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Abstract—The scalar method of fault diagnosis systems 

of the inertial measurement unit (IMU) is described. All 

inertial navigation systems consist of such IMU. The 

scalar calibration method is a base of the scalar method 

for quality monitoring and diagnostics. Algorithms of 

fault diagnosis systems are developed in accordance with 

scalar calibration method. Algorithm verification is im-

plemented in result of quality monitoring of IMU. A fail-

ure element determination is based in diagnostics algo-

rithm verification and after that the reason of such failure 

is cleared. The process of verifications consists of com-

parison of the calculated estimations of biases, scale fac-

tor errors and misalignments angles of sensors to their 

data sheet certificate, which kept in internal memory of 

navigation computer. In result of such comparison the 

conclusion for working capacity of each one IMU sensor 

can be made and also the failure sensor can be deter-

mined. 

 

Index Terms—Fault diagnosis, inertial measurement unit, 

inertial navigation systems, scalar calibration, quality 

monitoring and diagnostics. 

 

I.  INTRODUCTION 

In recent years, the strong requirements for safety of 

autonomous vehicles caused new demands for reliability 

of the Inertial Navigation Systems and Inertial Measure-

ment Units as their component parts. It is a reason for an 

increasing and expanding their testing program and using 

of fault diagnosis systems, which includes the capacity of 

detecting, isolating and identifying faults. 

There are different methods of fault diagnosis of Iner-

tial Navigation Systems (INS). More simple and wide 

application is monitoring of output level of signals of 

INS components parts made by technology of Built In 

Test Equipment (BITE) [1,2]. Besides, diagnostics could 

be made by multiple-choice alternative methods of opti-

mal filtration [3,4] and functional diagnostic model 

methods [5]. If the functional diagnostic model methods 

are using for IMU and based on application of redundant  

or extra number of sensors, optimal filtration methods 

are using whole INS and required other information of 

instruments, which working on diverse from inertial 

technology principles (for example, information from 

satellite navigation receiver GPS/GLONASS or Doppler 

radar). 

Above mentioned approaches are based on quantita-

tive or numerical models, when using or generating sig-

nals that reflect inconsistencies between nominal and 

faulty system operation. 

During the last time many investigations have been 

made using qualitative or analytical models, using neural 

networks [6, 7] and fuzzy logic techniques [8, 9]. 

From another side, it is known a scalar calibration 

method [10-12].  In that papers are described main fea-

tures of a scalar calibration method for an inertial meas-

urement unit consisting of gyroscopes and accelerome-

ters. The method allows determine biases, scale factor 

errors and mounting misalignments of the sensors with-

out applying special requirements for alignment of test 

equipment and sensors alignment on the test equipment. 

But it requires sufficiently high accuracy of measurement 

of the output signals of sensors: the algorithm works fine 

when the number of digits is at least eight decimal places 

in normalized output signals [12]. 

In this paper is suggested to use together scalar cali-

bration method of gyroscopes and accelerometers [11] 

for fault diagnosis of IMU of Inertial Navigation Systems 

and also functional diagnostics model methods. But re-

dundant sensors are not required for new method of sca-

lar diagnostics. Normally it can use output signals of 

three gyros and three accelerometers only. 

 

II.  SCALAR DIAGNOSTICS ON THE STATIONARY BASE 

Let us consider IMU of strapdown INS [13] (Fig.1) 

consisting from a triad of single degree-of-freedom gyro-

scopes , ,X Y ZG G G  and a triad of accelerometers 

, ,X Y ZA A A  that are mounted to a vehicle with body 

frame oxyz  with orthogonal sensitivity axes, as shown 

on Fig. 2. 

Taking into consideration the errors of instruments 

(biases, scale-factor errors), mounting misalignments of 

the gyroscopes and accelerometers, which cause cross-

coupling terms, and in-run random bias errors, the gyro’s 

output signals may be expressed as shown below: 
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Fig.1. Inertial measurement unit with USB-port 

Accelerometer’s output signals also may be expressed 

as shown below: 

 

ax ax x ax

ay ay y ay

az az z az

U B a w

U B a w

U B a w

       
       

   
       
              

a
K ,            (2) 

