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Abstract—Many crossover operators have been proposed 
in literature on evolutionary algorithms, however, it is 
still unclear which crossover operator works best for a 
given optimization problem. In this study, eight different 
crossover operators specially designed for travelling 
salesman problem, namely, Two-Point Crossover, 
Partially Mapped Crossover, Cycle Crossover, Shuffle 
Crossover, Edge Recombination Crossover, Uniform 
Order-based Crossover, Sub-tour Exchange Crossover, 
and Sequential Constructive Crossover are evaluated 
empirically. The select crossover operators were 
implemented to build an experimental setup upon which 
simulations were run. Four benchmark instances of 
travelling salesman problem, two symmetric (ST70 and 
TSP225) and two asymmetric (FTV100 and FTV170), 
were used to thoroughly assess the select crossover 
operators. The performance of these operators was 
analyzed in terms of solution quality and computational 
cost. It was found that Sequential Constructive Crossover 
outperformed other operators in attaining 'good' quality 
solution, whereas Two-Point Crossover outperformed 
other operators in terms of computational cost. It was also 
observed that the performance of different crossover 
operators is much better for relatively small number of 
cities, both in terms of solution quality and computational 
cost, however, for relatively large number of cities their 
performance greatly degrades. 
 
Index Terms—Crossover Operators, Travelling Salesman 
Problem, Evaluation of Crossover Operators, 
Evolutionary Algorithms. 
 

I.  INTRODUCTION 

Different evolutionary techniques [1-3] have been 
proposed in literature to solve complex optimization 
problems. These techniques differ in implementation, but, 
all of them have very similar formalization of the 
problem. They start by an initial population of candidate 
solutions and then apply nature-inspired variation and 
selection mechanism on select candidate solutions to 
produce new solutions (offspring), in an iterative fashion. 
The process is repeated unless some stopping criteria are 
met. The central idea is that the solutions with better 
fitness value (according to a given fitness function) will 
guide the search process towards the optimal solution in 
the search space. The sketch of an evolutionary algorithm 
is depicted in Fig. 1. 

At the heart of these algorithms is a crossover operator 
which introduces variation in the population in a 
systematic way. The crossover operator is stochastic (i.e., 
probabilistic based) which merges information from two 
or more parents to produce one or more offspring. 
Crossover serves two complementary search abilities: 
exploitation and exploration. That is, it provides new 
points for further testing upon hyper planes already 
represented in the population (exploitation), and it also 
introduces representatives of new hyper planes into the 
population (exploration). 

 

 
Fig.1. Schematic diagram of an evolutionary algorithm 

In literature, different crossover operators have been 
proposed: Two-Point Crossover (TPX) [4], Partially 
Mapped Crossover (PMX) [5], Cycle Crossover (CX) [6], 
Shuffle Crossover (SX) [7], Edge Recombination 
Crossover (ERX) [8], Uniform Order-based Crossover 
(UOX) [9], Sub-tour Exchange Crossover (SEX) [10], 
and Sequential Constructive Crossover (SCX) [11]. These 
operators have primarily been designed to solve one of 
the most widely studied optimization problem, Traveling 
Salesman Problem (TSP), however, they can be adapted 
to solve other complex optimization problems as well, e.g. 
scheduling problem. 

In this study, the above-mentioned crossover operators 
are empirically evaluated against four benchmark 
instances of travelling salesman problem, two symmetric 
and two asymmetric instances.  

The rest of this article is organized as follows. In 
Section 2, we give a background overview of different 
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crossover operators. The evaluation criteria and test 
problems are described in Section 3. The empirical study 
is outlined in Section 4, followed by discussion in Section 
5. The article concludes in Section 6. 

