WARM is also algorithm 

based on the Apriori.  

In [11], Wang W. et al. proposed an algorithm named 

WAR for mining weighted association rules. For mining 

these rules, WAR first generated frequent itemsets 

without considering weights and then does post-

processing during the rule gemeration step. Thus WAR 

algorithm dose not concerned with mining weighted 

frequent itemsets and is post-processing approach. 

Moreover, WAR is also based on the Apriori algorithm. 

The algorithms which are developed based on the 

Apriori algorithm use candidate generation-and-test 

paradigm. Obviously, these algorithms require multiple 

database scans and result in poor mining performance. 

The first FP-tree based weighted frequent itemset mining 

algorithm is WFIM which has been proposed by Yun U. 

and Leggett J. J. [12]. WFIM uses two database scans 

over a static database. It has used a minimum weight and 

a weight range. Items are given fixed weights randomly 

from the weight range. It has arranged the FP-tree in 

weight ascending order. 

In [13], Yun U. presented a WIP (Weighted Interesting 

Pattern mining with a strong weight and/or support 

affinity) algorithm that integrates the strengths of the 

previous techniques and generates weighted interesting 

patterns according to user feedback. In WIP, a new 

measure, weight confidence, is defined to generate 

weighted hyperclique patterns with similar levels of 

weights. A weight range is used to decide weight 

boundaries and the h-confidence measure serves to 

identify strong support affinity patterns. WIP not only 

gives a balance between the two measures of weight and 

support, but also considers weight affinity and/or support 

affinity between items within patterns so more valuable 

patterns can be generated.  

In [14], Yun U. re-examined two basic but interesting 

constraints, a weight constraint and a length decreasing 

support constraint and propose WLPMiner (weighted  

 

frequent pattern mining with length decreasing 

constraints). WLPMiner integrates these two measures to 

generate fewer and more meaningful patterns. For 

pruning techniques, the author has used the notion of 

WSVE (Weighted Smallest Valid Extension) to apply to 

both the length decreasing support constraints and weight 

constraints, and a weight range as a supplement to 

maintain the downward closure property. The key 

insights achieved in this approach are the high 

performance of the WSVE property and the use of a 

weight range in the weight constraint. It is shown that 

combining a weight constraint with a length decreasing 

support constraint improves performance in terms of the 

number of patterns and runtime. WLPMiner is also an 

algorithm using FP-tree structure. 

In [15], Zhang S. et al. proposed a new strategy, called 

Weight, for maintaining the association rules in 

incremental databases by using the weighting technique 

to high-light new data. Any recently added transactions 

are assigned higher weights. Moreover, all transactions in 

a database are given the same weight. They did not use 

different weights for individual items or transactions. 

Their algorithm is based on the level-wise candidate 

generation-and-test methodology of the Apriori algorithm. 

Therefore, for a particular dataset, they gene-rate a large 

number of candidates and need to perform several 

database scans to get the final result.   

Recently, stream data mining has become an important 

research area in computer science [8,9]. In [9], Pauray S. 

M. Tsai proposed a new procedure for stream data mining 

which is called Weighted sliding window model. This 

model allows users to fix the number of mining windows 

and their sizes. However, like above models, all items in 

the windows are assigned the same weight. 

The weight varying with time problem has just 

considered recently in [3] by Chowdhury F. A. et al. In 

this work, the authors introduced a novel concept of 

adaptive weight for each item and proposed an algorithm 

AWFPM (Adaptive Weighted Frequent Pattern Mining). 

AWFPM can handle the situation where the weight of an 

item may be changed in any batch of transactions in the 

database. An pattern is called adaptive weighted frequent 

pattern if the adaptive weighted support of the pattern is 

greater or equal to the minimum threshold. AWFPM 

exploits a pattern growth mining technique to avoid the 

level-wise candidate generation-and-test problem. To 

maintain the downward closure property, AWFPM uses 

the global maximum weight and the local maximum 

weight. The global maximum weight is maximum weight 

of all the items in the global database and the local 

maximum weight is the the highest weight of all the items 

in a conditional database.  

