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Abstract—A problem that humans must face very often is 

that of having to add, melt or synthesize information, that 

is, combine together a series of data from various sources 

to reach a certain conclusion or make a certain decision. 

This involves the use of one or more aggregation 

operators capable to provide a collective preference 

relation. These operators must be chosen according to 

specific criteria taking into account the characteristic 

properties of each operator. Some conditions to be taken 

into account to identify them are the following: axiomatic 

strength, empirical setting, adaptability, numerical 

efficiency, compensation and compensation range, added 

behavior and scale level required of the membership 

functions. It is possible to establish a general list of 

possible mathematical properties whose verification 

might be desirable in certain cases: boundary conditions, 

continuity, not decreasing monotony, symmetry, 

idempotence, associativity, bisymmetry, self-

distributivity, compensation, homogeneity, translativity, 

stability, ϕ-comparability, sensitivity and locally internal 

functions. For analyze the attitudinal character of the 

aggregation operator the following measures are studied: 

disjunction degree (orness), dispersion, balance and 

divergence. In this paper, a review of these issues is 

presented. 

 

Index Terms—Aggregation, aggregation operators, 

behavioral measures of aggregation operators, 

intersection operators, OWA operators. 

 

I.  INTRODUCTION 

A problem that humans must face is usually that of 

having to add, melt or synthesize information [1]. 

Aggregation involves the use of one or more operators 

capable of providing a collective preference relation [2]. 

The aggregation problem arises in virtually any 

discipline [3]. 

The different scenarios in which a system may need to 

add information are usually classified in two groups 

according to the nature of the problem [4]:  

 

(a) Aggregation of information for decision-making. 

(b) Adding information to the description or 

representation of objects. 

 

An important aspect related with the study of 

aggregation operators is to analyze what properties must 

meet, or just which properties meet the proposed 

operators. There is not a single criterion for selecting 

aggregation operators and this has led some conditions to 

be taken into account to identify them [5] [6]:  

 

(a) Axiomatic strength.  

(b) Empirical setting.  

(c) Adaptability.  

(d) Numerical efficiency.  

(e) Compensation and compensation range.  

(f) Added behavior.  

(g) Scale level required of the membership functions. 

 

An interesting question is to consider the attitudinal 

character of the aggregation operator. The following 

measures are defined: 

 

(a) Disjunction degree (orness). 

(b) Dispersion. 

(c) Balance operator. 

(d) Divergence. 

 

The main aggregation operators have been divided 

according to their position on the minimum and 

maximum operators into four groups [7]: 

 

A. Lower or equal to the minimum: 

a.  T-norms. 

B. Greater than or equal to the maximum: 

a. T-conorms. 

C. Between the minimum and maximum: 

a. Quasi-linear average: 

1. Weighted average. 

2. Quasi-arithmetic means. 

3. Generalized means. 

b. Weighted minimum and maximum -

introduced in the framework of 

possibility theory-. 

c. Ordered weighted averaging: 

1. ME-OWA.
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2. S-OWA. 

3. Step-OWA. 

4. Window-OWA. 

5. Neat-OWA. 

d. Weighted ordered weighted averaging. 

e. Fuzzy integrals. 

D. Hybrids. 

 

In this article, we provide a brief overview of the main 

aggregation operators, and it is also structured as follows: 

firstly, we make a brief review of the aggregation of 

information; secondly, it is presented the mathematical 

properties of aggregation; thirdly, we will present the 

main aggregation operators; and finally, it will finish with 

conclusions about them. 

 

II.  REVIEW ON DATA AGGREGATION 

A problem that humans must face is usually that of 

having to add, melt or synthesize information, i.e. 

combined each other a series of data from various sources 

to reach a certain conclusion or make a certain decision 

[1]. 

Moreover, in everyday activity of organizations 

(including governments), decisions must be made on 

which depends the success of management. Generally, 

decision models are used including an aggregation phase 

and another of exploitation. Aggregation involves the use 

of one or more operators capable of providing a collective 

preference relation. Thus, aggregation of information in 

an efficient and flexible way has become the main task of 

the problems of access to information and other problems 

of multicriteria decision [2]. 

The aggregation problem arises in virtually any 

discipline, being the medicine, economics, statistical or 

control theory only a few significant examples. Therefore, 

search, study and formalization of methods and 

techniques for aggregating information constitute a 

research field of wide spectrum and great timeliness. In 

particular, the need for rigorous mechanisms for this task 

is particularly evident in the field of Governments or 

Administrations, since aggregation of information is 

essential in fields such as decision-making and 

acquisition of knowledge from large volumes of data, 

among others, resulting very useful the aggregations 

between the minimum and the maximum operator, 

through the means operators [3]. 

In any of these fields, the different scenarios in which a 

system may need to add information are usually classified 

in two groups according to the nature of the problem [4]: 

 

 Aggregation of information for decision-making: 

encompasses all those situations where you have 

multiple views or different criteria and plans to 

make a decision as consistent as possible with the 

initial information. 

 Adding information to the description or 

representation of objects: it is required that when 

you have multiple information about the same 

object, but complementary and from different 

sources - experts, sensors, etc. - and it is intended to 

build on them an overall description of the object. 

 

On the other hand, it is easy to check that, in the vast 

majority of aggregation processes, preliminary 

information is often uncertain or imprecise. So, it is 

generally convenient to have a framework that allows us 

to represent and handle such vagueness. 

