
I.J. Intelligent Systems and Applications, 2015, 11, 41-48
Published Online October 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.11.06

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

An Efficient Algorithm for Mining Weighted

Frequent Itemsets Using Adaptive Weights

Hung Long Nguyen
Faculty of Economic Information System, Vietnam Commercial University (VCU)

E-mail: ntthlong@gmail.com

Abstract—Weighted frequent itemset mining is more

practical than traditional frequent itemset mining, because

it can consider different semantic significance (weight) of

items. Many models and algorithms for mining weighted

frequent itemsets have been proposed. These models

assume that each item has a fixed weight. But in real

world scenarios, the weight (price or significance) of the

items may vary with time. Therefore, reflecting these

changes in item weight is necessary in several mining

applications, such as retail market data analysis and web

click stream analysis. Recently, Chowdhury F. A. et al.

have introduced a novel concept of adaptive weight for

each item and propose an algorithm AWFPM (Adaptive

Weighted Frequent Pattern Mining). AWFPM can handle

the situation where the weight (price or significance) of

an item may vary with time. In this paper, we present an

improved algorithm named AWFIMiner. Experimental

computations show that our AWFIMiner is more efficient

and scalable for mining weighted frequent itemsets using

adaptive weights. Moreover, because it only requires one

single database scan, the AWFIMiner is applicable for

mining these itemsets on data streams.

Index Terms—Data mining, Knowledge discovery,

Weighted frequent itemset mining, Adaptive weight,

Pattern growth techninque.

I. INTRODUCTION

Data mining discovers hidden and potentially useful

information from databases. Frequent itemset (or frequent

pattern) mining is an important technique of data mining.

Finding frequent itemsets is a powerfull tool in mining

association rules, closed itemsets, functional dependen-

cies, … [1,4,5,6,7].

In recent years, weighted frequent itemset mining has

been studied by many people [2,3,9-15]. Weighted fre-

quent itemset mining is different from traditional frequent

itemset mining in which we are not only interested in the

number of times items appearing in the database but also

interested in the degree of different significance (weight)

of items. In many pratical applications, items in a tran-

saction can have different degree of importance. For

example, in retail market analysis, even though expensive

products do not appear in a large number of transactions,

they contribute a larger portion of overall revenue.

Therefore, weighted frequent itemset mining plays more

pratical role in the real world scenarios than traditional

frequent itemset mining [1, 5,6,7].

Even though, weighted frequent itemset mining consi-

der different weights of each item during the mining

process, it is not enough to reflect the real world

enviroment where the weight of an item can vary with

time. In our real world scenarios, the significance (weight)

of an item might be widely affected by many factors.

Customer’s buying behaviors (or interests) are changing

with time, so they affect the significances (weights) of

products in retail markets. The weights of seasonal

products may also vary when the season changes from

summer to winter or winter to summer. Web click stream

analysis can be another example of this matter. The

significance of each website may change with time

depending on the popularity, political issues, public

events and so on.

Recently, in [3], Chowdhury F. A. et al. have introdu-

ced a new approach for weighted frequent itemset mining

with an assumption that weights of items can vary with

time and proposed the algorithm AWFPM (Adaptive

Weighted Frequent Pattern Mining).

In this paper, we present an improved algorithm named

AWFIMiner. Experimental computations show that our

AWFIMiner is more efficient and scalable than AWFPM

algorithm.

The remainder of this paper is organized as follows. In

Section II, we describe some recent related works. In

Section III, we state the problem of adaptive weighted

frequent pattern mining and explain our proposed

algorithm AWFIMiner. In Section IV, our experimental

results are presented and analyzed. Finally, in Section V,

conclusions are drawn.

II. RELATED WORKS

Weighted frequent itemset mining was first proposed

and studied by Cai C. H. et al. in [2]. In this work, the

authors have introduced a concept of weighted support

and proposed the MINWAL algorithm. A weighted

support of an itemset is defined as the resultant value of

multiplying its support with the average weight of the

member items. The main challenging problem of

weighted frequent itemset mining relates to the down-

ward closure property (also known as Apriori property).