In this paper, we reconsider the model for mining 

weighted frequent itemsets using adaptive weights 

proposed by Chowdhury F. A. et al. in [3]. Our goal is to 

give an improved algorithm that can be more efficient in 

both memory space and runtime. 
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III.  ADAPTIVE WEIGHTED FREQUENT ITEMSETS AND 

AWFIMINER ALGORITHM 

A.  Preliminaries 

Given a transaction database DT, let I be the set of all 

the items (attributes) in DT. Each transaction T in DT is a 

subset of I, which has a transaction identifier TID . A 

subset of I which consists of k distinct items, is called k-

itemsets or itemset of length k. 

Assume that DT is divided into k batches; each item in 

each batch is assigned a distinct weight, which is a 

nonnegative real number. 

 

Definition 1. [3] Adaptive weighted support of an itemset 

X, denoted as AWsupp(X), is defined by: 

 
K

j 1

AWsupport(X) W(X, j) F(X, j)


                  (1) 

 

where W(X, j) is the weight of X in the thj  batch which is 

calculated by the average weight of the items in the batch 

belonging to X, F(X, j) is the support (or frequency) of X 

in the thj  batch. 

 

Definition 2. [3] An itemset X is called adaptive 

weighted frequent itemset if the adaptive weighted 

support of X is greater or equal to the minimum threshold 

AWminsupp, that is:  

 

AWsupp(X) AWminsupp                  (2) 

 

Example: Given the database shown in Table 1 

consisting of 3 batches. 

Table 1. An example of adaptive weighted database. 

 
 

The adaptive weight support of the itemset "be" is  

 

0.7 0.5 0.2 0.5 0.4 0.6
AWsupp(be) 2 0 1 1.7

2 2 2

  
      

 
 
If the minimum threshold is 1.4 then "be" is an 

adaptive weighted frequent itemset. 

Given a transaction database DT, the weights of the 

items, our task is to find all adaptive weighted frequent 

itemsets in DT. 

An adaptive weighted frequent itemset defined as 

above does not satisfy the downward closure property. 

For example, consider the database shown in Table 1. 

Using (1) we have  

 

AWsupport(d) 0.2 0 0.3 1 0.4 2 1.1        
 

0.5 0.2 0.5 0.3 0.7 0.4
AWsupp(cd) 0 1 2 1.5

2 2 2

  
      

 
 

If the minimum threshold is 1.4 then "cd" is an 

adaptive weighted frequent itemset but "d" is not. 

In order to have the downward closure property, we 

introduce a notion of maximum adaptive weighted 

frequent itemset, defined as follows. 

 

Definition 3. Given a transaction database DT consisting 

of K batches and an itemset X. Let MAXW(j)  be the 

highest weight value of the items in the thj batch, 

j = 1,… , K. Then the measure 

 
K

j 1

MAXAWsupp(X)= MAXW(j) F(X, j)


            (3) 

 

is called the maximum adaptive weighted support of X in 

DT. 

 

Example: Consider the database presented Table 1, we 

have K = 3.  

 

MAXW(1) 0.7, MAXW(2) 0.6, MAXW(3) 0.7    
 

the occurrence frequent of "be" in the first, second and 

third batch are 2, 0 and 1 respectively. Thus  

 

MAXAWsupp(be) 0.7 2 0.6 0 0.7 1 2.1      
 

 

 

Definition 4. Given a transaction database DT consisting 

of K batches and an itemset X. For a given threshold 

AWminsupp, X is called a maximum adaptive weighted 

frequent itemset if  

 

MAXAWsupp(X) AWminsupp
 

 

Proposition 1. Maximum adaptive weighted frequent 

itemset has the downward closure property, that is if X is 

a maximum adaptive weighted frequent itemset then all 

of its subsets are also maximum adaptive weighted 

frequent itemsets.  

 

Proof. For every Y X , we have F(Y, j) F(X, j),

j=1,…,K. It follows that  
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K K

j 1 j 1

MAXW(j) F(Y, j) MAXW(j) F(X, j)
 

   
 

 

or 

 

MAXAWsupp(Y) MAXAWsupp(X)
 

 

Therefore, if 

 

MAXAWsupp(X) AWminsupp
 

 

then we also have 

 

MAXAWsupp(Y) AWminsupp  

 

Proposition 2. Given a transaction database DT and an 

itemset X. If X is an adaptive weighted frequent itemset 

then X is also a maximum adaptive weighted frequent 

itemset. 

