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Abstract—Liquid level control is important for ensuring 

energy and material balance in many installations but it 

also difficult as the plant is nonlinear, inertial and with 

model uncertainties. Fuzzy logic controllers (FLCs) are 

successfully applied to ensure system stability and 

robustness by simple means and a model-free design. 

This paper suggests a procedure for off-line tuning of the 

many FLC parameters based on optimization of a 

suggested multi-objective function defined on several 

system performance indices using genetic algorithms 

(GAs). First, a model-free FLC is empirically tuned, then 

applied for real time control of the plant and the 

necessary data recorded and used to GA parameter 

optimize a TSK plant model of an accepted structure. The 

validated on different set of experimental data model is 

employed in FLC closed loop system simulation 

experiments to evaluate the fitness function in the GA 

optimization of the FLC pre-processing and post-

processing parameters. The procedure is applied for the 

real time PI/PID FLC level control in a laboratory-scale 

tank system. The improvement of the system 

performance indices due to the GA optimization is 

estimated in level real time control.  

 

Index Terms—Fuzzy logic level control, genetic 

algorithms, multi-objective optimization, real time, TSK 

plant modeling. 

 

I.  INTRODUCTION AND RELATED WORK 

Liquid level control is important for ensuring energy 

and material balance in most installations such as boilers, 

evaporators, reactors, distillation columns, etc. [1-3]. The 

plant is nonlinear, inertial and with model uncertainty. 

Fuzzy logic controllers (FLCs) are successfully applied to 

guarantee system stability, good performance and 

robustness for different operation points and disturbances. 

They are favoured also for their simple structure and 

design, based only on expert information about the plant 

[4]. A FLC for level control by changing the pump flow 

rate on the basis of a Takagi-Sugeno-Kang (TSK) 

dynamic plant model and the principle of parallel 

distributed compensation (PDC) of the local linear plants 

is designed in [5]. In [6-10] various FLCs for level 

control are developed using two (system error and rate of 

error) or three (level, flow rate and pressure) input 

variables and one (valve opening) or three (valve opening, 

fuel and steam flow rate) output variables. 

The great number of FLC’s parameters – scaling 

factors (ScFs), number, type and parameters of the 

membership functions (MFs), rule base, parameters of the 

pre- and post-processing, etc. are empirically tuned. In 

order to put the FLC tuning on objective grounds a multi-

objective nonlinear optimization technique is often 

applied optimizing various system performance and 

energy efficiency indices under a constrained control. 

The optimization procedure is usually carried out off-line 

not to interfere in the real time plant control and is based 

on existing analytical or simulation nonlinear plant model. 

There is a variety of optimization methods – 

derivative-based or derivative-free, stochastic or 

deterministic. The genetic algorithms (GAs) as a 

derivative-free, stochastic and parallel search technique 

for multi-objective global optimization of a non-

analytically and often experimentally defined multi-

modal nonlinear function of many variables (parameters) 

with or without constraints are considered suitable for 

FLC tuning [11]. The GA optimization is difficult to 

apply on-line as it interferes the plant operation, is slow - 

a great number of experiments are required, is inaccurate 

because of the many disturbances from the industrial 

environment, and is restricted by the system stability and 

parameter and signal constraints. The off-line GA 

optimization is based on an accurate plant model, an 

accepted fitness function and a representative sample of 

experiments/simulations used for its evaluation. 