Although there are several mathematical environments 

capable of working with imperfect knowledge 

(calculation of probabilities, possibility theory, evidence 

theory), perhaps the most important of them is the theory 

of fuzzy subsets or fuzzy logic. 

Obviously, there is not a single criterion for selecting 

aggregation operators and this has led some conditions to 

be taken into account to identify them [5]: 

 

 Axiomatic strength: On equal terms, an operator is 

better when less limited is by   which axioms 

satisfies. 

 Empirical setting: In addition to satisfying certain 

axioms or have certain formal qualities, operators 

should appropriately reflect reality. 

 Adaptability: The operators must be adapted to the 

specific context in which they are, essentially by 

parameterization. 

 Numerical efficiency: The computational effort 

calculation is especially important when you have to 

solve big problems. In fact, many times we must 

resort to heuristics techniques able to find quality 

solutions although they are not necessarily optimal 

[6]. 

 Compensation and compensation range: The greater 

the extent to which the membership functions of the 

aggregated fuzzy sets, the aggregation operator 

better represent the situations in which attributes are 

compensated each other. 

 Added behavior: The degree of membership in a 

fuzzy set in the aggregate set very often depends on 

the number of sets combined. 

 Scale level required of the membership functions of: 

Different operators may require different levels of 

scale membership information (nominal, interval, 

ratio or absolute) to be admissible. On equal terms, 

it is preferred an operator that requires the lowest 

level scale. 

 

In turn, Dubois and Prade propose the following 

classification of aggregation operators based on their 

behavior [7]: 

 

 Conjunctive or intolerant behavior: It is desired that 

all criteria are met to combine, and it is represented 

by any lower or equal to the minimum operator. The 

t-norms satisfy this requirement and therefore 

belong to this category. 

 Disjunctive or tolerant behavior: Simply one of the 

criteria is met for an overall satisfaction; it is 

represented by any greater or equal to the maximum 

operator. In this case the t-conorms are suitable 
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carriers. 

 Behavior of commitment: In many cases, it is 

desired to obtain an intermediate result that does not 

reflect neither the total lack of compensation which 

is the conjunctive behavior nor the total 

compensation of disjunctive behavior. This behavior 

is present in all operators between the minimum and 

maximum. 

 

The above classification has the disadvantage of being 

too general and is even, as the authors themselves 

acknowledge, incomplete, and there are many operators - 

such as symmetric sums - presenting a hybrid behavior 

that does not correspond to any of the three categories 

previous [1]. 

Generically it can be said that the timely aggregation 

fuzzy subsets is translated into the application of a 

numeric operator of the form F : [0,1]n → [0,1] which, 

when checking the boundary conditions F ( 0 , . . . ,0) = 0 

and F ( l , . . . , 1) = 1 and it is monotonous and 

continuous, this is called aggregation operator. 

Because of its many applications, the definition and 

study of such operators has proliferated, and now, there is 

a great deal of proposals in this regard [7] [8] [9]. 

 

III.  MATHEMATICAL PROPERTIES OF AGGREGATION  

An important aspect related with the study of 

aggregation operators is to analyze what properties must 

meet, or just which properties meet the proposed 

operators. Regarding the first point, author usually 

considers that these operators must meet categorically no 

concrete property, although they cite some that 

considered natural, such as boundary conditions, 

monotony or the continuity of the operators [1]. 

However, it is possible to establish a general list of 

possible mathematical properties whose verification 

might be desirable in certain cases [10] [11] [7] [12] [13] 

[14] [15] [16] [17] [18] [19] [20]. 

The main properties are these: 

 

 Boundary conditions: F(0,...,0) = 0, F(1,...,1) = 1. 

 Continuity: F is a continuous function on each of its 

variables. This property ensures that the existence of 

small variations in the data does not cause big jumps 

in the result. 

 Not decreasing monotony (in each variable): For all 

i ϵ {1,…, n}, if  > , then 

. By this 

property, it is described that if the input data 

increases, the result of their combination cannot 

decrease. 

 Symmetry (or commutative, neutrality, anonymity): 

Where I = [0, 1]; for all (x1,…, xn) ϵ In, 

; σ being any 

permutation of {1,..., n}. This property states that 

the order of the input data should not affect the 

result obtained, all of which are treated in the same 

way. 

 Idempotence (or unanimously, identity): Where I = 

[0, 1]; for all x ϵ I, F(x,…, x) = x. The idempotence 

is a generalization of the boundary conditions 

anywhere in the universe. It states that if all input 

data are the same, the result of their combination 

should match with them. 

 Associativity: (n = 2) For all x1, x2, x3 ϵ I, F(x1, F(x2, 

x3)) = F(F(x1, x2), x3). This property allows 

extending immediate, consistent and unambiguous 

manner to operators defined on two variables at any 

number of arguments. 

 Bisymmetry: (n = 2) For all x1, x2, x3, x4 ϵ I, F(F(x1, 

x2), F(x3, x4)) = F(F(x1, x3), F(x2, x4)). The 

bisymmetry property, weaker than the association, 

said that the result of combining in groups of two 

input data does not depend on the choice of these 

groups. All associative and commutative function is 

bisymmetric. 