 

II.  BACKGROUND AND RELATED WORK 

Different crossover operators have been proposed in 
literature on evolutionary algorithms, and different 
studies have been conducted to evaluate the performance 
of these operators. In [15], the authors compared ten 
different crossover operators on numerical optimization 
problems. The select crossover operators are used in 
genetic algorithms with binary representation. They 
found that both uniform crossover and reduced surrogate 
crossover offer competitive performance. In another 
study [16] , the authors compared the performance of 
eight different crossover operators on vehicle routing 
problem. They reported that the best performance was 
achieved by combining the different crossover operators, 
whereas the individual performance of the different 
operators was not good enough to solve the vehicle 
routing problem.  In [17], the authors proposed three 
crossover operators, namely GA-like one-point, sub-tree, 
and semantic aware sub-tree, for postfix genetic 
programming. They evaluated the performance of these 
on select real-valued symbolic regression problems. They 
found that the semantic aware sub-tree crossover is best 
among the three crossover operators.  

In what follows, we review the most commonly used 
crossover operators to solve TSP. 

A.  Two-point Crossover 

Two-Point Crossover (TPX) is a typical form of n-
point crossover proposed by De Jong [4]. In TPX, two 
crossover points are pseudo-randomly selected at the 
same position from each parent chromosome. The parent 
chromosomes are then split at the crossover points chosen 
and all data beyond the two select points in either 
chromosomes is swapped between the two parent 
chromosomes effectively yielding two offspring. 

B.  Partially Mapped Crossover 

Partially Mapped Crossover (PMX) [5] is a two-point 
crossover. However, unlike the standard two-point 
crossover as described above, PMX yields one offspring 
as follows. Two crossover points are selected at the same 
position from each parent chromosome, and then in a first 
step the genes are copied from the second parent between 
the two cut points to the offspring. Then, in a second step, 
the remaining genes in the offspring before and after the 
cut point are copied from the first parent in the order in 
which they appear therein. In case, a gene has already 
been provided by the second parent (in the first step), the 
corresponding (i.e. mapped) genes are copied from the 
first parent, hence the term partially mapped. 

C.  Cycle Crossover 

Cycle Crossover (CX) [6] generates offspring by first 
identifying cycles between two parent chromosomes, and 

then these cycles are copied from the respective parent 
chromosomes to form offspring. At the heart of CX is a 
cycle formation method which works as follows. It starts 
with the first gene of the first parent, visits the gene at the 
same position of the second parent, and then goes to the 
position with the same gene in the first parent, effectively 
forming a cycle. The same process is repeated to form the 
remaining cycles. Finally, the indices that form a cycle 
are used to produce offspring in alternating order. 

D.  Shuffle Crossover 

Shuffle Crossover (SX) [7] is a variant of one-point 
crossover in which, first, the genes are pseudo-randomly 
shuffled in the parents before applying the crossover. 
Then after recombination, the genes are shuffled back in 
reverse order, in the offspring.  

E.  Edge Recombination Crossover 

Edge Recombination Crossover (ERX) [8] operator 
starts by constructing an edge map from nodes which lists 
all the incoming and outgoing connections for two 
parents. If a node appears twice, it is marked negative to 
signify a common edge. This edge map is subsequently 
used to generate offspring in such a way that the parent 
structure be preserved as much as possible. The nodes 
having negative values or with the fewest remaining 
adjacent nodes are selected before the nodes with more 
adjacent nodes. 

F.  Uniform Order-based Crossover 

Uniform Order-based Crossover (UOX) [9] is different 
than other crossover operators as it uses a uniform 
crossover mask (0s and 1s) to construct offspring. In a 
first cycle, the operator copies genes from the first parent 
in the slots where the mask has a 1. Then in a second 
cycle, the remaining genes are copied in the order they 
appear in the second parent to complete the empty slots in 
the offspring.   
G.  Sub-tour Exchange Crossover 

Sub-tour Exchange Crossover (SEX) developed by 
Yamamura [10] is used to solve a problem with vary 
huge data like TSP. It starts by identifying sub-tours 
including common nodes in both parents. Then, it 
constructs offspring by copying parents' paths and 
exchanging the subtours. This crossover operator tends to 
preserve parent structure by inheriting edges from parents. 