There are various applications of GAs for tuning of 

level controllers. Linear PID for level control is GA tuned 

in coupled tanks in [12] where the improvement of the 

performance of the PID control system compared to the 

ordinary tuned PID system is shown in simulations. In 

[13] the PID level controller is on-line GA optimized 

during the real time control which results in many trial 

experiments and limitations related with ensuring of 

system stability which points out the advantages of an 

off-line GA optimization. GA is used in [9] for reduction 

of the number of rules in the design of a FLC for the level 

control in a boiler. Simulations and a comparison with a 

linear PID controlled system prove a decrease of 

overshoot  and settling time ts. GA tuning of 39 

parameters - the bounds for the MFs and the singletons in 

the fuzzy rules conclusions of a FLC for the control of the 

liquid level in a tank is suggested and tested in real time 

control in [14] using an artificial neural network (ANN) 

plant model. The fitness function is based on the error 

between actual and desired trajectory. A decrease of the 
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closed loop FLC system ts and  has been proven. In [15] 

GAs are applied to off-line tune a neuro-fuzzy controller 

for a laboratory-scale coupled-tank liquid-level real time 

control using a linear plant model identification. A PID-

FLC has been designed in [16] reducing the number of 

rules and optimizing the parameters of the MFs by GA 

technique with several fitness functions and combinations 

of them. Simulations show decreased ts and  of the 

system response and also smooth control and reduction of 

energy consumption when compared to linear PID system 

or PID-FLC system designed empirically. In [17] FLC 

with GA optimized MFs widths and ScFs is applied to 

both - water/steam temperature and water level control in 

a fire tube boiler and the system performance improved 

compared with the FLC system. In [18] the merits of a 

FLC with respect to a conventional controller are outlined 

in maintaining a desired cane level in chute during juice 

extraction at different references. 

The common drawbacks of these FLC-GA based 

approaches to level control can be summarized as follows: 

- the plant model used in the off-line GA optimization 

of the FLC is either a simple linear model, derived via 

identification in a single operation point, or analytically 

derived, or an existing TSK model, or difficult to derive 

(a complicated ANN which is trained and validated from 

long and hard for the plant experiments);  

- the restrictions related to preservation of system 

stability in the on-line GA optimization of the FLC in real 

time control lead to an inaccurate tuning and a long 

experimentation during which the system performance is 

worsen;  

- the performance improvement of the designed FLC-

GA system is demonstrated mainly in simulations, a more 

realistic approach is to use a pilot plant and real time 

control in an environment more close to the industrial; 

- a great number of parameters is optimized instead of 

selecting a few most effective; 

- improper fitness functions are selected (some integral 

system performance measure such as integral time 

squared error –ITSE, deviation from designed trajectory, 

etc.) which are complex, depend on the experiments 

sample and do not take advantage of the GAs facilities 

for a multi-objective optimization by combining different 

requirements [14].  

The aim of the present work is to develop a procedure 

for off-line GA optimization of the parameters of the pre- 

and post-processing of a model-free PI/PID-FLC on the 

basis of real time level control data and a suggested 

multi-objective fitness function and to compare the 

performances of the closed loop systems in real time 

control of FLC systems with empirical and GA optimized 

FLC tuning. The PI/PID-FLC is with a widely spread 

structure of a fuzzy unit (FU) with normalized inputs - 

the system error e and derivative-of-error e , and an 

output - the rate of control du, and the post-processing is 

integral for a PI-FLC and proportional-plus-integral (PI) 

for a PID-FLC respectively.  

The plant is a laboratory-scale tank level control 

system equipped with industrial measuring transducers 

and actuators and a MATLABTM real time controller. The 

novelty concludes in the use of a TSK plant model in the 

off-line GA optimization of the FLC, derived via GA 

parameter optimization of an accepted structure using 

experimental data from the real time level control with an 

empirically designed model-free FLC. The suggested 

objective (fitness) functions in the TSK plant modeling 

and the FLC tuning are related to the high accuracy of the 

TSK plant model and the desired performance of the FLC 

closed loop system which combines several performance 

measures respectively. The design, the simulation and the 

real time investigations are based on MATLABTM [19, 

20]. 