 Self-distributivity: (n = 2) For all x1, x2, x3 ϵ I, F(x1, 

F(x2, x3)) = F(F(x1, x2), F(x1, x3)) (by the left). (n = 2) 

For all x1, x2, x3 ϵ I, F(F(x1, x2), x3) = F(F(x1, x3), 

F(x2, x3)) (by the right). Any idempotent and bi-

symmetric function is self-distributive. Any strictly 

increasing and self-distributive function is 

idempotent. 

 Compensation (or property of Pareto, average or the 

media): For all (x1,…, xn) ϵ In, min(x1,…, xn) ≤ 

F(x1,…, xn) ≤ max(x1,…, xn). The property 

compensation ensures that the result will be a 

compromise value located between the minimum 

and the maximum of all the input data. If F satisfies 

the property compensation, then F is idempotent. If 

F is no decreasing monotonic and idempotent, then 

F satisfies the property compensation. 

 Homogeneity: For all (x1,…, xn) ϵ I
n and for all t ϵ , 

t > 0, F(tx1,…, txn) = tF(x1,…, xn). 

 Translativity: For all (x1,…, xn) ϵ I
n and for all t ϵ , 

F(x1 + t,…, xn + t) = F(x1,…, xn) + t. 

 Stability (or invariance): For all (x1,…, xn) ϵ In, 

F(f(x1),…, f(xn)) = f(F(x1,…, xn)), where f :  →  

continuous and increasing function. It is a 

generalization of the properties of homogeneity and 

translativity. 

 ϕ-Comparability: For all (x1,…, xn), (y1,…, yn) ϵ I
n, 

if F(x1,…, xn) < F(y1,…, yn), then F(ϕ(x1),…, ϕ(xn)) 

< F(ϕ(y1),…, ϕ(yn)) where ϕ :  →  an 

automorphism. The function ϕ is interpreted as a 

scale change. If F is stable under a positive linear 

transformation, then F is ϕ-comparable. If F is ϕ-

comparable and idempotent, then F is stable under a 

positive linear transformation. 

 Sensitivity: It is defined as a value that measures the 

behavior of an operator before the introduction of 

small changes in the input values. It is established 

two levels of sensitivity: 

 

o Extreme sensitivity (worst case): 
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           (1) 

 

o Medium sensitivity: 

 

                    (2) 

 

o The t-norm min and t-conorm max are those 

with less extreme sensitivity of all the t-norms 

and t-conorms.  

o The t-norm product xy and t-conorm algebraic 

sum x + y - xy are those with lower average 

sensitivity of all the t-norms and t-conorms. 

o The (extreme or average) sensitivity of a t-norm 

coincides with sensitivity (extreme or average) 

of its dual t-conorm respect to the standard 

negation. 

 

 Locally internal functions: For all (x1,…, xn) ϵ In, 

F(x1,…, xn) ϵ {x1,…, xn}. A trivial example of 

operators who verified it is order statistics. Note that 

some aggregation operators - as weighted averages 

or OWA - turn out to be convex linear combinations 

of local internal functions. 

 

IV.  BRIEF OVERVIEW OF THE MAIN AGGREGATION 

OPERATORS  

Including operators have been divided according to 

their position on the minimum and maximum operators 

into four groups [7]: 

 

A. Lower or equal to the minimum: Those who 

demand that all aggregates criteria are met 

simultaneously, and therefore the result of the 

aggregation will be bounded above by the lower of 

the different grades of aggregate satisfaction. This 

class, whose components are commonly referred 

to intercept operators, includes known triangular 

norms. 

B. Greater than or equal to the maximum: Those that 

generate a result that is bounded below by the 

larger of the added items. They are called union 

operators and its greatest exponent is the family of 

triangular conforms. 

C. Between the minimum and maximum: Those who, 

unlike the previous two extreme cases described 

an attitude of compensation or averaging values 

returning a value between both extremes, and that 

could be termed average operators. 

D. Hybrids: Are all those with a mixed attitude and 

therefore do not belong to any of the above three 

groups. 

 

A.  Operators of intersection (F ≤ min) 

In this group are especially distinguished triangular 

norms (t-norms) [1]. 

a.  T-norms 

The maximum exponent of intersection operators 

constitute the triangular norms or t-norms [10] [21] [22] 

[23] [24] [12] [13] [25] [26] [27] [28] [29] [30] [31] [32] 

[33] [34] [35]. 

 

Definition: Where I = [0, 1], a triangular norm or t - 

norm is a function T: I x I → I that satisfies the following 

properties for any x, y, z, t ϵ I: 
 

 T(x, y) = T(y, x) (commutativity). 

 T(x, T(y, z)) = T(T(x, y), z) (associativity). 

 If x ≤ z and y ≤ t, T(x, y) ≤ T(z, t) (monotony). 

 T(x, 1) = x (neutral element 1). 

 

B.  Union operators (F ≥ max) 

In this group are particularly distinguished triangular 

conorms (t-conorms) [1]. 

a.  T-conorms 

 

Definition: Where I = [0, 1]; a triangular conorm or t-

conorm is a function S: I x I → I that satisfies the 

following properties for any x, y, z, t ϵ I: 
 

 S(x, y) = S(y, x) (commutativity). 

 S(x, S(y, z)) = S(S(x, y), z) (associativity). 

 If x ≤ z and y ≤ t, S(x, y) ≤ S(z, t) (monotony). 

 S(x, 0) = x (neutral element 0). 