 

Proof. For every itemset X, we always have 

 

MAXW(j) W(X, j), j 1,...,K  
 

 

Therefore, if  

 
K

j 1

W(X, j) F(X, j) AWminsupp


 
 

 

then we also have 

 
K

j 1

MAXW(j) F(X, j) AWminsupp


   

 

Proposition 1 and Proposition 2 show that maximum 

adaptive weighted frequent itemsets have the downward 

closure property and they are candidates for adaptive 

weighted frequent itemsets. Thus, in order to mine 

adaptive weighted frequent itemsets, we propose an 

algorithm AWFIMiner consisting of two steps, as 

following: 

 

1) Find all maximum adaptive weighted frequent 

itemsets. 

2) From the set of all maximum adaptive weighted 

frequent itemsets, by applying (1), determine the 

the set of all adaptive weighted frequent itemsets. 

 

To find the maximum adaptive weighted frequent 

itemsets efficiently, we apply pattern growth techninque 

as in the FP-growth algorithm for mining traditional 

frequent itemsets [5,7]. First we construct a tree structure, 

called AWFI-tree for the database and then we mine 

conditional trees to find maximum adaptive weighted 

frequent itemsets.  

B.  Construction of AWFI-tree 

Like FP-tree [5], the structure of AWFI-tree is 

combined of two parts: AWFI-tree and a header table. 

AWFI-tree consists of one root node referred to as "null" 

(signs as {}), a set of item-prefix sub-trees as children of 

the root. Header table is maintained to keep items in 

lexico-graphical order and the related information of 

items. In each entry of a header table, the first value is the 

item- identifier, after that the weight and frequency 

information of an item in batch by batch fashion, and a 

pointer pointing to the first node in the AWFI-tree 

carrying the item. Transactions in each batch of the 

database are inserted one by one into the tree in 

lexicographical order of items. Except the root, each node 

of the AWFI-tree contains item-identifier and its 

frequency information. To facilitate the tree traversals 

adjacent links are also maintained in AWFI-tree like FP-

tree. 

To avoid including a list of batch-based frequency 

information at every node in AWFI-tree (as AWFP-tree 

does), we introduce the concept of tail-node which can be 

defined as follows.  

 

Definition 5. Let  1 2 kT i ,i ,...,i be a transaction in a 

database with items sorted according to lexicographic 

order. If T is inserted into a SWFP-tree in this order, then 

the node of the tree that represents item ik is defined as a 

tail-node for T. For example, if the lexicographically 

sorted transaction {a,c,d} is inserted into an AWFI-tree, 

then the node that represents item “d” is a tail-node in the 

tree for this transaction.  

Hence, two types of nodes can be maintained in a 

AWFI-tree: tail-nodes and ordinary nodes. The latter are 

the types of nodes that are used in the FP-tree.  

 

Remark: Every leaf node of the AWFI-tree must be tail-

node.  

By using the notion of tail-node and ordinary node, we 

organize nodes in the AWFI-tree as follows: At each 

ordinary node, we only keep the total frequency of the 

node in the path from the root, but at each tail-node, we 

maintain a list of batch-by-batch frequency information. 

Whenever a new tail-node is created in the tree by 

inserting a transaction from the thj batch of the database 

consisting of K batches, a list consisting of K frequency 

values in K batches will be created with value 1 at the thj  

position, value 0 at all remaining positions. For example, 

if a tail-node "b" first appears in the second batch of the 

database consisting of 3 batches then the structure of the 

node will be b:0,1,0.  

Obviously, with the above organization of nodes, we 

can save memory space and still maintain all information 

needed for mining database. 

Fig. 1 represents the AWFI-tree constructed for the 

database shown in Table 1 (the traversals adjacent links 

are not shown in the figure for simplicity). In this tree, 

there are 7 tail-nodes and 5 ordinary nodes. As batch-by-

batch frequency information is kept separately in each 

tail-node we can easily discover that which transactions 

have been occurred in which batch. For example, we can 

easily detect that the the transaction {a,b,e} appears once 
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in the first batch and once in the third batch, the 

transaction {c,d,e} appears once in the second batch and 

once in the third batch, the occurence frequencies of the 

items in the database are a:4, b:4, c:8, d:3 and e:7 

respectively.  

 

 

Fig.1. The AWFI-tree after inserting 3 batches of the  

database of Table 1. 

We can consider the AWFI-tree constructed above as 

an extended FP-tree. It inherits the compress advantage of 

FP-tree. Moreover, it has its own properties to feed the 

need of mining adaptive weighted frequent itemsets. 