This property tells that if an itemset is infrequent then all

of its supersets must be infrequent. This property is

42 An Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

broken if different weights are applied to the items. To

maintain the downward closure property, MINWAL defi-

ned an upper bound, called k-support. Support of itemsets

generated in level k must be greater or equal to the k-

support bound. MINWAL is based on the Apriori

algorithm in traditonal frequent itemset mining, but most

of the candidates are infrequent. Moreover, according to

[13, 14], it takes too long to use the k-support bound for

satisfying the downward closure property. After

MINWAL, some other models and algorithms have been

proposed. Most of them are based on the Apriori [1]

algorithm.

In [10], Tao F. has proposed the WARM algorithm.

The problem of the breaking the downward closure

property is solved by using a weighted support and

developing a weighted downward closure property.

However, the meaning of weighted support is different

from that defined in MINWAL. Weighted support of

itemset "ab" in WARM is the fraction of the weight of

transactions containing both "a" and "b" to the weight of

all transactions in the database. WARM is also algorithm

based on the Apriori.

In [11], Wang W. et al. proposed an algorithm named

WAR for mining weighted association rules. For mining

these rules, WAR first generated frequent itemsets

without considering weights and then does post-

processing during the rule gemeration step. Thus WAR

algorithm dose not concerned with mining weighted

frequent itemsets and is post-processing approach.

Moreover, WAR is also based on the Apriori algorithm.

The algorithms which are developed based on the

Apriori algorithm use candidate generation-and-test

paradigm. Obviously, these algorithms require multiple

database scans and result in poor mining performance.

The first FP-tree based weighted frequent itemset mining

algorithm is WFIM which has been proposed by Yun U.

and Leggett J. J. [12]. WFIM uses two database scans

over a static database. It has used a minimum weight and

a weight range. Items are given fixed weights randomly

from the weight range. It has arranged the FP-tree in

weight ascending order.

In [13], Yun U. presented a WIP (Weighted Interesting

Pattern mining with a strong weight and/or support

affinity) algorithm that integrates the strengths of the

previous techniques and generates weighted interesting

patterns according to user feedback. In WIP, a new

measure, weight confidence, is defined to generate

weighted hyperclique patterns with similar levels of

weights. A weight range is used to decide weight

boundaries and the h-confidence measure serves to

identify strong support affinity patterns. WIP not only

gives a balance between the two measures of weight and

support, but also considers weight affinity and/or support

affinity between items within patterns so more valuable

patterns can be generated.

In [14], Yun U. re-examined two basic but interesting

constraints, a weight constraint and a length decreasing

support constraint and propose WLPMiner (weighted

frequent pattern mining with length decreasing

constraints). WLPMiner integrates these two measures to

generate fewer and more meaningful patterns. For

pruning techniques, the author has used the notion of

WSVE (Weighted Smallest Valid Extension) to apply to

both the length decreasing support constraints and weight

constraints, and a weight range as a supplement to

maintain the downward closure property. The key

insights achieved in this approach are the high

performance of the WSVE property and the use of a

weight range in the weight constraint. It is shown that

combining a weight constraint with a length decreasing

support constraint improves performance in terms of the

number of patterns and runtime. WLPMiner is also an

algorithm using FP-tree structure.

In [15], Zhang S. et al. proposed a new strategy, called

Weight, for maintaining the association rules in

incremental databases by using the weighting technique

to high-light new data. Any recently added transactions

are assigned higher weights. Moreover, all transactions in

a database are given the same weight. They did not use

different weights for individual items or transactions.

Their algorithm is based on the level-wise candidate

generation-and-test methodology of the Apriori algorithm.

Therefore, for a particular dataset, they gene-rate a large

number of candidates and need to perform several

database scans to get the final result.

Recently, stream data mining has become an important

research area in computer science [8,9]. In [9], Pauray S.

M. Tsai proposed a new procedure for stream data mining

which is called Weighted sliding window model. This

model allows users to fix the number of mining windows

and their sizes. However, like above models, all items in

the windows are assigned the same weight.