 

The t-conorms are obtained by duality from the t-

norms: a function S: I x I → I is a t-conorm if T(x, y) = 1 - 

S(l - x, l - y) is a t-norm. 

C.  Average operators (min ≤ F ≤ max) 

These operators ensure obtaining an intermediate result 

between the minimum and maximum. They have the 

property to be idempotent. The most important families 

of operators of this type are [1]:  

 

a. Quasi-linear average. 

b. Weighted minimum and maximum -introduced in 

the framework of possibility theory-. 

c. Ordered weighted averaging. 

d. Weighted ordered weighted averaging. 

e. Fuzzy integrals. 

 

a.  Quasi-linear average 

These operators have also been extensively studied [10] 

[7] [36] [8] [37] [38] [39] [40] [41]. 

 

Definition: A quasi-linear medium is a function Mf,w: In 

→ I defined for all (x1,…, xn) of In, by: 
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               (3) 

 

where f: I →  a continuous and strictly monotone 

function called generating function of the mean and wt = 

(w1, … ,wn) a vector of weights such that wi ϵ I and 

verifying that  

The main sub-classes of this family of operators are 

indicated:  

 

1. Weighted average. 

2. Quasi-arithmetic means. 

3. Generalized means. 

 

1.  Weighted average 

The weighted averages are a particular case of quasi-

linear averages constructed taking as generating function 

the identity function, f(x) = x: 

 

Definition: A weighted average is a function Mw: In → I 

defined for all (x1,…, xn) of In by: 

 

                   (4) 

 

where wt = (w1, … ,wn) a vector of weights such that wi ϵ 
I and verifying that  

2.  Quasi-arithmetic means 

The quasi-arithmetic means are a particular case of 

quasi-linear means in which the weight vector is such that 

wi = 1/n for all i ϵ {1, …, n}: 

Definition: A quasi-arithmetic mean is a function Mf: I
n 

→ I defined for all (x1,…, xn) of In by: 

 

              (5) 

 

where f: I →  a continuous and strictly monotone 

function called generating function of the mean. 

3.  Generalized Means 

A particular and very common case of quasi-linear 

means are generalized means, obtained when the 

generating function is f(x) = xα with α ϵ *: 

 

Definition: A generalized mean is a function Mα,w: In → I 

defined for all (x1,…, xn) of In by: 

 

               (6) 

 

being α a parameter belonging to * and wt = (w1, … ,wn) 

a weights vector such that wi ϵ I and verifying that 

 

This last family include the following operators, 

obtained by taking the weights vector wi = 1/n for all i ϵ 
{1, …, n}: 

 

 Minimum: ( x1,…, xn) = min(x1,…, xn). 

 Harmonic mean: . 

 Geometric mean: M0 (x1,…, xn) = (x1 x x2… 

xn)
1/n. 

 Arithmetic mean: . 

 Maximum: ( x1,…, xn) = max(x1,…, xn). 

 

b.  Weighted minimum and maximum 

The weighted minimum and maximum were developed 

as a generalization of the min and max operators [11] [7] 

[42]: 

 

Definition: It is called weighted minimum and weighted 

maximum, respectively, to the functions of w-min, w-max: 

In → I defined for all (x1,…, xn) of In by: 

 

 
 

and 

 

 
 

being wt = (w1, … ,wn) a normalized weights vector such 

that max (wi) = 1 (i = 1, …, n). 

The first operator describes a measure of need, while 

the second describes a measure of possibility. When all 

criteria to aggregate are equally important (wi = 1 for all 

i), the minimum and maximum operators are obtained, 

respectively. 

c.  Ordered Weighted Averaging (OWA) 

The Ordered Weighted Averaging (OWA) was 

introduced by Yager in 1988 as a new compensation 

operator. They allow the introduction of weights, and 

therefore they are similar to the weighted mean. The 

fundamental difference between the weighted mean and 

the new operator is that, in the latter case, the weights do 

not affect a specific criteria, weights affect the position of 

each criterion when the criteria are sorted: each weight wi 

is associated with the i-th largest element, regardless of 

whether [43] [44] [6] [45] [46] [47] [48] [49] [50] [51] 

[52] [53] [54] [55] [56] [57] [58] [59] [60] [61]. 

 

Definition: An OWA operator is defined as 

RRF n : , it is associated with a vector of n 

elements 
 TnwwwW ,,, 21 

such that  wi  0 1,  and 





n

i

iw
1

1

. 

Further  1 2

1

, , ,
n

n j j

j

F a a a w b


   where bj is the j 
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largest of the ai. 

A fundamental aspect of the OWA operators is the step 

of reorder. An aggregate xi is not associated with a 

particular weight wj, a weight is associated with a 

particular j position of the ordered arguments. This 

arrangement introduces nonlinearity in the aggregation 

process [62]. 

OWA operators have been applied in different areas, 

such as multicriteria decision-making [43] [63], expert 

systems [64] and fuzzy group decision making process 

[65] [55]. 

Noted that different OWA operators are distinguished 

by their weight function or weight. In [43] listed three 

important special cases of aggregations OWA: 

 

1. F* . In this case W = W* = [1, 0, ..., 0]T. 

2. F* . In this case W = W* = [0, 0, ..., 1]T. 

3. Fave. In this case W W
n n nave

T

 










1 1 1
, , , . 