 

Property 1. The AWFI-tree can be constructed in a 

single-pass of database. 

 

Property 2. The total count of frequency values of any 

node in the AWFI-tree is greater than or equal to the sum 

of total counts of frequency values of its children. 

 

Property 3. The frequency value in each batch of an 

ordinary node in the AWFI-tree equal to the sum of 

corresponding frequency values of the tail nodes which 

are its children.  

For example, in the AWFI-tree shown in Table 1, the 

ordinary node "b" in the first branch on the left has one 

child tail-node e: 1,0,1, so the frequency distribution of 

node "b" in three batches is the same as the frequency 

distribution of node "e", that is, b:1,0,1. The ordinary 

node "a" in the first branch on the left has two child tail-

nodes e:1,0,1 and c:0,1,1, so the frequency distribution of 

"a" in three batches is a:1+0,0+1,1+1, that is a:1,1,2.  

 

Property 4. The frequency value in each batch of an item 

in the database equal the sum of corresponding frequency 

values of the nodes carring the same name. 

For example, in the AWFI-tree of Table 1, the node 

"b" appears once in the first branch with the frequency 

distribution 1,0,1 and once in the third branch with the 

frequency distributions 2,0,0, so the frequency 

distribution of "b" in batches is b: 3,0,1. 

 

Property 5. The frequency distribution in batches of a 

path in the AWFI-tree is the frequency distribution of the 

suffix node. 

For example, in the AWFI-tree presented in Table 1, 

the path a : 4;c : 0,1,1 has the suffix node "c", so its 

frequency distribution is 0,1,1 which is the frequency 

distribution of c. 

 

 

C.  AWFIMiner Algorithm  

By using the pattern growth mining approach, the 

AWFIMiner algorithm mines adaptive weighted frequent 

itemsets from the AWFI-tree as follows. 

 

Algorithm: AWFIMiner() 

 

Input: A transaction database contains K batches, the 

weights of the items in each batch, the minimum support 

count threshold AWminsupp; 

Output: The set of all adaptive weighted frequent 

itemsets; 

 

1. Create AWFI-tree; 

2. L ;  

3. Identify the set C1 of candidate 1-itemsets, that are 

itemsets whose MAXAWsupp calculated by the 

formula (3) is no less than AWminsupp; 

4. 
1L L C ;   

5. Prune the AWFI-tree: erase every node in the 

AWFI-tree that does not represent for the candidate 

items in 
1C , (these nodes can not associate with 

other nodes to generate maximum adaptive 

weighted frequent item-sets (according to 

Proposition 1)); 

6. For each item in the header table, in bottom-up 

order: 

6.1. Construct its conditional tree; 

6.2. Prune the conditional tree: erase every node 

which does not represent for the candidate items; 

6.3. Mine pruned conditional tree to get maximum 

adaptive weighted frequent itemsets by pattern 

growth. Add the maximum adaptive weighted 

frequent itemsets into L; 

6.4. From L, determine the adaptive weighted 

frequent itemsets, that are itemsets having 

AWsupp value no less than AWminsupp 

(calculated by (1)); 

 

Example: Consider the database shown in Table 1. We 

find the set of all adaptive weighted frequent itemsets by 

using the AWFIMiner algorithm with the threshold 

AWminsupp=1.4 as follows. 

 

1. Construct AWFI-tree, we get the tree shown in 

Fig. 1. 

2. From the header table, we have 

 

MAXW(1) 0.7, MAXW(2) 0.6, MAXW(3) 0.7  
 

 

MAXAWsupp(a) 0.7 1 0.6 1 0.7 2 2.7      
 

 

MAXAWsupp(b) 2.8, MAXAWsupp(c) 5.3 
 

 

MAXAWsupp(d) 2.0, MAXAWsupp(e) 4.7 
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We observe that all the items in the original database 

have the values MAXAWsupp no less than AWminsupp 

=1.4, so they are not pruned in the AWFI-tree and they 

are single candidates. We have,  L a,b,c,d,e .
 

 

3. Construct and mine conditional trees of items in 

bottom-up order in the header table: 

3.1. Construction and mining the conditional tree of 

"e". The conditional database of "e" contains 

prefix paths 

 

 ab :1,0,1;bc :1,0,0;cd : 0,1,1;c : 0,1,1
 

 

From this conditional database we have the AWFI-tree 

presented in Fig. 2(a). 