The weight varying with time problem has just

considered recently in [3] by Chowdhury F. A. et al. In

this work, the authors introduced a novel concept of

adaptive weight for each item and proposed an algorithm

AWFPM (Adaptive Weighted Frequent Pattern Mining).

AWFPM can handle the situation where the weight of an

item may be changed in any batch of transactions in the

database. An pattern is called adaptive weighted frequent

pattern if the adaptive weighted support of the pattern is

greater or equal to the minimum threshold. AWFPM

exploits a pattern growth mining technique to avoid the

level-wise candidate generation-and-test problem. To

maintain the downward closure property, AWFPM uses

the global maximum weight and the local maximum

weight. The global maximum weight is maximum weight

of all the items in the global database and the local

maximum weight is the the highest weight of all the items

in a conditional database.

In this paper, we reconsider the model for mining

weighted frequent itemsets using adaptive weights

proposed by Chowdhury F. A. et al. in [3]. Our goal is to

give an improved algorithm that can be more efficient in

both memory space and runtime.

 An Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights 43

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

III. ADAPTIVE WEIGHTED FREQUENT ITEMSETS AND

AWFIMINER ALGORITHM

A. Preliminaries

Given a transaction database DT, let I be the set of all

the items (attributes) in DT. Each transaction T in DT is a

subset of I, which has a transaction identifier TID . A

subset of I which consists of k distinct items, is called k-

itemsets or itemset of length k.

Assume that DT is divided into k batches; each item in

each batch is assigned a distinct weight, which is a

nonnegative real number.

Definition 1. [3] Adaptive weighted support of an itemset

X, denoted as AWsupp(X), is defined by:

K

j 1

AWsupport(X) W(X, j) F(X, j)


  (1)

where W(X, j) is the weight of X in the thj batch which is

calculated by the average weight of the items in the batch

belonging to X, F(X, j) is the support (or frequency) of X

in the thj batch.

Definition 2. [3] An itemset X is called adaptive

weighted frequent itemset if the adaptive weighted

support of X is greater or equal to the minimum threshold

AWminsupp, that is:

AWsupp(X) AWminsupp (2)

Example: Given the database shown in Table 1

consisting of 3 batches.

Table 1. An example of adaptive weighted database.

The adaptive weight support of the itemset "be" is

0.7 0.5 0.2 0.5 0.4 0.6
AWsupp(be) 2 0 1 1.7

2 2 2

  
      

If the minimum threshold is 1.4 then "be" is an

adaptive weighted frequent itemset.

Given a transaction database DT, the weights of the

items, our task is to find all adaptive weighted frequent

itemsets in DT.

An adaptive weighted frequent itemset defined as

above does not satisfy the downward closure property.

For example, consider the database shown in Table 1.

Using (1) we have

AWsupport(d) 0.2 0 0.3 1 0.4 2 1.1      

0.5 0.2 0.5 0.3 0.7 0.4
AWsupp(cd) 0 1 2 1.5

2 2 2

  
      

If the minimum threshold is 1.4 then "cd" is an

adaptive weighted frequent itemset but "d" is not.

In order to have the downward closure property, we

introduce a notion of maximum adaptive weighted

frequent itemset, defined as follows.

Definition 3. Given a transaction database DT consisting

of K batches and an itemset X. Let MAXW(j) be the

highest weight value of the items in the thj batch,

j = 1,… , K. Then the measure

K

j 1

MAXAWsupp(X)= MAXW(j) F(X, j)


 (3)

is called the maximum adaptive weighted support of X in

DT.

Example: Consider the database presented Table 1, we

have K = 3.

MAXW(1) 0.7, MAXW(2) 0.6, MAXW(3) 0.7  

the occurrence frequent of "be" in the first, second and

third batch are 2, 0 and 1 respectively. Thus

MAXAWsupp(be) 0.7 2 0.6 0 0.7 1 2.1      

Definition 4. Given a transaction database DT consisting

of K batches and an itemset X. For a given threshold

AWminsupp, X is called a maximum adaptive weighted

frequent itemset if

MAXAWsupp(X) AWminsupp

Proposition 1. Maximum adaptive weighted frequent

itemset has the downward closure property, that is if X is

a maximum adaptive weighted frequent itemset then all

of its subsets are also maximum adaptive weighted

frequent itemsets.

