
I.J. Intelligent Systems and Applications, 2015, 11, 19-25
Published Online October 2015 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijisa.2015.11.03

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 19-25

Assessing Different Crossover Operators for
Travelling Salesman Problem

Imtiaz Hussain Khan

Department of Computer Science, King Abdulaziz University Jeddah, P.O.Box 80200, Saudi Arabia
E-mail: ihkhan@kau.edu.sa

Abstract—Many crossover operators have been proposed
in literature on evolutionary algorithms, however, it is
still unclear which crossover operator works best for a
given optimization problem. In this study, eight different
crossover operators specially designed for travelling
salesman problem, namely, Two-Point Crossover,
Partially Mapped Crossover, Cycle Crossover, Shuffle
Crossover, Edge Recombination Crossover, Uniform
Order-based Crossover, Sub-tour Exchange Crossover,
and Sequential Constructive Crossover are evaluated
empirically. The select crossover operators were
implemented to build an experimental setup upon which
simulations were run. Four benchmark instances of
travelling salesman problem, two symmetric (ST70 and
TSP225) and two asymmetric (FTV100 and FTV170),
were used to thoroughly assess the select crossover
operators. The performance of these operators was
analyzed in terms of solution quality and computational
cost. It was found that Sequential Constructive Crossover
outperformed other operators in attaining 'good' quality
solution, whereas Two-Point Crossover outperformed
other operators in terms of computational cost. It was also
observed that the performance of different crossover
operators is much better for relatively small number of
cities, both in terms of solution quality and computational
cost, however, for relatively large number of cities their
performance greatly degrades.

Index Terms—Crossover Operators, Travelling Salesman
Problem, Evaluation of Crossover Operators,
Evolutionary Algorithms.

I. INTRODUCTION

Different evolutionary techniques [1-3] have been
proposed in literature to solve complex optimization
problems. These techniques differ in implementation, but,
all of them have very similar formalization of the
problem. They start by an initial population of candidate
solutions and then apply nature-inspired variation and
selection mechanism on select candidate solutions to
produce new solutions (offspring), in an iterative fashion.
The process is repeated unless some stopping criteria are
met. The central idea is that the solutions with better
fitness value (according to a given fitness function) will
guide the search process towards the optimal solution in
the search space. The sketch of an evolutionary algorithm
is depicted in Fig. 1.

At the heart of these algorithms is a crossover operator
which introduces variation in the population in a
systematic way. The crossover operator is stochastic (i.e.,
probabilistic based) which merges information from two
or more parents to produce one or more offspring.
Crossover serves two complementary search abilities:
exploitation and exploration. That is, it provides new
points for further testing upon hyper planes already
represented in the population (exploitation), and it also
introduces representatives of new hyper planes into the
population (exploration).

Fig.1. Schematic diagram of an evolutionary algorithm

In literature, different crossover operators have been
proposed: Two-Point Crossover (TPX) [4], Partially
Mapped Crossover (PMX) [5], Cycle Crossover (CX) [6],
Shuffle Crossover (SX) [7], Edge Recombination
Crossover (ERX) [8], Uniform Order-based Crossover
(UOX) [9], Sub-tour Exchange Crossover (SEX) [10],
and Sequential Constructive Crossover (SCX) [11]. These
operators have primarily been designed to solve one of
the most widely studied optimization problem, Traveling
Salesman Problem (TSP), however, they can be adapted
to solve other complex optimization problems as well, e.g.
scheduling problem.

In this study, the above-mentioned crossover operators
are empirically evaluated against four benchmark
instances of travelling salesman problem, two symmetric
and two asymmetric instances.

The rest of this article is organized as follows. In
Section 2, we give a background overview of different

20 Assessing Different Crossover Operators for Travelling Salesman Problem

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 19-25

crossover operators. The evaluation criteria and test
problems are described in Section 3. The empirical study
is outlined in Section 4, followed by discussion in Section
5. The article concludes in Section 6.