 

where 
( ) ( ) ( ), ,a x a y a zU U U   - is a set of output signals of 

gyroscopes (accelerometers), , ,x y z   - are the applied 

angular rates acting about the principle axes of the vehicle, 

, ,x y za a a - are the accelerations acting along these same 

axes, ( ) ( ) ( ), ,a x a y a zB B B   - is a set of the residual fixed bias-

es of gyroscopes (accelerometers), ( ) ( ) ( ), ,a x a y a zw w w   - is a 

set of the in-run random bias errors of gyroscopes (accel-

erometers), 
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( ) ( ) ( ), ,a x a y a zS S S   - is the scale factors of gyroscopes 

(accelerometers), ( ) ( ) ( ), ,a x a y a zE E E   - is a set of the 

scale-factor errors of gyroscopes (accelerometers), qj - 

are the mounting misalignments angles or cross-coupling 

terms of gyroscopes (accelerometers) [2,11]. 

Here in notification of xz  angle, the first index is 

shown that the unit is mounted on  ox  axes and has been 

rotated about oz  axes on xz  angle.  

Be noted that listed above linearized model (1) are 

present to closer for optical sensors like ring laser and 

fiber optic gyroscopes. For the conventional gyroscopes 

and dynamical tuned gyro, the above equations should be 

added to 3 3  matrixes representing the g-dependent 

bias coefficients and anisoelastic coefficients [2]. 

 

 

Fig.2. Inertial measurement unit 

Let us assume that calibration of IMU has being done 

before and all above mentioned parameters like as resid-

ual fixed biases, scale-factor errors and mounting misa-

lignments angles of gyroscopes and accelerometers are 

measured and reserved in internal INS computer’s 

memory. 

After that we will doing scalar diagnostics on fixed 

foundation in the gravity field of Earth, hence will pass 

from the body turn rate   to Earth's rate   therefore 

the gyro’s output signals (1) will be expressed as shown 

below and acceleration a  to the projections of gravity 

vector g  also accelerometer’s output signals (2) will be 

expressed as shown below: 
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(3) 

 

 

 
 

;

;

,

gx ax ax ax x ax xz y ax xy z gx

gy ay ay ay y ay yz x ay yx z gy

gz az az az z az zy x az zx y gz

U B S E g S g S g w

U B S E g S g S g w

U B S E g S g S g w

       

       

       

 

(4) 

 

Fig. 3 and Fig. 4 shows examples of output signals of 

gyroscopes and accelerometers of IMU with USB-port 

[13] on stationary base. 

 

0 500 1000 1500 2000 2500 3000 3500 4000
-0.02

0

0.02

0.04
 Gyro Output signals

  
G

x
, 

d
e
g
re

e
/h

o
u
r

points

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.02

0.04

 G
y
, 

d
e
g
re

e
/h

o
u
r

points

0 500 1000 1500 2000 2500 3000 3500 4000
-0.04

-0.02

0

0.02

  
G

z
, 

d
e
g
re

e
/h

o
u
r

points

 

Fig.3. Output signals of gyroscopes ADXRS22295 (Gx and Gy) and 

ADXRS300 (Gz) on stationary base.
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Fig.4. Output signals of accelerometers ADXL202 (Ax, Ay and Az) on 

stationary base. 

Let's divide every expression of output signal of accel-

erometer on corresponding scale factor and vector's 

module g   2 2 2

x y zg g g g    and every expression of 

output gyro signal on corresponding scale factor and vec-

tor's module    2 2 2

x y z     . Above two sets 

equations (3) and (4) are similar by form and therefore it 

will be enough to consider accelerometer’s output signals 

(4) only after normalization: 
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Let us to input new denotations of dimensionless out-

put signals and values of right parts as follows: 
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(5) 

 

Here , ,j x y z . 

Using above denotations (5) the normalized accel-

erometer’s output signals can be described as 
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After removal of brackets we will have  
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According to scalar method of calibration [10, 11] let 

us sum of squared of normalized accelerometer’s output 

signals as following below 
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It is necessary to calculate the scalar value of measur-

ing vector and compare it to the known scalar value of 

measurable vector. For that let us remove of brackets in 

right side: 
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As far as 2 2 2 1x y zg g g   , and also ignoring values of 

the second order to the trifle like  
2

... , for the triad of 

accelerometers will get 
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Where 
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For the triad of gyros  2 2 2 1x y z    analogically 

will get 
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Here 
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Hence, the difference between the scalar value of the 

normalized measurable vector and his actual value that is 

equal to one, proportional to the errors of the inertial 

instrument cluster. Coefficients in this dependence are 

the normalized values of measurable acceleration 

, ,x y zg g g  for accelerometers and angular rate 

, ,x y z    for gyros, their exponential orders and com-

positions. 