Proof. For every Y X , we have F(Y, j) F(X, j),

j=1,…,K. It follows that

44 An Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

K K

j 1 j 1

MAXW(j) F(Y, j) MAXW(j) F(X, j)
 

   

or

MAXAWsupp(Y) MAXAWsupp(X)

Therefore, if

MAXAWsupp(X) AWminsupp

then we also have

MAXAWsupp(Y) AWminsupp 

Proposition 2. Given a transaction database DT and an

itemset X. If X is an adaptive weighted frequent itemset

then X is also a maximum adaptive weighted frequent

itemset.

Proof. For every itemset X, we always have

MAXW(j) W(X, j), j 1,...,K  

Therefore, if

K

j 1

W(X, j) F(X, j) AWminsupp


 

then we also have

K

j 1

MAXW(j) F(X, j) AWminsupp


  

Proposition 1 and Proposition 2 show that maximum

adaptive weighted frequent itemsets have the downward

closure property and they are candidates for adaptive

weighted frequent itemsets. Thus, in order to mine

adaptive weighted frequent itemsets, we propose an

algorithm AWFIMiner consisting of two steps, as

following:

1) Find all maximum adaptive weighted frequent

itemsets.

2) From the set of all maximum adaptive weighted

frequent itemsets, by applying (1), determine the

the set of all adaptive weighted frequent itemsets.

To find the maximum adaptive weighted frequent

itemsets efficiently, we apply pattern growth techninque

as in the FP-growth algorithm for mining traditional

frequent itemsets [5,7]. First we construct a tree structure,

called AWFI-tree for the database and then we mine

conditional trees to find maximum adaptive weighted

frequent itemsets.

B. Construction of AWFI-tree

Like FP-tree [5], the structure of AWFI-tree is

combined of two parts: AWFI-tree and a header table.

AWFI-tree consists of one root node referred to as "null"

(signs as {}), a set of item-prefix sub-trees as children of

the root. Header table is maintained to keep items in

lexico-graphical order and the related information of

items. In each entry of a header table, the first value is the

item- identifier, after that the weight and frequency

information of an item in batch by batch fashion, and a

pointer pointing to the first node in the AWFI-tree

carrying the item. Transactions in each batch of the

database are inserted one by one into the tree in

lexicographical order of items. Except the root, each node

of the AWFI-tree contains item-identifier and its

frequency information. To facilitate the tree traversals

adjacent links are also maintained in AWFI-tree like FP-

tree.

To avoid including a list of batch-based frequency

information at every node in AWFI-tree (as AWFP-tree

does), we introduce the concept of tail-node which can be

defined as follows.

Definition 5. Let  1 2 kT i ,i ,...,i be a transaction in a

database with items sorted according to lexicographic

order. If T is inserted into a SWFP-tree in this order, then

the node of the tree that represents item ik is defined as a

tail-node for T. For example, if the lexicographically

sorted transaction {a,c,d} is inserted into an AWFI-tree,

then the node that represents item “d” is a tail-node in the

tree for this transaction.

Hence, two types of nodes can be maintained in a

AWFI-tree: tail-nodes and ordinary nodes. The latter are

the types of nodes that are used in the FP-tree.

Remark: Every leaf node of the AWFI-tree must be tail-

node.

By using the notion of tail-node and ordinary node, we

organize nodes in the AWFI-tree as follows: At each

ordinary node, we only keep the total frequency of the

node in the path from the root, but at each tail-node, we

maintain a list of batch-by-batch frequency information.

Whenever a new tail-node is created in the tree by

inserting a transaction from the thj batch of the database

consisting of K batches, a list consisting of K frequency

values in K batches will be created with value 1 at the thj

position, value 0 at all remaining positions. For example,

if a tail-node "b" first appears in the second batch of the

database consisting of 3 batches then the structure of the

node will be b:0,1,0.

Obviously, with the above organization of nodes, we

can save memory space and still maintain all information

needed for mining database.