H.  Sequential Constructive Crossover 

The Sequential Constructive Crossover (SCX) [11] 
operator constructs an offspring from a pair of parents 
using better edges in the parents. SCX also uses the better 
edges even if they are not in the parents’ structure, which 
permits it to introduce new and good edges to the 
offspring. The SCX operator works as follows. It starts 
with the first node, say s, in the first parent and searches 
sequentially through each parent to find a legitimate node 
(not visited yet) in each parent. Suppose the nodes x and 
y are found as legitimate nodes, the operator constructs a 
new edge (s, x) if distance(s, x) < distance(s, y), 
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otherwise the new edge (s, y) is constructed. The process 
is repeated until the offspring is completed. Since the 
operator preserves the good edges from each parent and 
also introduces some better edges, it guides the search 
towards an optimal solution. 

 

III.  PERFORMANCE MEASURE AND EVALUATION 
BENCHMARK 

Different evaluation measures have been suggested in 
literature to measure the performance of an evolutionary 
algorithm. In this study, solution quality expressed in 
terms of cost-minimization is considered the only 
performance measure. The performance of the select 
crossover operators was evaluated against one of the most 
widely studied optimization problem, TSP. TSP is an NP-
hard combinatorial optimization problem, in which a 
salesman has to visit N cities (nodes) by starting the trip 
from a given city and returning back to the starting city to 
complete a tour. The constraint is that each and every city 
should be visited, and it should be visited exactly once. 
The objective is to find a minimum length tour, which 
captures resemblance of different real life cost-
minimization problems like spreading a wide-area 
network. Two types of TSP problems are generally 
studied: Symmetric TSP and Asymmetric TSP. In a 
symmetric TSP, the distance between two node x and y is 
the same as the distance between y and x, whereas in an 
asymmetric TSP the distance between two node x and y 
may be different than the distance between y and x. Four 
benchmark instances of TSP were solved, two symmetric 
and two asymmetric. The two symmetric instances were 
ST70 (70 cities) and TSP225 (225 cities), the asymmetric 
instances were FTV100 (100 cities) and FTV170 (170 
cities) [15].  The best known solutions for these problem 
instances are: 675, 3919, 1788, 2755, respectively [18]. 

 

IV.  THE EXPERIMENT 

A.  Experimental Setup 

We implemented the system in Matlab-R2009a to run 
the simulations on a Sony Vaio Core i5-2430M, with 2.4 
GHz speed and 4 GB RAM (DDR3). A brief description 
of this implementation is outlined below. 

 
 The solutions were encoded as permutation 

vectors, where the length of a solution (tour) was 
the number of nodes in the respective problem 
instance. 

 The fitness function was tour length realized as 
distance between the adjacent cities; the objective 
was to find the minimum cost tour. 

 Initial population was sampled randomly; the 
population size was kept 100 throughout the study.  

 Parent selection was realized probabilistically as 

roulette wheel indexes to calculate probabilities as 
inverse distances divided by sum of inverse 
distances (of all candidate solutions in the current 
population). 

 Crossover and mutation probabilities were kept 0.8 
and 0.01 [19], respectively, throughout this study. 

 An elitism based survivor selection was 
implemented, which guarantees that the best 
solutions from the current generation carry over to 
the next generation, unaltered.  

 The maximum number of generations were kept 
50000 throughout the study. 

 
In each generation, best and average fitness of 

population were recorded, similar in spirit to [20], for 
each crossover operator. 

B.  Results and Analysis 

The simulation results in terms of solution quality and 
speed were recorded for the competing crossover 
operators on the select problem. We measured the quality 
of a solution in terms of percentage surplus error value as 
shown in Equation 1, where optimal value  is the known 
global optimum. 
 

      
                              

             
          (1) 

 
An ANOVA test was also administered to test whether 

the apparent differences in the performance gain are 
statistically significant or not. Table 1 shows the solution-
quality results averaged over 20 independent runs, 
including the overall best solution (Best), the mean of 
best-of-run solution averaged over 20 runs (Mean), and 
the standard deviation in best-of-run solution (Std Dev). 
The results indicate that overall the Sequential 
Constructive Crossover (SCX) outperformed all other 
crossover operators, with Edge Recombination Crossover 
(ERX) offering worst performance. These results are also 
evident from Fig. 2 and Fig. 3, which depict the 
evolutions of solutions TSP-70 cities and TSP-100 cities 
instances, respectively. An ANOVA analysis further 
revealed that the solution-quality results differed 
significantly across different crossover operators for the 
four select problem instances: F (7, 31) = 2.94, F-critical 
= 2.42, p < 0.05.  