On the base of equations (7) and (8) let us build the al-

gorithm of scalar method of quality monitoring for triad 

of accelerometers and gyros. For sampling time 
kt  it is 

possible to establish following below predicates: 
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Here in right part a value ‘1’ is mean an operable state 

of a triad of accelerometers  or gyroscopes, a value ‘0’ – 

a his failure, 
0g  - a border value of function 

 2 2 21
1

2
gx gy gzu u u   . If the value of function 

 2 2 2 1gx gy gzu u u    will not more than a value 
02 g , 

therefore a triad of accelerometers has being in operable 

state. If not, therefore there is a failure. The same rule is 

valid for quality monitoring of gyros. 

When the task of the quality monitoring is solved it is 

necessary to find a place and clear the reason of failure. 

For that 18 unknown parameters should be found from 

equations (7) and (8). These 18 parameters are distorted 

of the inertial instrument cluster output signals. Six of 

them are differences of mounting misalignments angles 

of the devices. 

According to scalar calibration of the inertial meas-

urement unit we should in the gravity field to turn around 

certain direction at fixed angles and in every position get 

the normalized output signals. To solve the equations (7) 

and (8) it requires at least nine of the inertial instrument 

cluster position, so number of tests should be more or 

equal of nine. The fact is that in each one  position of the 

inertial instrument cluster its output signals simultane-

ously have been measuring either gyroscopes or accel-

erometers, so the minimum number of positions in the 

two times less than the total number of required parame-

ters. 

Consider the equation (7) and (8) in matrix form for 

n - testing operations or measurements: 
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G , Ω  - is a 9n  matrixes of normalized projections 

of the acceleration g  and turn rate   of dimension: 
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 
     
 
      
 
       

T
Ω ; 
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g
e ,

Ω
e - is a 9 1  column vectors of unknown parame-

ters 

 

1

2

2

gx gx

gy gy

gz gz

ax

ay

az

a

a

a

b n

b n

b n

e

e

e







 
 


 
 
 
 
 
 
 
 
 
 
 
 

g
e

;

1

2

3

x x

y y

z z

x

y

z

b n

b n

b n

e

e

e



















 

 

 

 
 


 
 
 
 
 
 
 
 
 
 
 
 

Ω
e

. 

 

Solving the matrix equation (9) by least-squares meth-

od, we obtain: 

 

 

 

ˆ ,

ˆ





-1
T T

g g

-1
T T

Ω Ω

e G G G u

e Ω Ω Ω u

,                      (10) 

 

where ˆ
Ω

e , ˆ
g

e - is an estimating values of the unknown pa-

rameters of inertial measurement unit. 

Thanks to the least squares method the results are 

smoothing, and as long as average of distribution is equal 

to zero 

 

      0x y zM n M n M n   , 

 

then estimated values ˆ
Ω

e , ˆ
g

e  will not have a random noise: 

 

1

2

3

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

ˆ

ˆ

gx

gy

gz

ax

ay

az

a

a

a

b

b

b

e

e

e







 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

g
e , 

1

2

3

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

ˆ

ˆ

x

y

z

x

y

z

b

b

b

e

e

e

























 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

Ω
e .                         (11) 

 

According to introduced relationships (5) we can cal-

culate estimations of ( ) ( ) ( ), ,a x a y a zB B B    and 

( ) ( ) ( ), ,a x a y a zE E E    as follows: 

 

ˆˆ ˆ ˆ; ;

ˆˆ ˆ ˆ; .

aj gj aj aj aj aj

j j j j j j

B b S g E e S

B b S E e S    

 

  
              (12) 

 

When estimated values (12) are calculated, it is possi-

ble to use following set of predicates, which are ex-

pressed the algorithm of diagnostics of gyroscopes triad 

on stationary base: 

   1? 1

1
ˆ

0
k x xF t B B    


     



; 

   2? 2

1
ˆ

0
k y yF t B B    


     



; 

   1? 1

1
ˆ

0
k x xF t B B    


     


; 

   4? 4

1
ˆ

0
k x xF t E E    


     


; 

   5? 5

1
ˆ

0
k y yF t E E    


     


; 

   6? 6

1
ˆ

0
k z zF t E E    


     


; 

   7? 1 1 7

1ˆ
0

kF t      


     


; 

   8? 2 2 8

1ˆ
0

kF t      


     


; 

   9? 3 3 9

1ˆ
0

kF t      


     


. 