II. BACKGROUND AND RELATED WORK

Different crossover operators have been proposed in
literature on evolutionary algorithms, and different
studies have been conducted to evaluate the performance
of these operators. In [15], the authors compared ten
different crossover operators on numerical optimization
problems. The select crossover operators are used in
genetic algorithms with binary representation. They
found that both uniform crossover and reduced surrogate
crossover offer competitive performance. In another
study [16] , the authors compared the performance of
eight different crossover operators on vehicle routing
problem. They reported that the best performance was
achieved by combining the different crossover operators,
whereas the individual performance of the different
operators was not good enough to solve the vehicle
routing problem. In [17], the authors proposed three
crossover operators, namely GA-like one-point, sub-tree,
and semantic aware sub-tree, for postfix genetic
programming. They evaluated the performance of these
on select real-valued symbolic regression problems. They
found that the semantic aware sub-tree crossover is best
among the three crossover operators.

In what follows, we review the most commonly used
crossover operators to solve TSP.

A. Two-point Crossover

Two-Point Crossover (TPX) is a typical form of n-
point crossover proposed by De Jong [4]. In TPX, two
crossover points are pseudo-randomly selected at the
same position from each parent chromosome. The parent
chromosomes are then split at the crossover points chosen
and all data beyond the two select points in either
chromosomes is swapped between the two parent
chromosomes effectively yielding two offspring.

B. Partially Mapped Crossover

Partially Mapped Crossover (PMX) [5] is a two-point
crossover. However, unlike the standard two-point
crossover as described above, PMX yields one offspring
as follows. Two crossover points are selected at the same
position from each parent chromosome, and then in a first
step the genes are copied from the second parent between
the two cut points to the offspring. Then, in a second step,
the remaining genes in the offspring before and after the
cut point are copied from the first parent in the order in
which they appear therein. In case, a gene has already
been provided by the second parent (in the first step), the
corresponding (i.e. mapped) genes are copied from the
first parent, hence the term partially mapped.

C. Cycle Crossover

Cycle Crossover (CX) [6] generates offspring by first
identifying cycles between two parent chromosomes, and

then these cycles are copied from the respective parent
chromosomes to form offspring. At the heart of CX is a
cycle formation method which works as follows. It starts
with the first gene of the first parent, visits the gene at the
same position of the second parent, and then goes to the
position with the same gene in the first parent, effectively
forming a cycle. The same process is repeated to form the
remaining cycles. Finally, the indices that form a cycle
are used to produce offspring in alternating order.

D. Shuffle Crossover

Shuffle Crossover (SX) [7] is a variant of one-point
crossover in which, first, the genes are pseudo-randomly
shuffled in the parents before applying the crossover.
Then after recombination, the genes are shuffled back in
reverse order, in the offspring.

E. Edge Recombination Crossover

Edge Recombination Crossover (ERX) [8] operator
starts by constructing an edge map from nodes which lists
all the incoming and outgoing connections for two
parents. If a node appears twice, it is marked negative to
signify a common edge. This edge map is subsequently
used to generate offspring in such a way that the parent
structure be preserved as much as possible. The nodes
having negative values or with the fewest remaining
adjacent nodes are selected before the nodes with more
adjacent nodes.

F. Uniform Order-based Crossover

Uniform Order-based Crossover (UOX) [9] is different
than other crossover operators as it uses a uniform
crossover mask (0s and 1s) to construct offspring. In a
first cycle, the operator copies genes from the first parent
in the slots where the mask has a 1. Then in a second
cycle, the remaining genes are copied in the order they
appear in the second parent to complete the empty slots in
the offspring.
G. Sub-tour Exchange Crossover

Sub-tour Exchange Crossover (SEX) developed by
Yamamura [10] is used to solve a problem with vary
huge data like TSP. It starts by identifying sub-tours
including common nodes in both parents. Then, it
constructs offspring by copying parents' paths and
exchanging the subtours. This crossover operator tends to
preserve parent structure by inheriting edges from parents.

H. Sequential Constructive Crossover

The Sequential Constructive Crossover (SCX) [11]
operator constructs an offspring from a pair of parents
using better edges in the parents. SCX also uses the better
edges even if they are not in the parents’ structure, which
permits it to introduce new and good edges to the
offspring. The SCX operator works as follows. It starts
with the first node, say s, in the first parent and searches
sequentially through each parent to find a legitimate node
(not visited yet) in each parent. Suppose the nodes x and
y are found as legitimate nodes, the operator constructs a
new edge (s, x) if distance(s, x) < distance(s, y),

 Assessing Different Crossover Operators for Travelling Salesman Problem 21

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 19-25

otherwise the new edge (s, y) is constructed. The process
is repeated until the offspring is completed. Since the
operator preserves the good edges from each parent and
also introduces some better edges, it guides the search
towards an optimal solution.