 

Different approaches have been suggested for the 

determination of the weightings used in the OWA 

operator, for example, maximum entropy, method of 

learning, fuzzy quantifiers, minimum variability, etc. [65]. 

One of them allows to obtain weights according to 

linguistic quantifiers. In this case the quantifiers are 

defined as a function    1,01,0: Q  
where Q(0)=0, 

Q(1)=1 and )()( yQxQ   to x>y. 

Zadeh [66] define the function Q as follows: 

 




















xbif

bxaif
ab

ax

axif

xQ

1

0

)(

  (7) 

 

with a, b, x[0, 1]. 

For a given value  1,0x , Q(x) is the degree to 

which x satisfies the fuzzy concept represented by the 

quantifier. Based on the Q function, the OWA vector is 

determined from Q as follows: 

 








 











n

i
Q

n

i
Qwi

1

                        (8) 

 

These weights have the function to increase or 

diminish the importance of the different components of 

the aggregation according to the semantics associated 

with Q, i.e., the quantifier determines the strategy of 

construction of weighting vector. 

OWA operators could be considered as a particular 

case of a larger family of operators, which could be called 

quasi-linear ordered mean, and that would be given by 

the following definition [1]: 

Definition: A quasi-linear ordered mean is a function 

Of,w: Rn → R defined for all (x1,…, xn) of Rn, by: 

 

        (9) 

 

where f: R → R continuous and strictly monotonic 

function called generating function of the mean, wt = 

(w1, …, wn) a vector of weights such that wi ϵ R and 

verifying , and where {σ(1), ... , σ(n)} is a 

permutation of {1, …, n} such that  for all 

i = 2, …, n. 

An OWA is a compensation (and therefore idempotent) 

operator, monotone, none decreasing in each variable, 

commutative and homogeneous. 

The arithmetic mean is an OWA particular case, 

obtained by taking all weights equal to 1/n. The same, it 

goes for the so-called order statistics, obtained to the 

vector of weights formed entirely by zeros except for one 

in the right position, and that turn includes maximum and 

minimum operators. 

 

Definition: The k-th order statistical (k ϵ {l, …, n}) is a 

function x(k): Rn → R defined, for all (x1,…, xn) of Rn, by: 

 

 
 

where yk is the k-th smallest element of (x1,…, xn). 

Some of the most common OWA operators are as 

follows [67]: 

 

1. ME-OWA. 

2. S-OWA. 

3. Step-OWA. 

4. Window-OWA. 

5. Neat-OWA. 

 

1.  ME-OWA 

The first family of parameterized OWA operators is 

defined by O’Hagan [64]. This family of operators is 

called ME-OWA, the ME acronym referring to maximum 

entropy. 

The procedure developed for the calculation of the 

weights is as follows: Firstly, you select a desired value 

of orness (taking an optimistic value)  ; then those 

weights that allow you to get the desired  value are 

determined with maximum dispersion (entropy). In 

particular, the following programming problem is 

resolved: 

Maximize  

 











n

i

ii ww )ln(

 
 

Fulfilling known restrictions 

 





n

i
i

w
1

1
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 1,0iw
 

 

To which it is added 

 

 



n

i

iwin
n

)(
1

1


 
 

It can be observed how, through a single   parameter, 

the total of the weights of the desired system are obtained, 

according to the philosophy of the maximum entropy 

technique. An extension of ME-OWA operators is used 

as a measure of entropy 1 [ ]i iMax w , which is to be as 

objective function to minimize the [ ]i iMax w . 

2.  S-OWA 

Another family of OWA operators are the S-OWA. 

These operators are classified into two subfamilies 

depending on whether they are, or type or and type. 

The S-OWA operators of type or are denoted as FSO, 

the weights are defined as follows: 

 

1
(1 ) 1

1
(1 ) 2,...,

i

i
n

w

i n
n

 




  

 
  
              (10) 

 

Using this definition, you get a form of aggregation of 

interest: 

 

1

1
( ,..., ) ( ) (1 )SO n i i

i
i

F a a Max a a
n

    
    (11) 

 

This allows you to generate a weighted average 

between the maximum and the average of the values 

aggregated. 

If  = 0 is obtained 
1

ia
n
  and if  = 1 Max(ai). 

Namely: 

 
* (1 )SO AF F F   

. 

 

For this form of aggregate, orness measure is 

calculated as follows: 

 

1
( ) ( 1)

2
SOorness F  

. 

 

It is shown how to [0,1]  , the value of orness is 

placed in [0.5, 1]. For this reason, FSO operator can be 

seen as a measure of or type. Furthermore, with 

increasing orness, increases the value of . Particularly 

when  = 1, get an orness(FSO) = 1 and when   = 0, 

orness(FSO) = 0.5, so in this case we will be using a 

simple average. 

The second class of S-OWA operators, denoted as FSA, 

are the cataloged within the and type, and are defined as 

follows: 

 

1
(1 ),iw i n

n
  

 
 

1
(1 )nw

n
   

                          (12) 

 

where [0,1]  . Using these weights, we get: 

 

1

1
( ,..., ) ( ) (1 )SA n i i

i
i

F a a Min a a
n

    
     (13) 

 

In this case you get a weighted average between the 

average and minimum values of the set to aggregate. It is 

clear that: 

 

* (1 )SA AF F F   
                     (14) 

 

Being its orness measure: 

 

1
( ) (1 )

2
SAorness F  

.                  (15) 

 

You will always have values between 0.5 and 0. Thus, 

if it is calculated the andness, gets a value which will be 

located between 1 and 0.5. As in the previous case, if 

 = 0 FAV is obtained, meaning that the arithmetic mean 

or FAV is an operator positioned between and and or. 