Table 2 shows the execution time to complete 50000 
generations, again, averaged over 20 independent runs. 
The results indicate that TPX (Two-point Crossover) 
completes the required number of generations much 
faster than the other operators, while ERX (Edge 
Recombination Crossover) being the slowest one; these 
results are also evident in Fig. 4. Again, the ANOVA 
analysis showed that the CPU-time results differed 
significantly across different crossover operators: F (7, 31) 
= 8.47, F-critical = 2.39, p < 0.05. 
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Table 1. Solution quality (percentage surplus error) 

Crossover 
Operator 

ST70 FTV100  FTV170 TSP225 
Mean  

(Std Dev) Best Mean  
(Std Dev) Best Mean  

(Std Dev) Best Mean  
(Std Dev) Best 

TPX 13.79% 
(1.62) 12.58% 63.82% 

(3.19) 57.09% 81.08% 
(11.89) 77.38% 101.76% 

(15.06) 98.27% 

PMX 22.94% 
(7.26) 20.71% 130.35% 

(9.02) 127.38% 143.27% 
(19.16) 127.38% 196.27% 

(21.35) 192.81% 

CX 14.68% 
(3.19) 12.37% 111.76% 

(5.32) 108.92% 132.03% 
(11.74) 128.46% 207.81% 

(18.11) 203.63% 

SX 57.37% 
(8.92) 54.61% 189.28% 

(15.03) 182.78% 211.75% 
(19.56) 206.92% 245.21% 

(23.95) 239.13% 

ERX 66. 21% 
(7.01) 63.18% 203.06% 

(13.85) 197.49% 258.04% 
(19.74) 249.17% 311.11% 

(29.17) 307.04% 

UOX 14.96% 
(2.78) 13.62% 73.06% 

(4.19) 71.85% 105.86% 
(11.97) 102.06% 123.92% 

(14.82) 118.04% 

SEX 16.97% 
(2.73) 13.58 107.36% 

(13.18) 103.04% 141.28% 
(20.96) 137.29% 177.08% 

(16.28) 173.96% 

SCX 2.05% 
(0.32) 1.74% 14.17% 

(2.06) 11.97% 34.85% 
(10.49) 29.72% 45.91% 

(7.59) 42.97% 

 

 
Fig.2. Convergence graph of different crossover operators for TSP-70 cities (symmetric) instance 

 

Fig.3. Convergence graph of different crossover operators for TSP-100 cities (asymmetric) instance
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Table 2. Mean computational time (seconds) to complete 50000 generations 

Crossover 
Operator 

ST70 FTV100  FTV170 TSP225 

Mean  
(Std Dev) 

Mean  
(Std Dev) 

Mean  
(Std Dev) 

Mean  
(Std Dev) 

TPX 328.91 
(31.07) 

405.83 
(38.41) 

653.78 
(47.29) 

1196.25 
(84.26) 

PMX 1186.33 
(180.17) 

2109.27 
(173.04) 

5362.29 
(276.68) 

7109.47 
(418.05) 

CX 1073.31 
(131.09) 

1338.24 
(146.72) 

2271.05 
(163.51) 

3691.85 
(274.38) 

SX 3591.04 
(219.17) 

5219.85 
(527.18) 

7091.57 
(318.39) 

9591.58 
(612.32) 

ERX 7073.18 
(624.11) 

9401.88 
(716.06) 

12038.73 
(961.01) 

16024.51 
(1143.85) 

UOX 2392.02 
(144.96) 

7206.35 
(412.13) 

9701.18 
(367.18) 

10851.53 
(1063.71) 

SEX 1207.28 
(139.37) 

1733.94 
(148.81) 

2174.95 
(219.74) 

3485.02 
(619.47) 

SCX 1403.97 
(97.25) 

1907.58 
(154.81) 

2693.08 
(172.37) 

4106.18 
(394.75) 

 

 
Fig.4. Average execution time of different crossover operators to complete 50000 generations 

 

V.  DISCUSSION 

In the present study, the performance of different 
crossover operators was evaluated against two 
dimensions: solution quality and execution time. The 
study revealed some interesting results. 