III. PERFORMANCE MEASURE AND EVALUATION
BENCHMARK

Different evaluation measures have been suggested in
literature to measure the performance of an evolutionary
algorithm. In this study, solution quality expressed in
terms of cost-minimization is considered the only
performance measure. The performance of the select
crossover operators was evaluated against one of the most
widely studied optimization problem, TSP. TSP is an NP-
hard combinatorial optimization problem, in which a
salesman has to visit N cities (nodes) by starting the trip
from a given city and returning back to the starting city to
complete a tour. The constraint is that each and every city
should be visited, and it should be visited exactly once.
The objective is to find a minimum length tour, which
captures resemblance of different real life cost-
minimization problems like spreading a wide-area
network. Two types of TSP problems are generally
studied: Symmetric TSP and Asymmetric TSP. In a
symmetric TSP, the distance between two node x and y is
the same as the distance between y and x, whereas in an
asymmetric TSP the distance between two node x and y
may be different than the distance between y and x. Four
benchmark instances of TSP were solved, two symmetric
and two asymmetric. The two symmetric instances were
ST70 (70 cities) and TSP225 (225 cities), the asymmetric
instances were FTV100 (100 cities) and FTV170 (170
cities) [15]. The best known solutions for these problem
instances are: 675, 3919, 1788, 2755, respectively [18].

IV. THE EXPERIMENT

A. Experimental Setup

We implemented the system in Matlab-R2009a to run
the simulations on a Sony Vaio Core i5-2430M, with 2.4
GHz speed and 4 GB RAM (DDR3). A brief description
of this implementation is outlined below.

 The solutions were encoded as permutation

vectors, where the length of a solution (tour) was
the number of nodes in the respective problem
instance.

 The fitness function was tour length realized as
distance between the adjacent cities; the objective
was to find the minimum cost tour.

 Initial population was sampled randomly; the
population size was kept 100 throughout the study.

 Parent selection was realized probabilistically as

roulette wheel indexes to calculate probabilities as
inverse distances divided by sum of inverse
distances (of all candidate solutions in the current
population).

 Crossover and mutation probabilities were kept 0.8
and 0.01 [19], respectively, throughout this study.

 An elitism based survivor selection was
implemented, which guarantees that the best
solutions from the current generation carry over to
the next generation, unaltered.

 The maximum number of generations were kept
50000 throughout the study.

In each generation, best and average fitness of

population were recorded, similar in spirit to [20], for
each crossover operator.

B. Results and Analysis

The simulation results in terms of solution quality and
speed were recorded for the competing crossover
operators on the select problem. We measured the quality
of a solution in terms of percentage surplus error value as
shown in Equation 1, where optimal value is the known
global optimum.

 (1)

An ANOVA test was also administered to test whether

the apparent differences in the performance gain are
statistically significant or not. Table 1 shows the solution-
quality results averaged over 20 independent runs,
including the overall best solution (Best), the mean of
best-of-run solution averaged over 20 runs (Mean), and
the standard deviation in best-of-run solution (Std Dev).
The results indicate that overall the Sequential
Constructive Crossover (SCX) outperformed all other
crossover operators, with Edge Recombination Crossover
(ERX) offering worst performance. These results are also
evident from Fig. 2 and Fig. 3, which depict the
evolutions of solutions TSP-70 cities and TSP-100 cities
instances, respectively. An ANOVA analysis further
revealed that the solution-quality results differed
significantly across different crossover operators for the
four select problem instances: F (7, 31) = 2.94, F-critical
= 2.42, p < 0.05.

Table 2 shows the execution time to complete 50000
generations, again, averaged over 20 independent runs.
The results indicate that TPX (Two-point Crossover)
completes the required number of generations much
faster than the other operators, while ERX (Edge
Recombination Crossover) being the slowest one; these
results are also evident in Fig. 4. Again, the ANOVA
analysis showed that the CPU-time results differed
significantly across different crossover operators: F (7, 31)
= 8.47, F-critical = 2.39, p < 0.05.