Fig. 1 represents the AWFI-tree constructed for the

database shown in Table 1 (the traversals adjacent links

are not shown in the figure for simplicity). In this tree,

there are 7 tail-nodes and 5 ordinary nodes. As batch-by-

batch frequency information is kept separately in each

tail-node we can easily discover that which transactions

have been occurred in which batch. For example, we can

easily detect that the the transaction {a,b,e} appears once

 An Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights 45

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

in the first batch and once in the third batch, the

transaction {c,d,e} appears once in the second batch and

once in the third batch, the occurence frequencies of the

items in the database are a:4, b:4, c:8, d:3 and e:7

respectively.

Fig.1. The AWFI-tree after inserting 3 batches of the

database of Table 1.

We can consider the AWFI-tree constructed above as

an extended FP-tree. It inherits the compress advantage of

FP-tree. Moreover, it has its own properties to feed the

need of mining adaptive weighted frequent itemsets.

Property 1. The AWFI-tree can be constructed in a

single-pass of database.

Property 2. The total count of frequency values of any

node in the AWFI-tree is greater than or equal to the sum

of total counts of frequency values of its children.

Property 3. The frequency value in each batch of an

ordinary node in the AWFI-tree equal to the sum of

corresponding frequency values of the tail nodes which

are its children.

For example, in the AWFI-tree shown in Table 1, the

ordinary node "b" in the first branch on the left has one

child tail-node e: 1,0,1, so the frequency distribution of

node "b" in three batches is the same as the frequency

distribution of node "e", that is, b:1,0,1. The ordinary

node "a" in the first branch on the left has two child tail-

nodes e:1,0,1 and c:0,1,1, so the frequency distribution of

"a" in three batches is a:1+0,0+1,1+1, that is a:1,1,2.

Property 4. The frequency value in each batch of an item

in the database equal the sum of corresponding frequency

values of the nodes carring the same name.

For example, in the AWFI-tree of Table 1, the node

"b" appears once in the first branch with the frequency

distribution 1,0,1 and once in the third branch with the

frequency distributions 2,0,0, so the frequency

distribution of "b" in batches is b: 3,0,1.

Property 5. The frequency distribution in batches of a

path in the AWFI-tree is the frequency distribution of the

suffix node.

For example, in the AWFI-tree presented in Table 1,

the path a : 4;c : 0,1,1 has the suffix node "c", so its

frequency distribution is 0,1,1 which is the frequency

distribution of c.

C. AWFIMiner Algorithm

By using the pattern growth mining approach, the

AWFIMiner algorithm mines adaptive weighted frequent

itemsets from the AWFI-tree as follows.

Algorithm: AWFIMiner()

Input: A transaction database contains K batches, the

weights of the items in each batch, the minimum support

count threshold AWminsupp;

Output: The set of all adaptive weighted frequent

itemsets;

1. Create AWFI-tree;

2. L ;

3. Identify the set C1 of candidate 1-itemsets, that are

itemsets whose MAXAWsupp calculated by the

formula (3) is no less than AWminsupp;

4.
1L L C ; 

5. Prune the AWFI-tree: erase every node in the

AWFI-tree that does not represent for the candidate

items in
1C , (these nodes can not associate with

other nodes to generate maximum adaptive

weighted frequent item-sets (according to

Proposition 1));

6. For each item in the header table, in bottom-up

order:

6.1. Construct its conditional tree;

6.2. Prune the conditional tree: erase every node

which does not represent for the candidate items;

6.3. Mine pruned conditional tree to get maximum

adaptive weighted frequent itemsets by pattern

growth. Add the maximum adaptive weighted

frequent itemsets into L;

6.4. From L, determine the adaptive weighted

frequent itemsets, that are itemsets having

AWsupp value no less than AWminsupp

(calculated by (1));

Example: Consider the database shown in Table 1. We

find the set of all adaptive weighted frequent itemsets by

using the AWFIMiner algorithm with the threshold

AWminsupp=1.4 as follows.

1. Construct AWFI-tree, we get the tree shown in

Fig. 1.