These operators have very useful properties. First, 

given a value of orness,  , it is very easy to generate the 

weights associated with the aggregation expressed by this 

value. 

If  0.5 used one type or S-OWA with 1. 

If 0.5   used one type and S-OWA with 1 2   . 

Once obtained the weights, aggregation calculation is 

very simple, only the sum of the elements is necessary 

more the Max or Min of aggregation. 

In Ref. [68] this type of operators is used to generate a 

new class of flexible logic controllers with fuzzy logic. 

This operator has the advantage of permitting to 

combine the two mentioned families of  ,   operators, 

producing a general S-OWA operator. It is considered 

, [0,1]    with 1   , is defined: 

 

1

1
(1 ( ))w

n
     

 
 

))(1(
1

 
n

wi
, i = 2, 3, … , n-1          (16) 

 

1
(1 ( ))nw

n
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This generalization is denoted as Fs being the general 

formula: 

 

1( ,..., ) [ ] [ ] (1 ( ))s n i i i
i i

i

F a a Max a Min a a        
 

(17) 

3.  Step-OWA 

The Step-OWA operators or type step operators (Yager, 

1993) [69], denote as Fstep(k) and define their weights as 

follows: 

wk = 1 

wi = 0, i  k 

As shown, with step-OWA operators, one nonzero 

weight, which corresponds exactly to the weight k is 

obtained. If k = 1 we obtain the operator 
*F , while when 

k = n we obtain the operator *F . 

Is easy to see that 
( ) 1( ,..., )step k n kF a a b   where bk 

corresponds to the major k-th element of all elements, and 

this is the result of the aggregation. 

The dispersion associated with this operator can be 

calculated as: 

 

( )( ) ln 0step k i iDisp F w w               (18) 

 

So it is regarded as an aggregation of minimum 

entropy. 

The measure of orness associated with this operator is 

calculated as: 

 

( )

1

1
( ) ( )

1 1

n

step k i

i

n k
orness F n i w

n n


   

 


   (19) 

 

For these quantifiers wk = 1 if 
1k k

n n



  . Always 

0  . 

Semantically this quantifier is interpreted as at least   

percent. If n is considered fixed, then it is interpreted as at 

least n  . 

4.  Window-OWA 

The window type operators are characterized by using 

two parameters, k and m, in order to determine the 

aggregation weights. These operators will denote as Fw 

and defined as follows: 

 

                (20) 

 

Being k and m positive integers such that 

1k n n   , where n is the cardinality of the OWA 

aggregation. It is easy to check that the window type 

operators have a total of m nonzero weights and all with 

the identical value 1

m
, being k the position where the 

nonzero vector starts. 

A typical vector for this case is, for 

example
1 1 1 1

[0 0 0]
4 4 4 4

W  . 

Using these weights general formula is obtained for the 

operator: 

 
1

1

1
( ,..., )

k m

w n j

j k

F a a b
m

 



 
                  (21) 

 

where bj is the j-th largest value of ai.  

As you seen, this operator provides a window to the 

collection of sorted elements starting at position k, within 

the window is calculated an average of elements of the 

aggregation. 

The entropy or dispersion associated with this type of 

aggregation is easily calculable through this expression: 

 
1

1

1 1 1
( ) ln ln ln ln

n k m

w i i

i i k

Disp F w w m
m m m

 

 

       
 

(22) 

 

It is interesting to see how the dispersion is always 

relative to the number of elements that are aggregated, if 

the number of elements increases, increases the 

dispersion. 

The degree of orness associated with this operator is 

calculated with the following expression: 

 

1

1
( ) ( )

1

n

w i

i

orness F n i w
n 

 



               (23) 

 
1 11 1 1 1 1

( ) ( ) ( ) ( ( 1))
1 1 1 2

k m k m

w i

i k i k

orness F n i w n i n k m
n n m n

   

 

       
  
 

 
(24) 

 

To increase k or m decreases the orness(Fw). You can 

check in the case that m is 1 to get a quantifier of the step 

type. 

5.  Neat-OWA 

Other families of OWA operators of greater 

importance are the so-called neat-OWA, characterized, in 

this case, because the weights depend on the values to 

aggregate. 

In defining the OWA operators indicated that 

 1 2

1

, , ,
n

n j j

j

f a a a w b


  , where bj is the j-th largest 

value of an, and where the weights are restricted to satisfy 

(1)  1,0iw  and (2) 




n

i

iw
1

1
. 

In all definitions above, it is assumed that weights are 

constant fixed values. However, for this family of 

operators the weights will be calculated on the basis of 

the elements that are aggregated, or more exactly from 

the values to aggregate ordered, the bj, conditions being 

maintained (1) y (2). In this case the weights are: 
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1( ,..., )i i nw f b b , and the operator is defined as follows: 

 

1 1( ,... ) ( ,..., ) n i n i

i

F a a f b b b
            (25) 

 

For this family, where the weights depend on the 

aggregation, the satisfaction of all the properties of the 

OWA operators is not required. 

Any aggregation of elements must be between the 

values produced by the functions *F  y 
*F . 