                                                                           (13) 

 

Here 1 2 3, ,      - border values of gyro biases, 

4 5 6, ,      - border values of gyro scale factor errors, 

7 8 9, ,      - border values of gyro mounting misa-

lignments. If the difference between calculated values ê  

will not more than a values i , therefore a triad of gy-

roscopes has being in operable state. If not, therefore 

there is a failure. The number of ê , which are excited out 

of value  i , indicate not only what gyro is failure, but 

also indicate a reason of failure: excessing of real biases, 

scale factor errors or mounting misalignments to their 

nominal values. 

The scheme of scalar method of fault diagnosis sys-

tems of IMU is depicted in the Fig. 5. Here numbers 1, 2, 

3 is shown the gyro’s failures via biases discrepancy, 

numbers 4,5,6 - gyro’s failures via scale factor errors 

discrepancy and numbers 7,8,9 - gyro’s failures via  

mounting misalignments discrepancy. 

 

 

Fig.5. Scheme of scalar method of fault diagnosis systems of gyro’s 

triad IMU
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III.  THE SCALAR DIAGNOSTICS ON THE MOVING BASE 

Let us consider scalar diagnostics on the moving base. 

Using initial equations (1) and (2) we can receive follow-

ing relations for gyro cluster 

 

 

 
 

;

;

,

x x x x x x xz y x xy z x

y y y y y y yz x y yx z y

z z z z z z zy x z zx y z

U B S E S S w

U B S E S S w

U B S E S S w

      

      

      

  

  

  

       

       

       

 

(14) 

 

and for accelerometer’s cluster 

 

 

 
 

;

;

.

ax ax ax ax x ax xz y ax xy z ax

ay ay ay ay y ay yz x ay yx z ay

az az az az z az zy x az zx y az

U B S E a S a S a w

U B S E a S a S a w

U B S E a S a S a w

       

       

       

 

(15) 

 

Fig. 6 and Fig. 7 shows examples of output signals of 

gyroscopes and accelerometers of IMU with USB-port 

[13] on the moving base (takeoff with sharp turn). 
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Fig.6. Output signals of gyroscopes ADXRS22295 (Gx and Gy) and 

ADXRS300 (Gz) on the moving base. 
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Fig.7. Output signals of accelerometers ADXL202 (Ax, Ay and Az) on 

the moving base. 

According to scalar diagnostics method let's divide 

every expression of output signal of accelerometer on 

corresponding scale factor and vector's module 
2 2 2

x y za a a a    and every expression of output gyro 

signal on corresponding scale factor and vector's module 

2 2 2

x y z      .  

New denotations of dimensionless output signals and 

values of right parts will be as follows: 

 

; ; ;

; ; ;

; ; ;

.

aj j aj

aj j aj

aj aj

aj aj j

aj aj j

aj aj j

j j j

j j j

j j

j

j

j

U a B
u a b

S a a S a

E n U
e n u

S S a S

B E
b e

S S

n
n

S







 

 

 












 



  

  

  



            (16) 

 

Here , ,j x y z . 

On the stationary base we should to use magnitude of 

gravity vector g  and Earth's rate  . But how we can 

get current values of , ,x y za a a  and , ,x y z    on the 

moving base for calculations of 2 2 2

x y za a a a    and 

2 2 2

x y z      ? 

Solving equations (1) and (2), we can receive estimat-

ed values ˆ ˆ ˆ, ,x y z   : 

 

ˆˆ

ˆˆ

ˆ ˆ

xx x

y y y

z z z

BU

U B

U B



 

 







                              

-1

ω
K ,                (17) 

 

Also estimated value of the accelerations ˆ ˆ ˆ, ,x y za a a  

could be calculated as 

 

ˆˆ

ˆˆ

ˆˆ

axx ax

y ay ay

z az az

Ba U

a U B

a U B

                              

-1

a
K .               (18) 

 

Now we can receive 2 2 2ˆ ˆ ˆ ˆ
x y za a a a    and 

2 2 2ˆ ˆ ˆ ˆ
x y z      . 