2. From the header table, we have

MAXW(1) 0.7, MAXW(2) 0.6, MAXW(3) 0.7  

MAXAWsupp(a) 0.7 1 0.6 1 0.7 2 2.7      

MAXAWsupp(b) 2.8, MAXAWsupp(c) 5.3 

MAXAWsupp(d) 2.0, MAXAWsupp(e) 4.7 

46 An Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

We observe that all the items in the original database

have the values MAXAWsupp no less than AWminsupp

=1.4, so they are not pruned in the AWFI-tree and they

are single candidates. We have,  L a,b,c,d,e .

3. Construct and mine conditional trees of items in

bottom-up order in the header table:

3.1. Construction and mining the conditional tree of

"e". The conditional database of "e" contains

prefix paths

 ab :1,0,1;bc :1,0,0;cd : 0,1,1;c : 0,1,1

From this conditional database we have the AWFI-tree

presented in Fig. 2(a).

Because the conditional database of "e" contains all the

items of the original database,

MAXW(1) 0.7,MAXW(2) 0.6,MAXW(3) 0.7   From

the header table, the frequency values of items co-

occurring with "e" in each batch are

a :1,0,1;b : 2,0,1;c :1,2,2;d : 0,1,1 .

Using formula (3), we get the maximum adaptive

weighted support of items as

a :1.4;b : 2.1;c : 3.3;d :1.3 . Since AWminsupp equal to

1.4, node "d" is moved from the tree. After removing

node "d", we obtain the conditional tree of "e" which is

presented in Fig. 2(b).

From this conditional tree, using (3), we get three

candidate 2-itemsets "ce", "be" and "ae" with the

maximum adaptive weights 3.3, 2.1 and 1.4 respectively.

By adding these 2-itemsets into set L, we get

 L a,b,c,d,e,ae,be,ce .

We continue to mine by developing the itemsets "ae",

"be" and "ce". The conditional tree of "ae" is empty

which give no candidate itemset. Mining the conditional

tree of "be" gives a candidate itemset "abe" with the

maximum adaptive weight 1.4. Mining the conditional

tree of "ce" gives no candidate itemset because there is

only one co-appearing 3-itemset "bce" which has the

maximum adaptive weight 0.7 less than AWminsupp 1.4.

So, we have

 L a,b,c,d,e,ae,be,ce,abe .

(a) The AWFI-tree construction from the conditional database of “e”

(b) The conditional tree of “e”

Fig.2. The AWFI-tree and conditional tree of "e"

3.2. Construction and mining the conditional tree of

"d". The conditional database of "d" contains

prefix paths
 ac : 0,0,1;c : 0,1,1 .

From this

conditional database we have the AWFI-tree

shown in Fig. 3(a).

(a) The AWFI-tree construction from the conditional database of “d”

(b) The conditional tree of “d”

Fig.3. The AWFI-tree and conditional tree of "d"

Since the conditional database of "d" contains only

three items "a", "c" and "d", we have

MAXW(1) 0.5,MAXW(2) 0.6,MAXW(3) 0.7   The

frequency values of items occurring together with "d" in

each batch are a : 0,0,1;c : 0,1,2 . Using (3), we get the

maximum adaptive weighted supports of these items as

a : 0.7;c : 2.0 . Since AWminsupp equal to 1.4, node "a"

is removed from the tree. After removing node "a", we

get the conditional tree of "d" as presented in Fig. 3(b).

By mining this conditional tree, we get the candidate

itemset "cd" with the maximum adaptive weight 2.0. So,

we have

 L a,b,c,d,e,ae,be,cd,ce,abe .

 An Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights 47

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

3.3. Construction and mining the conditional tree of

"c". The conditional database of "c" contains

prefix paths  a : 0,1,1;b : 2,0,0 . From this

conditional database, we have the AWFI-tree

shown in Fig. 4(a). This database has three items

"a", "b" and "c", so

MAXW(1) 0.7,MAXW(2) 0.6,MAXW(3) 0.7  

(a) The AWFI-tree construction from the conditional database of “c”

(b) The conditional tree of “c”

Fig.4. The AWFI-tree and conditional tree of "c"

The frequency values of items occurring together with

"c" in each batch are a : 0,1,1;b : 2,0,0 . Using (3), we

obtain the maximum adaptive weighted supports of items

as a :1.3;b :1.4 . Since AWminsupp is 1.4, node "a" is

remove from the tree. After removing node "a", we get

the conditional tree of "c" presented in Fig. 4(b). By

mining this conditional tree, we get the candidate itemset

"bc" with the maximum adaptive weight 1.4. By adding

"bc" into L, we have

 L a,b,c,d,e,ae,bc,be,cd,ce,abe .