The operator is idempotent ( ,..., )F a a a . 

The operator is commutative, that is, the order of the ai 

elements is not relevant. 

A property that is not necessarily satisfied for this 

family of operators is the monotony.  

We consider 
1( ,..., )nA a a  and )...,,( 1 nccC  , two 

sets to be aggregated such that ii ca   for all  i. If the 

weights are kept constant then: 

 

)()( CFAF  . 

 

As you can see, as the weights depend on the elements 

to aggregate, if you change the values to aggregate, wi 

also may change, so it cannot be assured that this 

property for all cases is met. 

Moreover, to say that an aggregation operator is neat, it 

is necessary that the final value of aggregation should be 

independent of the order of the values. 

Consider
1( ,..., )nA a a entries to add, 

1( ,..., )nB b b ordered entries and 

1 1( ,..., ) ( ,..., )n nC c c Perm a a  a permutation of the 

entries. It is formally defined as a neat-OWA operator if:  

 

 1 2

1

, , ,
n

n i i

i

F a a a w b


 
                  (26) 

 

It produces the same result for any assignment C = B. 

A typical example of neat-OWA operator is when 

1
iw

n
 . So: 

 

 1 2

1

1
, , ,

n

n i

i

F a a a a
n 

 
                  (27) 

 

In this case, as the weights are fixed, this is the only 

expression of calculation for the operator. On the other 

hand, as the weights depend on the values to aggregate, 

you can define different types of neat operators within the 

same family. 

One of the characteristics of the neat OWA operators is 

that it is not necessary to order the values to aggregate to 

your process. This implies that the formulation of a neat 

operator can be defined using directly the arguments 

instead of the ordered items.  

First families of operators whose weights depend on 

the aggregation are known as BADD-OWA [68]. 

In this case, the operator defines their weights as: 

 

, 0i
i

i

i

b
w

b




 


                          (28) 

 

You can check that the conditions are satisfied: 

 

1. 
 1,0iw

 
 

2. 




n

i
i

w
1

1

. 

 

So the weights function can be accepted as valid. For 

this operator function would be as follows: 

 

 

1

1 2, , ,
i

i
n

i

i

b

F a a a
b











                        (29) 

 

Where can you easily verify that the operator is neat 

category and does not need the ordering process of the 

arguments to aggregate:  
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1 2, , , , 0
i

i
n

i

i

a

F a a a
a








 



           (30) 

 

It looks how when 0   is obtained: 

 

 1 2

1
, , , n i

i

F a a a a
n

                       (31) 

 

which corresponds to the simple average or arithmetic 

mean Fave.  

When 1  , is obtained: 

 

 

2

1 2, , ,
i

i
n

i

i

a

F a a a
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.                   (32) 

 

When  is obtained: 

 

   *

1 2 1 2, , , [ ] , , ,n i nF a a a Max a F a a a 
 

 

In Ref. [68] it is shown how these operators are not 

monotonic with respect to the arguments. To verify the 

not monotony, we will consider that n = 2 and 1  . In 

this case: 

 
2 2

1 2
1 2

1 2

( , )
a a

F a a
a a




                       (33) 
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If we assign values 1 1a  and 2 0.2a  , then the 

aggregate function applies: 

 

1 0.04
(1,0.2) 0.866

1.2
F


 

 
 

If we assign values 1 1a  and 2 0.3a  , in this case 

the aggregated function worth: 

 

1 0.09
(1,0.3) 0.838

1.3
F


 

 
 

Although the value corresponding to the second term 

has been increased by one tenth of the unit. 

Other many traditional operators can be classified as 

neat OWA operators, since they meet the required 

properties to be grouped as members of this class, 

examples of these operators are the arithmetic mean or 

the harmonic mean. 

d.  Weighted Ordered Weighted Averaging (WOWA) 

In 1997, Torra suggests a new operator for the 

combination of information, called Weighted Ordered 

Weighted Averaging (WOWA), built as a mixture of two 

operators: classical weighted averages and ordered 

weighted averages (OWA) of Yager [32]. 

Its definition is as follows: 

 

Definition: A WOWA is a function Ow,p: R
n → R defined, 

for all (x1,…, xn) of Rn by: 

 

                 (34) 

 

where wt = (w1, …, wn) and pt = (p1, …, pn) are vectors 

such that wi, pi ϵ R verifying , 

{σ(1), ... , σ(n)} is a permutation of {1, …, n} such that 

 for all i = 2, …, n  and weights  are 

defined as: 

 

        (35) 

 

being W*: R → R an increasing monotonic function that 

interpolates the points  along with point 

(0,0). 

e.  Fuzzy integrals 

The basic definitions are as follows [70] [71] [72] [73]: 

 

Definition: Be X = {x1, ..., xn} a set of criteria and P(X) 

all the parts of X. A fuzzy measure is a function 

 which verifies the following axioms: a) 

, ; b) si  then  for 

any A, B ϵ P(X). 

Definition: Be μ a fuzzy measure defined on a set of 

criteria X = {x1, ..., xn}. The Sugeno discrete integral of n 

values a1, … , an of [0,1] is defined in the following way: 

 

         (36) 

 

being a(i), with i ϵ {1, …, n}, a permutation of ai such that 

a(1) ≤ ... ≤ a(n), A(i) the set {x(i), ..., x(n)} and where  and  

represent, respectively, the maximum and minimum. 