22 Assessing Different Crossover Operators for Travelling Salesman Problem

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 19-25

Table 1. Solution quality (percentage surplus error)

Crossover
Operator

ST70 FTV100 FTV170 TSP225
Mean

(Std Dev) Best Mean
(Std Dev) Best Mean

(Std Dev) Best Mean
(Std Dev) Best

TPX 13.79%
(1.62) 12.58% 63.82%

(3.19) 57.09% 81.08%
(11.89) 77.38% 101.76%

(15.06) 98.27%

PMX 22.94%
(7.26) 20.71% 130.35%

(9.02) 127.38% 143.27%
(19.16) 127.38% 196.27%

(21.35) 192.81%

CX 14.68%
(3.19) 12.37% 111.76%

(5.32) 108.92% 132.03%
(11.74) 128.46% 207.81%

(18.11) 203.63%

SX 57.37%
(8.92) 54.61% 189.28%

(15.03) 182.78% 211.75%
(19.56) 206.92% 245.21%

(23.95) 239.13%

ERX 66. 21%
(7.01) 63.18% 203.06%

(13.85) 197.49% 258.04%
(19.74) 249.17% 311.11%

(29.17) 307.04%

UOX 14.96%
(2.78) 13.62% 73.06%

(4.19) 71.85% 105.86%
(11.97) 102.06% 123.92%

(14.82) 118.04%

SEX 16.97%
(2.73) 13.58 107.36%

(13.18) 103.04% 141.28%
(20.96) 137.29% 177.08%

(16.28) 173.96%

SCX 2.05%
(0.32) 1.74% 14.17%

(2.06) 11.97% 34.85%
(10.49) 29.72% 45.91%

(7.59) 42.97%

Fig.2. Convergence graph of different crossover operators for TSP-70 cities (symmetric) instance

Fig.3. Convergence graph of different crossover operators for TSP-100 cities (asymmetric) instance

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

50

100

150

200

250

300

350

Generations

S
u
rp

lu
s
 e

rr
o
r

(%
)

ST70: TSP 70 Cities

TPX

PMX

CX

SX

ERX

UOX

SEX

SCX

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

100

200

300

400

500

600

700

800

Generations

S
ur

pl
us

 e
rr

or
 (

%
)

FTV100: TSP 100 Cities

TPX

PMX

CX

SX

ERX

UOX

SEX

SCX

 Assessing Different Crossover Operators for Travelling Salesman Problem 23

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 19-25

Table 2. Mean computational time (seconds) to complete 50000 generations

Crossover
Operator

ST70 FTV100 FTV170 TSP225

Mean
(Std Dev)

Mean
(Std Dev)

Mean
(Std Dev)

Mean
(Std Dev)

TPX 328.91
(31.07)

405.83
(38.41)

653.78
(47.29)

1196.25
(84.26)

PMX 1186.33
(180.17)

2109.27
(173.04)

5362.29
(276.68)

7109.47
(418.05)

CX 1073.31
(131.09)

1338.24
(146.72)

2271.05
(163.51)

3691.85
(274.38)

SX 3591.04
(219.17)

5219.85
(527.18)

7091.57
(318.39)

9591.58
(612.32)

ERX 7073.18
(624.11)

9401.88
(716.06)

12038.73
(961.01)

16024.51
(1143.85)

UOX 2392.02
(144.96)

7206.35
(412.13)

9701.18
(367.18)

10851.53
(1063.71)

SEX 1207.28
(139.37)

1733.94
(148.81)

2174.95
(219.74)

3485.02
(619.47)

SCX 1403.97
(97.25)

1907.58
(154.81)

2693.08
(172.37)

4106.18
(394.75)

Fig.4. Average execution time of different crossover operators to complete 50000 generations

V. DISCUSSION

In the present study, the performance of different
crossover operators was evaluated against two
dimensions: solution quality and execution time. The
study revealed some interesting results.

 First, even though not a single crossover operator

was able to find the best known solution for the
four select TSP instances (the best known solutions:
ST70 = 675, TSP225 = 3919, FTV100 = 1788,
FTV170 = 2755) [15], overall, Sequential
Constructive Crossover (SCX) offered the best
performance: on each test problem, the surplus
error was marginally above the best known solution
as compared to other operators. Interestingly
enough, SCX also offered competitive performance
in execution time, even though not the fastest one.