3.4. Construction and mining the conditional tree of

"b". The conditional database of "b" contains only

one prefix path  a :1,0,1 , and its conditional tree

is empty. We get no candidate.

3.5. The conditional tree of the last item "a". It is also

an empty tree.

The set of all candidates that we finally obtain is:

 L a,b,c,d,e,ae,bc,be,cd,ce,abe .

4. By checking the adaptive weighted supports of the

itemsets in L using (1), we obtain seven adaptive

weighted frequent itemsets with the corresponding

adaptive weighted supports:

a : 2.1,b : 2.5,c : 4.6,e :3.8,be :1.7,ce : 2.8,cd :1.5.

IV. EXPERIMENTAL RESULT

In order to evaluate the performance of our proposed

algorithm, as in [3], we have performed several

experriments on both synthenic dataset T10I4D100K,

which is taken from IBM's database

(http://www.cs.loyola.edu/~assoc_gen.html), and real-life

dataset Mushroom from frequent itemset mining dataset

repository (http://fimi.ua.ac.be/data/). These datasets do

not provide the weight values of each item. To get these

values of each item, we also have generated random

numbers in [0.1,0.9]. We compare our algorithm

AWFIMiner, with the algorithm AWFPM proposed by

Chowhury F. A. et al [3]. Our programs were written in

Microsoft Visual C++ 6.0 and run with the Windows 7

operating system on a Pentium dual core 2.70 GHz CPU

with 2.00 GB main memory.

The Mushroom dataset contains 8124 transactions and

119 distinct items. Its mean transaction size is 23 items,

and it is a dense dataset. We have divided this dataset into

3 and 6 batches. When K = 3, the first and second batches

contains 3000 transactions and the third batch contains

2124 remaining transactions. For K= 6, the first batch

contains 1124 transactions and all the other batches

contain 1400 transactions.

T10I4D100K contains 100000 transactions, 870

distinct items. Its mean transaction size is 10.1, and it is a

spare dataset. We have divided this dataset in two way, 3

and 5 batches. For K=3, the first and second batches

contains 35000 transactions and the last batch contains

30000 remaining transactions. For K=5, each batch has

the same number of transactions which is 20000.

For each batch in both Mushroom and T10I4D100K

dataset, we have generated new weight value of each item.

For the existing AWFPM algorithm proposed by

Chowdhury F. A. and his colleagues, we have only used

K=3.

Fig.5. Runtime performance for Mushroom

Fig. 5 shows the runtime performance curves for

Mushroom. The minimum support threshold range of 10%

to 30% is used. Fig. 6 describe the runtime performance

curves for T10I4D100K with the minimum support

threshold range used of 1% to 5%.

48 An Efficient Algorithm for Mining Weighted Frequent Itemsets Using Adaptive Weights

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 41-48

Experimental results in Fig. 5 and Fig. 6 show that by

using an more efficient tree structure, a single database

scan and the pattern growth mining approach, the

AWFIMiner algorithm performs better than the AWFPM

algorithm proposed in [3]. In addition, by using two type

of nodes in the tree, AWFIMiner allows us to save huge

memory space while still keep all batch by batch

transaction information of the database in the prefix tree

in a compact format. It requires less memory compared to

the existing AWFPM. For example, when the Mushroom

dataset is divided into 3 batches, the AWFIMiner requires

0.94 MB while AWFPM requires 1.26 MB memory.

When the T10I4D100K dataset is divided into 3 batches,

the memory requirements by AWFIMiner and AWFPM

are 14.72 MB and 17.61 MB memory respectively.