 
 First, even though not a single crossover operator 

was able to find the best known solution for the 
four select TSP instances (the best known solutions: 
ST70 = 675, TSP225 = 3919, FTV100 = 1788, 
FTV170 = 2755) [15], overall, Sequential 
Constructive Crossover (SCX) offered the best 
performance: on each test problem, the surplus 
error was marginally above the best known solution 
as compared to other operators. Interestingly 
enough, SCX also offered competitive performance 
in execution time, even though not the fastest one. 

 Second, Edge Recombination Crossover (ERX) is 
very slow because of its complex nature, involving 
lots of computations to construct edge maps. One 
might expect that this sophisticated and complex 

computation benefit in attaining a good quality 
solution, however, the results suggest otherwise. 
ERX is found both the slowest in speed and worst 
in solution quality. Interestingly, Two-Point 
Crossover (TPX) was observed as the fastest 
operator. This may be because TPX is relatively 
simple, it just finds two crossover points, split 
along those points and glue parts alternating 
between parents. 

 When the number of cities is small (e.g., ST70), the 
performance of different crossover operators is 
much better as compared to large number of cities 
(e.g., FTV170). To this end, we combined the 
results of relatively smaller number of cities ST70 
and FTV100, and the results of relatively larger 
number of cities FTV170 and TSP225, for both 
solution quality and computational time. The 
ANOVA analysis on these combined results 
revealed that the results differed significantly 
between small and large problems: (Solution 
quality: F(1, 7) = 2.95, F-critical = 2.13, p < 0.05; 
Time: F(1, 7) = 7.06, F-critical = 2.68, p < 0.05). 
This may be interpreted as the different crossover 
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operators evaluated in this study are not that much 
scalable and their performance may degrade when 
the problem complexity increases. 

 Another interesting result came to fore during the 
analysis of results. The select crossover operators 
can be clustered into three different groups based 
on solution quality: SCX in one group, with the 
best overall performance, TPX and SX in another 
group, with the worst overall performance and 
PMX, CX, ERX, UOX and SEX in yet another 
group, with medium performance. These results are 
evident from Fig. 2 and Fig. 3. ANOVA analysis 
further revealed that the difference between three 
clusters are highly significant: F(2, 11) = 6.91, F-
critical = 4.26, p < 0.01. 

 Finally, it was expected, before analysis of the 
results, that the solution quality of the different 
crossover operators would be better for symmetric 
problems as compared to asymmetric problems. 
However, the results indicate that there is no 
significant difference among these crossover 
operators for symmetric and asymmetric problems: 
F(1, 7) = 0.85, F-critical = 4.06, p = 0.47.  

 

VI.  CONCLUSION 

In this study, eight different crossover operators were 
evaluated empirically against two instances of travelling 
salesman problem (TSP-29 city and TSP-70 city). The 
select crossover operators were implemented to build an 
experimental setup upon which simulations were run. The 
performance of these operators was analyzed in terms of 
solution quality and computational cost. It was found that 
SCX outperformed other operators in attaining 'good' 
quality solution, whereas TPX outperformed other 
operators in terms of computational cost. Moreover, the 
select crossover operators can be clustered into three 
different groups based on solution quality: SCX in one 
group, with the best overall performance, TPX and SX in 
another group, with the worst overall performance and 
PMX, CX, ERX, UOX and SEX in yet another group, 
with medium performance. 

The present study also revealed that the performance of 
different crossover operators is much better for relatively 
small number of cities (e.g. 70 cities), both in terms of 
solution quality and computational time. However, the 
performance of these operators deteriorated when the 
number of cities were relatively large (e.g. 170 cities). 
This raises an interesting question on the scalability of 
these crossover operators. We conjecture that the 
performance of these operators may degrade when the 
problem complexity increases. Interestingly, we did not 
observe any significant difference on the performance of 
the select crossover operators for symmetric and 
asymmetric TSP problems, meaning that they perform 
equally good on both symmetric and asymmetric 
problems.  
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