 Second, Edge Recombination Crossover (ERX) is
very slow because of its complex nature, involving
lots of computations to construct edge maps. One
might expect that this sophisticated and complex

computation benefit in attaining a good quality
solution, however, the results suggest otherwise.
ERX is found both the slowest in speed and worst
in solution quality. Interestingly, Two-Point
Crossover (TPX) was observed as the fastest
operator. This may be because TPX is relatively
simple, it just finds two crossover points, split
along those points and glue parts alternating
between parents.

 When the number of cities is small (e.g., ST70), the
performance of different crossover operators is
much better as compared to large number of cities
(e.g., FTV170). To this end, we combined the
results of relatively smaller number of cities ST70
and FTV100, and the results of relatively larger
number of cities FTV170 and TSP225, for both
solution quality and computational time. The
ANOVA analysis on these combined results
revealed that the results differed significantly
between small and large problems: (Solution
quality: F(1, 7) = 2.95, F-critical = 2.13, p < 0.05;
Time: F(1, 7) = 7.06, F-critical = 2.68, p < 0.05).
This may be interpreted as the different crossover

0

5000

10000

15000

20000

TPX PMX CX SX ERX UOX SEX SCX

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Crossover Operator

ST70 FTV100 FTV170 TSP225

24 Assessing Different Crossover Operators for Travelling Salesman Problem

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 19-25

operators evaluated in this study are not that much
scalable and their performance may degrade when
the problem complexity increases.

 Another interesting result came to fore during the
analysis of results. The select crossover operators
can be clustered into three different groups based
on solution quality: SCX in one group, with the
best overall performance, TPX and SX in another
group, with the worst overall performance and
PMX, CX, ERX, UOX and SEX in yet another
group, with medium performance. These results are
evident from Fig. 2 and Fig. 3. ANOVA analysis
further revealed that the difference between three
clusters are highly significant: F(2, 11) = 6.91, F-
critical = 4.26, p < 0.01.

 Finally, it was expected, before analysis of the
results, that the solution quality of the different
crossover operators would be better for symmetric
problems as compared to asymmetric problems.
However, the results indicate that there is no
significant difference among these crossover
operators for symmetric and asymmetric problems:
F(1, 7) = 0.85, F-critical = 4.06, p = 0.47.

VI. CONCLUSION

In this study, eight different crossover operators were
evaluated empirically against two instances of travelling
salesman problem (TSP-29 city and TSP-70 city). The
select crossover operators were implemented to build an
experimental setup upon which simulations were run. The
performance of these operators was analyzed in terms of
solution quality and computational cost. It was found that
SCX outperformed other operators in attaining 'good'
quality solution, whereas TPX outperformed other
operators in terms of computational cost. Moreover, the
select crossover operators can be clustered into three
different groups based on solution quality: SCX in one
group, with the best overall performance, TPX and SX in
another group, with the worst overall performance and
PMX, CX, ERX, UOX and SEX in yet another group,
with medium performance.

The present study also revealed that the performance of
different crossover operators is much better for relatively
small number of cities (e.g. 70 cities), both in terms of
solution quality and computational time. However, the
performance of these operators deteriorated when the
number of cities were relatively large (e.g. 170 cities).
This raises an interesting question on the scalability of
these crossover operators. We conjecture that the
performance of these operators may degrade when the
problem complexity increases. Interestingly, we did not
observe any significant difference on the performance of
the select crossover operators for symmetric and
asymmetric TSP problems, meaning that they perform
equally good on both symmetric and asymmetric
problems.

REFERENCES
[1] Rechenberg. Evolutionsstrategie: optimierung technischer

systeme und prinzipien der biologischen evolution.
Frommann-Holzboog, Stuttgart Germany, 1973.

[2] J. H. Holland. Adaptation in natural and artificial systems.
University of Michigan Press, Ann Arbor, MI, 1975.

[3] J. R. Koza and R. Poli. Genetic Programming: On the
programming of computers by means of natural selection
(complex adaptive systems). MIT Press, Cambridge, MA,
1992.