Fig.6. Runtime performance for T10I4D100K

V. CONCLUSIONS

Mining weighted frequent itemset plays an important

role in many real data mining scenarios. In this paper, we

considered the problem of mining weighted frequent

itemsets using adaptive weights and proposed an

improved algorithm AWFIMiner. The main constribution

of this paper is to provide a novel, more compact tree

structure AWFI-tree for adaptive weighted frequent

itemset mining, and a new measure to maintain the

downward closure property. This measure allows us to

prune the prefix tree and conditional trees more

efficiently when using pattern growth mining approach.

Experimental results show that AWFIMiner is an

efficient algorithm for mining adaptive weighted frequent

itemsets in both dense and sparse datasets. AWFIMiner

outperforms the existing AWFPM algorithm in [3].

Moreover, it can handle the whole database information

using a single scan of database and therefore applicable

for stream data mining.

REFERENCES

[1] Agrawal, R., Srikant, R., Fast Algorithms for Mining

Association Rules. In: 20th Int. Conf. on Very Large Data

Bases (VLDB), 1994, 487–499.

[2] Cai, C.H., Fu, A.W.C., Cheng, C.H., Kwong, W.W.,

Mining association rules with weighted items. In

Proceedings of Intl. Database Engineering and

Applications Symposium (IDEAS 1998), Cardiff, Wales,

UK, July 1998, 68–77.

[3] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer,

Byeong-Soo Jeong, Young-Koo Lee, Mining Weighted

Frequent Patterns Using Adaptive Weights. In: Fyfe et al.

(Eds.): IDEAL 2008, LNCS 5326, 2008, 258–265.

[4] Darshan M. Tank, Improved Apriori Algorithm for

Mining Association Rules, Int. Jour. Information

Technology and Computer Science, 2014, 07, 15-23.

[5] Han, J., Pei, J., Yin, Y., Mao, R., Mining frequent patterns

without candidate generation: a frequent-pattern tree

approach. Data Mining and Knowledge Discovery 8, 2004,

53–87.

[6] Han, J., H., Xin, D., and Yan, X., Frequent pattern mining:

current status and future directions. Data Mining and

Knowledge Discovery, vol. 15, 2007, 55–86.

[7] Han J., and Kamber M., Data Mining: Concepts and

Techniques, Morgan Kanufmann, 2000.

[8] Jiang, N., Gruenwald, L., Research Issues in Data Stream

Association Rule Mining. SIGMOD Record 35(1), 2006,

14–19.

[9] Paray S.M. Tsai, Mining frequent itemsets in data streams

using the weighted sliding window model. Expert Systems

with Applications 36, 2009, 11617-11625.

[10] Tao, F., Weighted association rule mining using weighted

support and significant framework. In: 9th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining,

USA, 2003, 661–666.

[11] Wang, W., Yang, J., Yu, P.S., WAR: weighted association

rules for item intensities. Knowledge Information and

Systems 6, 2004, 203–229.

[12] Yun, U., Leggett, J.J., WFIM: weighted frequent itemset

mining with a weight range and a minimum weight. In:

Fourth SIAM Int. Conf. on Data Mining, USA, 2005, 636–

640.

[13] Yun, U., Efficient Mining of weighted interesting patterns

with a strong weight and/or support affinity. Information

Sciences 177, 2007, 3477–3499.

[14] Yun, U., An efficient mining of weighted frequent

patterns with length decreasing support constraints.

Knowledge-Based Systems, Volume 21 Issue 8, December

2008, 741-752.

[15] Zhang, S., Zhang, C.,Yan, X., Post-mining: maintenance

of association rules by weighting. Information Systems 28,

2003, 691–707.

Authors’ Profiles

Hung Long Nguyen is currently a lecturer

at Faculty of Economic Information System,

Vietnam Com-mercial University (VCU).

He recei-ved his B.Sc. degree in Informatics

from Hanoi University of Science in 1991,

and his M.Sc. degree in Infor-mation

Technology from Le Quy Don Technical

University in 2002. His research interests

include Data Mining, Knowledge Discovery in Databases,

Information Systems, and Database.