Because the conditional database of "e" contains all the 

items of the original database, 

MAXW(1) 0.7,MAXW(2) 0.6,MAXW(3) 0.7    From 

the header table, the frequency values of items co-

occurring with "e" in each batch are 

a :1,0,1;b : 2,0,1;c :1,2,2;d : 0,1,1 .  

Using formula (3), we get the maximum adaptive 

weighted support of items as 

a :1.4;b : 2.1;c : 3.3;d :1.3 . Since AWminsupp equal to 

1.4, node "d" is moved from the tree. After removing 

node "d", we obtain the conditional tree of "e" which is 

presented in Fig. 2(b). 

From this conditional tree, using (3), we get three 

candidate 2-itemsets "ce", "be" and "ae" with the 

maximum adaptive weights 3.3, 2.1 and 1.4 respectively. 

By adding these 2-itemsets into set L, we get 

 L a,b,c,d,e,ae,be,ce .  

We continue to mine by developing the itemsets "ae", 

"be" and "ce". The conditional tree of "ae" is empty 

which give no candidate itemset. Mining the conditional 

tree of "be" gives a candidate itemset "abe" with the 

maximum adaptive weight 1.4. Mining the conditional 

tree of "ce" gives no candidate itemset because there is 

only one co-appearing 3-itemset "bce" which has the 

maximum adaptive weight 0.7 less than AWminsupp 1.4. 

So, we have  

 

 L a,b,c,d,e,ae,be,ce,abe .
 

 

 
(a) The AWFI-tree construction from the conditional database of “e” 

 
(b) The conditional tree of “e” 

Fig.2. The AWFI-tree and conditional tree of "e" 

3.2. Construction and mining the conditional tree of 

"d". The conditional database of "d" contains 

prefix paths 
 ac : 0,0,1;c : 0,1,1 .

From this 

conditional database we have the AWFI-tree 

shown in Fig. 3(a). 

 

 
(a) The AWFI-tree construction from the conditional database of “d” 

 

 
(b) The conditional tree of “d” 

Fig.3. The AWFI-tree and conditional tree of "d" 

Since the conditional database of "d" contains only 

three items "a", "c" and "d", we have 

MAXW(1) 0.5,MAXW(2) 0.6,MAXW(3) 0.7       The 

frequency values of items occurring together with "d" in 

each batch are a : 0,0,1;c : 0,1,2 . Using (3), we get the 

maximum adaptive weighted supports of these items as 

a : 0.7;c : 2.0 . Since AWminsupp equal to 1.4, node "a" 

is removed from the tree. After removing node "a", we 

get the conditional tree of "d" as presented in Fig. 3(b). 

By mining this conditional tree, we get the candidate 

itemset "cd" with the maximum adaptive weight 2.0. So, 

we have  

 

 L a,b,c,d,e,ae,be,cd,ce,abe .
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3.3. Construction and mining the conditional tree of 

"c". The conditional database of "c" contains 

prefix paths  a : 0,1,1;b : 2,0,0 . From this 

conditional database, we have the AWFI-tree 

shown in Fig. 4(a). This database has three items 

"a", "b" and "c", so 

 

MAXW(1) 0.7,MAXW(2) 0.6,MAXW(3) 0.7  
 

 

 
(a) The AWFI-tree construction from the conditional database of “c” 

 

 
(b) The conditional tree of “c” 

Fig.4. The AWFI-tree and conditional tree of "c" 

The frequency values of items occurring together with 

"c" in each batch are a : 0,1,1;b : 2,0,0 . Using (3), we 

obtain the maximum adaptive weighted supports of items 

as a :1.3;b :1.4 .  Since AWminsupp is 1.4, node "a" is 

remove from the tree. After removing node "a", we get 

the conditional tree of "c" presented in Fig. 4(b). By 

mining this conditional tree, we get the candidate itemset 

"bc" with the maximum adaptive weight 1.4. By adding 

"bc" into L, we have  

 

 L a,b,c,d,e,ae,bc,be,cd,ce,abe .
 

 

3.4. Construction and mining the conditional tree of 

"b". The conditional database of "b" contains only 

one prefix path  a :1,0,1 , and its conditional tree 

is empty. We get no candidate. 

3.5. The conditional tree of the last item "a". It is also 

an empty tree. 