 

Definition: Be μ a fuzzy measure defined on a set of 

criteria X = {x1, ..., xn}. The Choquet discrete integral of n 

values a1, … , an of [0,1] is defined as follows: 

 

     (37) 

 

with the same notation as in the above definition and 

being also a(0) = 0. 

D.  Hybrid operators  

These operators can be classified into three groups [1]: 

 

 Operators that are constructed from the combination 

of a t-norm and a t-conorm. In extreme cases, these 

operators are t-norms or t-conorms. 

 Operators, called norms, which are defined in a very 

similar manner to the t-norms or t-conorms, but with 

less stringent boundary conditions, and that 

therefore include both. This group consists of a 

prominent family of functions called uni-norms. 

 Symmetrical adds, which are a special class of 

operators, and have the characteristic of being self-

dual, and some, are also associative. 

 

These operators have been widely studied; some 

relevant papers concerning some of them are mentioned 

by the way of example: 

 

 Exponential combinations [7] [74] [75] [76]. 

 Interval-valued operators constructed by normal 

forms [77] [74]. 

 T-S-Aggregations [78] [79] [80] [81] [82] [83] [84] 

[74] [75]. 

 Nonlinear combinations [45] [34] [85]. 

 Operators constructed by additive generators [45]. 

 Uni-norms [86] [87]. 

 -means [8] [7]. 

 Symmetrical adds [88] [7] [89] [90]. 

 

E.  Behavioral measures 

An interesting question is to consider the attitudinal 

character of the aggregation operator. You can define the 

following measures: 
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Disjunction degree (orness): the degree of orness is a 

measure of the tolerance of the decision-maker. Tolerant 

decision-makers can accept compliance with only some 

criteria; this corresponds to a disjunctive behavior 

(orness > 0.5), whose extreme example is max. On the 

other hand, intolerant decision-makers require that most 

of the criteria are equally satisfied; this corresponds to a 

conjunctive behavior (orness < 0.5), whose extreme 

example is min. Of course, orness = 0.5 corresponds to 

the equitable decision makers. 

The concept of orness is very useful for information 

about the behavior of the decision-maker. 

In fact, two decision-makers with the same partial 

evaluations x1,..., xn, and same weights to the criteria, it 

could have even different behaviors in the sense that one 

of them could be tolerant and the other intolerant. 

For the particular case of the OWA operators orness is 

[43]: 

 

          (38) 

 

Dispersion: in some situations the degree of orness 

does not provide enough information about the true 

meaning of aggregation. For example, considering the 

median, and the arithmetic mean, which are OWA 

operators with weights (0,..., 1,..., 0) and (1/n, …, 1/n) 

respectively, it is observed that these operators have the 

same degree of orness, 1/2, but you can see that they are 

different in the sense that the first of them concentrated 

all the weight in a single argument. In order to capture 

this idea, proposed the measure of dispersion associated 

with the w weights vector of an OWA operator: 

 

                      (39) 

 

where ln is the neperian natural logarithm and ln 0 = 0 by 

convention. This dispersion is a measure of entropy, a 

well-known concept already introduced in 1949 in 

Shannon information theory [91]. It allows us to measure 

the amount of information in the arguments that are used. 

In a sense more W dispersion means that it is used more 

information on the individual criteria in aggregation. 

Balance operator: considering the OWA weights as a 

column vector, you can refer to the weights with low 

index as weights on top and those with the highest index 

as weights at the bottom. In this way, the weight 

distribution by emphasizing the value argument 

major/minor based on the aggregation of weights, are at 

the top or at the bottom of the column. In order to 

measure the degree of balance between the favoritism to 

items of greater value, or lower values, the next measure 

is introduced: 

 

 
(40) 

where Bal(W) = 1 represents an optimistic approach, 

Bal(W) = -1 pessimistic criterion and Bal(W) = 0 Laplace 

criteria or arithmetic mean. 

Divergence: finally, another interesting measure is the 

divergence between the weights vector. It is useful in 

some exceptional situations when the attitudinal character 

and the entropy of dispersion are not enough to analyze 

an aggregation weighting vector. For example, let n= 9 

the number of items aggregated and W and W' the weight 

vectors where w2 = w8 = 0.5 and wj = 0 for all j ≠ 2, 8; 

and w'4 = w'6 = 0.5 and w'j = 0 for all j ≠ 4, 6. In this case 

H(W) = H(W') = ln (2) and Bal(W) = Bal(W') = 0 and 

cannot extract useful information from this measures. 

However, Div(W) = 0.1406 and Div(W') = 0.0156. W' 

vector has less divergence of W vector due to the 

divergence between 4 and 6 is less than the difference 

between 2 and 8. 

 

           (41) 

 

V.  CONCLUSIONS  

It was made a review about data aggregation, its main 

characteristics and properties. It has also been presented 

an overview of the main aggregation operators. 

Some conditions to be taken into account to identify 

aggregation operators has been explained. 

The classification of aggregation operators based on 

their behavior has been detailed and commented. 

A general list of possible mathematical properties of 

aggregation whose verification might be desirable in 

certain cases has been formulated and formalized. 

The main aggregation operators has been defined and 

explained and the main properties of them has been 

detailed. 

The attitudinal character of the aggregation operator 

has been considered and the main measures of them has 

been defined and commented. 
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