[4] K.A. De Jong. An analysis of the behaviour of a class of
genetic adaptive systems. Doctoral dissertation, University
of Michigan, 1975.

[5] D. Goldberg and R. Lingle. Alleles, loci, and the travelling
salesman problem. In proceedings of the first international
conference on genetic algorithms and their applications,
1985, 154-159.

[6] I. Oliver, D. Smith and J. Holland. A study of permutation
crossover operators on the travelling salesman problem. In
proceedings of the second international conference on
genetic algorithms and their applications, 1987, 224-230.

[7] D. Whitley, T. Starkweather and D. Shaner. The travelling
salesman and sequence scheduling: quality solutions using
genetic edge recombination. In handbook of genetic
algorithms, 1990, 350-372.

[8] T. Starkweather, S. Mcdaniel, K. E. Mathias, L. D.
Whitley and C. Whitley. A comparison of genetic
sequencing operators. In proceedings of the fourth
international conference on genetic algorithms, 1991, 69-
76.

[9] M. Yamamura, T. Ono and S. Kobayashi. Character-
preserving genetic algorithms for travelling salesman
problem. Journal of the Japanese society for artificial
intelligence, 1992: 7(6), 1049-1059.

[10] G. Syswerda. Order-based genetic algorithms and the
graph coloring problem. In handbook of genetic algorithms,
L. Davis, ed. Van Nostrand Reinhold. 1991.

[11] G. Reinelt. Tsplib, universität heidelberg, 1995. Retrieved
March 14, 2015, from http://www.iwr.uniheidelberg.
de/groups/comopt/software/TSPLIB95/.

[12] R. A. Caruana, L. J. Eshelman and J. D. Schaffer.
Representation and hidden bias II: eliminating defining
length bias in genetic search via shuffle crossover. In
proceedings of the eleventh international joint conference
on artificial intelligence, Detroit, Michigan, USA, 1989,
750–755.

[13] K. A. De Jong W. M. and Spears. A formal analysis of the
role of multi-point crossover in genetic algorithms, Annals
of Mathematics and Artificial Intelligence, 1992, 5(1): 1–
26.

[14] M. Mitchell. An introduction to genetic algorithms. The
MIT Press, Cambridge, USA, 1999.

[15] S. Picek, M. Golub and D. Jakobovic. Evaluation of
Crossover Operator Performance in Genetic Algorithms
with Binary Representation. In proceedings of bio-inspired
computing and applications (lecture notes in computer
series), Springer Berlin Heidelberg, 2012, 223-230.

[16] K. Puljic and R. Manger. Comparison of eight
evolutionary crossover operators for the vehicle routing
problem. Journal of mathematical communications, 2013:
18, 359-375.

[17] V. K. Dabhi and S. Chaudhary. Performance comparison
of crossover operators for postfix genetic programming.

http://academic.research.microsoft.com/Author/1128073/timothy-starkweather
http://academic.research.microsoft.com/Author/10222119/susan-e-mcdaniel
http://academic.research.microsoft.com/Author/798836/keith-e-mathias
http://academic.research.microsoft.com/Author/1328499/darrell-whitley
http://academic.research.microsoft.com/Author/56966973/c-r-whitley

 Assessing Different Crossover Operators for Travelling Salesman Problem 25

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 11, 19-25

International journal of metaheuristics, 2014: 3(3), 244-
264.

[18] D. Dumitrescu, B. Lazzerini, B., L. C. Jain and A.
Dumitrescu. Evolutionary Computation. CRC Press,
Florida, USA, 2000.

[19] S. Picek and M. Golub. Comparison of a crossover
operator in binary-coded genetic algorithms. WSEAS
transactions on computation, 2010: 9(9), 1064-1073.

[20] I. H. Khan. A comparative study of EAG and PBIL on
large-scale global optimization problems. Journal of
applied computational intelligence and soft computing.
Hindawi publications, 2014, 10 pages.

Authors’ Profiles

Imtiaz Hussain Khan is an assistant
professor in Department of Computer
Science at King Abdulaziz University,
Jeddah, Kingdom of Saudi Arabia. He
received his MS in Computer Science from
the University of Essex UK in 2005 and PhD
in Natural Language Generation from the
University of Aberdeen UK in 2010. His

areas of research are Natural Language Processing and
Evolutionary Computation.