 

The set of all candidates that we finally obtain is:  

 

 L a,b,c,d,e,ae,bc,be,cd,ce,abe .
 

 

4. By checking the adaptive weighted supports of the 

itemsets in L using (1), we obtain seven adaptive 

weighted frequent itemsets with the corresponding 

adaptive weighted supports:  

 

a : 2.1,b : 2.5,c : 4.6,e :3.8,be :1.7,ce : 2.8,cd :1.5.  
 

IV.  EXPERIMENTAL RESULT 

In order to evaluate the performance of our proposed 

algorithm, as in [3], we have performed several 

experriments on both synthenic dataset T10I4D100K, 

which is taken from IBM's database 

(http://www.cs.loyola.edu/~assoc_gen.html), and real-life 

dataset Mushroom from frequent itemset mining dataset 

repository (http://fimi.ua.ac.be/data/). These datasets do 

not provide the weight values of each item. To get these 

values of each item, we also have generated random 

numbers in [0.1,0.9]. We compare our algorithm 

AWFIMiner, with the algorithm AWFPM proposed by 

Chowhury F. A. et al [3]. Our programs were written in 

Microsoft Visual C++ 6.0 and run with the Windows 7 

operating system on a Pentium dual core 2.70 GHz CPU 

with 2.00 GB main memory. 

The Mushroom dataset contains 8124 transactions and 

119 distinct items. Its mean transaction size is 23 items, 

and it is a dense dataset. We have divided this dataset into 

3 and 6 batches. When K = 3, the first and second batches 

contains 3000 transactions and the third batch contains 

2124 remaining transactions. For K= 6, the first batch 

contains 1124 transactions and all the other batches 

contain 1400 transactions. 

T10I4D100K contains 100000 transactions, 870 

distinct items. Its mean transaction size is 10.1, and it is a 

spare dataset. We have divided this dataset in two way, 3 

and 5 batches. For K=3, the first and second batches 

contains 35000 transactions and the last batch contains 

30000 remaining transactions. For K=5, each batch has 

the same number of transactions which is 20000.  

For each batch in both Mushroom and T10I4D100K 

dataset, we have generated new weight value of each item. 

For the existing AWFPM algorithm proposed by 

Chowdhury F. A. and his colleagues, we have only used 

K=3. 

 

 

Fig.5. Runtime performance for Mushroom 

Fig. 5 shows the runtime performance curves for 

Mushroom. The minimum support threshold range of 10% 

to 30% is used. Fig. 6 describe the runtime performance 

curves for T10I4D100K with the minimum support 

threshold range used of 1% to 5%. 
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Experimental results in Fig. 5 and Fig. 6 show that by 

using an more efficient tree structure, a single database 

scan and the pattern growth mining approach, the 

AWFIMiner algorithm performs better than the AWFPM 

algorithm proposed in [3]. In addition, by using two type 

of nodes in the tree, AWFIMiner allows us to save huge 

memory space while still keep all batch by batch 

transaction information of the database in the prefix tree 

in a compact format. It requires less memory compared to 

the existing AWFPM. For example, when the Mushroom 

dataset is divided into 3 batches, the AWFIMiner requires 

0.94 MB while AWFPM requires 1.26 MB memory. 

When the T10I4D100K dataset is divided into 3 batches, 

the memory requirements by AWFIMiner and AWFPM 

are 14.72 MB and 17.61 MB memory respectively. 

 

 

Fig.6. Runtime performance for T10I4D100K 

 

V.  CONCLUSIONS 

Mining weighted frequent itemset plays an important 

role in many real data mining scenarios. In this paper, we 

considered the problem of mining weighted frequent 

itemsets using adaptive weights and proposed an 

improved algorithm AWFIMiner. The main constribution 

of this paper is to provide a novel, more compact tree 

structure AWFI-tree for adaptive weighted frequent 

itemset mining, and a new measure to maintain the 

downward closure property. This measure allows us to 

prune the prefix tree and conditional trees more 

efficiently when using pattern growth mining approach. 

Experimental results show that AWFIMiner is an 

efficient algorithm for mining adaptive weighted frequent 

itemsets in both dense and sparse datasets. AWFIMiner 

outperforms the existing AWFPM algorithm in [3]. 

Moreover, it can handle the whole database information 

using a single scan of database and therefore applicable 

for stream data mining. 
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