As far as on the moving base for the triad of gyros 
2 2 2 1x y z      we will have following equation: 

 

 2 2 2

2 2 2

1 2 3

1
1

2

( ) ( ) ( )

.

x y z

x x x y y y z z z

x x y y z z

x y x z y z

u u u

b n b n b n

e e e

  

     

  

  

  

  

        

   

     

   

 

 

     (19)
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For the triad of accelerometers 2 2 2 1x y za a a    will 

get us similar equation: 

 

2 2 2

2 2 2

1 2 3

1
( 1)

2

( ) ( ) ( )

.

ax ay az

ax ax x ay ay y az az z

ax x ay y az z

a x y a x z a y z

u u u

b n a b n a b n a

e a e a e a

a a a a a a  

   

     

   

 

     (20) 

 

Hence, the difference between the scalar value of the 

normalized measurable vector and his actual value that is 

equal to one, proportional to the errors of the inertial 

instrument cluster. Coefficients in this dependence are 

the normalized values of measurable acceleration 

, ,x y za a a  for accelerometers and angular rate , ,x y z    

for gyros, their exponential orders and compositions. 

Analogically to algorithm of scalar monitoring on the 

stationary base, from equations (19) and (20) we can 

build the algorithm of scalar method of quality monitor-

ing for triad of accelerometers and gyros for moving base. 

For sampling time 
kt  it is possible to establish following 

below predicates: 

 

   2 2 2

0 0 0

11
1

02
a k a ax ay az aF t u u u 

 
        

  

,      (21) 

 

   2 2 2

0 0 0

11
1

02
k x y zF t u u u    

 
        

  

.     (22) 

 

Here in right part a value ‘1’ is mean an operable state 

of a triad of accelerometers  or gyroscopes, a value ‘0’ – 

a his failure, 0a  - a border value of function 

 2 2 21
1

2
ax ay azu u u   . If the value of function 

 2 2 2 1ax ay azu u u    will not more than a value 02 g , 

therefore a triad of accelerometers has being in operable 

state. If not, therefore there is a failure. The same rule is 

valid for quality monitoring of gyros. 

When the task of the quality monitoring is solved it is 

necessary to find a place and clear the reason of failure. 

For that 18 unknown parameters should be found from 

equations (19) and (20). These 18 parameters are distort-

ed of the inertial instrument cluster output signals. Six of 

them are differences of mounting misalignments angles 

of the devices. 

Consider the equation (19) and (20) in matrix-block 

form: 

 





a a

ω ω

u = A e ,

u = ω e
,                            (23) 

 

where 
a Ω

u ,u   is a 1n  column vectors of the normalized 

inertial measurement unit output signals: 

 

 

 

2 2 2

1 1 1

2 2 2

2 2 2

2 2 2

1
1

2

1
1

2

............................

1
1

2

ax ay az

ax ay az

axn ayn azn

u u u

u u u

u u u

 
   

 
   
 
 
 
 

   
 

a
u , 

 

 

 

 

2 2 2

1 1 1

2 2 2

2 2 2

2 2 2

1
1

2

1
1

2

............................

1
1

2

x y z

x y z

xn yn zn

u u u

u u u

u u u

  

  

  

 
   

 
   
 
 
 
 

   
 

ω
u , 

 

A , ω  - is a 9n  matrixes of normalized projections 

of the acceleration a  and turn rate   of dimension: 

 

1 2

1 2

1 2

2 2 2

1 2

2 2 2

1 2

2 2 2

1 2

1 1 2 2

1 1 2 2

1 1 2 2

x x xn

y y yn

z z zn

x x xn

y y yn

z z zn

x y x y xn yn

x z x z xn zn

y z y z yn zn

a a a

a a a

a a a

a a a

a a a

a a a

a a a a a a

a a a a a a

a a a a a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 

T
A

; 

 

1 2

1 2

1 2

2 2 2

1 2

2 2 2

1 2

2 2 2

1 2

1 1 2 2

1 1 2 2

1 1 2 2

x x xn

y y yn

z z zn

x x xn

y y yn

z z zn

x y x y xn yn

x z x z xn zn

y z y z yn zn

  

  

  

  

  

  

     

     

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

T
ω

; 

 

a
e ,

ω
e - is a 9 1  column vectors of unknown parame-

ters 

 

1

2

2

ax ax

ay ay

az az

ax

ay

az

a

a

a

b n

b n

b n

e

e

e







 
 


 
 
 
 
 
 
 
 
 
 
 
 

a
e ;

1

2

3

x x

y y

z z

x

y

z

b n

b n

b n

e

e

e

 

 

 



















 
 


 
 
 
 
 
 
 
 
 
 
 
 

ω
e . 
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Solving the matrix equation (23) by least-squares 

method, we obtain: 

 

 

 

ˆ

ˆ

-1
T T

a a

-1
T T

ω ω

e = A A A u ,

e = ω ω ω u
,                    (24) 

 

where ˆ
a

e , ˆ
ω

e - is an estimating values of the unknown pa-

rameters of inertial measurement unit. 

Thanks to the least squares method the results are 

smoothing, and as long as average of distribution is equal 

to zero 

 

      0x y zM n M n M n   , 

 

then estimated values ˆ
a

e , ˆ
ω

e  will not have a random noise: 

 

1

2

2

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

ˆ

ˆ

ax

ay

az

ax

ay

az

a

a

a

b

b

b

e

e

e







 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

a
e

;

1

2

3

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ

ˆ

ˆ

ˆ

x

y

z

x

y

z

b

b

b

e

e

e

























 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

ω
e

.                       (25) 

 

According to introduced relationships (16) we can cal-

culate estimations of ( ) ( ) ( ), ,a x a y a zB B B    and 

( ) ( ) ( ), ,a x a y a zE E E    on moving base as follows: 

 

ˆˆ ˆ ˆ; ;

ˆˆ ˆ ˆ; .

aj gj aj aj aj aj

j j j j j j

B b S a E e S

B b S E e S    

 

 
            (26) 

 

And algorithm of scalar method of diagnostics of ac-

celerometers triad will correspond to predicates 

 

   1? 1

1
ˆ

0
a k a ax ax aF t B B 


     


; 

   2? 2

1
ˆ

0
a k a ay ay aF t B B 


     


; 

   3? 3

1
ˆ

0
a k a az az aF t B B 


     


; 

   4? 4

1
ˆ

0
a k a ax ax aF t E E 


     


; 

 

   5? 5

1
ˆ

0
a k a ay ay aF t E E 


     


; 

   6? 6

1
ˆ

0
a k a az az aF t E E 


     


; 

   7? 1 1 7

1ˆ
0

a k a a a aF t   


     


; 

   8? 2 2 8

1ˆ
0

a k a a a aF t   


     


; 

   9? 3 3 9

1ˆ
0

a k a a a aF t   


     


. 

(27) 

 

Here 1 2 3, ,a a a    - border values of accelerometers bi-

ases, 
4 5 6, ,a a a    - border values of accelerometers scale 

factor errors, 
7 8 9, ,a a a    - border values of accelerome-

ters mounting misalignments. If the difference between 

calculated values ê  will not more than a values i , 

therefore a triad of gyroscopes has being in operable 

state. If not, therefore there is a failure. The number of ê , 

which are excited out of value  
i , indicate not only 

what gyro is failure, but also indicate a reason of failure: 

excessing of real biases, scale factor errors or mounting 

misalignments to their nominal values. 

 

IV.  CONCLUSIONS 

In this paper we have proposed a new method of fault 

diagnosis of Strapdown Inertial Navigation Systems. The 

scalar calibration method is a base of the scalar method 

of quality monitoring and diagnostics. Algorithms of 

fault diagnosis systems are developed in accordance with 

scalar calibration method. In result of quality monitoring 

algorithm verification is implemented the working capac-

ity monitoring of IMU. A failure element determination 

is based in diagnostics algorithm verification and after 

that the reason of such failure is cleared. 

The process of verifications consists of comparison of 

the calculated estimations of biases, scale factor errors 

and misalignments angles of sensors to their data sheet 

certificate, which kept in internal memory of computer. 

In result of such comparison the conclusion for working 

capacity of each one IMU sensor can be made and also 

the failure sensor can be determined. 
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