The paper is organized in the following manner. In 

Chapter 2 the previous related investigations and the 

problem formulation are presented. A TSK plant model is 

derived in Chapter 3 via GA optimization using 

experimental data from closed loop level control in real 

time with empirically tuned PI/PID-FLC. The procedure 

for off-line GA optimization of the FLC tuning 

parameters based on a suggested multi-objective fitness 

function and simulation investigations of the closed loop 

system with the derived TSK plant model is explained in 

Chapter 4. In Chapter 5 the results from the real time 

level control with the empirically and the GA tuned FLCs 

are described and discussed. Chapter 6 summarizes the 

main contributions and outlines the future research. 

 

II.  PREVIOUS INVESTIGATIONS AND PROBLEM 

FORMULATION 

The system to be designed consists of a PI/PID-FLC, 

built on a two-input FU with normalized inputs e and e  

and output du and pre- and post-processing, and a 

nonlinear plant. The PI/PID-FLC parameters qPI/PID-FLC to 

be GA optimized include: 1) the ScFs for normalization 

of the error Ke and the derivative of error Kde and for 

denormalization of the derivative of the control Kdu; 2) 

the parameters of the commonly used first order 

differentiator for computing of e  with transfer function 

Wd(s)=Kd.Td.s/(Td.s+1); 3) parameters of the post-

processing integrator or of the PI algorithm - 

WPI(s)=Kp+Ki/s, which are united with Kdu. Thus the 

tuning parameters of the PI/PID-FLC are qPI/PID-FLC=[Ke 

Kde Kd Td Kdu or (Kp Ki)].  

The present work is based on the developed design 

procedures for off-line GA tuning of linear controllers 

[21] and local linear controllers in a PDC used with a FL 

supervisor (FLS) [22] applied for temperature real time 

control. There it is established in real time control that the 

effect of GA optimization of the main linear controller is 

equivalent to using of an on-line FL supervisor. The two 

techniques complement when the FLS is built on 

different system performance measures from the used in 

the GA optimization fitness function, e.g. the settling 

time ts and the overshoot  are reduced due to GA 

optimization of the main controller and the control effort 

u is reduced due to the connecting of the GA optimized 
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FLS [22]. 

In [23] a PI-FLC, a PID-FLC and linear PI and PID 

controllers are designed for level control and their tuning 

parameters – the parameters of the pre- and post 

processing, are GA optimized on the basis of an 

analytical plant model, simulations and a fitness function 

that combines of integral square relative error with 

respect to reference yr, integral square relative control 

action with respect to maximal control umax and an 

estimate ryte /)(minmax  for the maximal overshoot  

= y/yr -1. The GA designed systems have reduced ts, 

 and control effort estimated via simulations in 

comparison to systems with empirically tuned controllers. 

In this investigation the GA tuning of the PI/PID-FLC 

pre- and post-processing parameters is based on the same 

fitness function, suggested in [23]: 

 

PI/PID-FLC

2 2

r max min r[ ( ) / ] [ ( ) / ] | ( ) / |e t y dt u t u dt e t y     
q

minF max  

(1) 

 

The necessary for the off-line GA PI/PID-FLC tuning 

nonlinear plant model that is used to simulate the closed 

loop system responses to step references and disturbances 

with various magnitudes and frequencies in order to 

compute (1) for the current PI/PID-FLC parameters 

(chromosome), is the suggested in [19] TSK plant model. 

It is comprises a Sugeno model and parallel suitable 

linear dynamic models to represent the local linear 

models dynamics. The novelty in the present approach is: 

1) the GA optimization of the TSK plant model 

parameters of both the dynamic models and the Gaussian 

membership functions of the Sugeno model using the 

same fitness function - the integral square relative error 

between real plant output y and TSK model output yTSK; 2) 

the data sample for the plant output and input are 

recorded from the plant real time control in a closed loop 

system by an empirically tuned model-free PI/PID-FLC, 

so that these data contain rich in magnitudes and 

frequencies signals from the real time operation range 

necessary for modeling a nonlinear plant; 3) the less rich 

and proper data from a restricted identification are used 

for validation of the derived TSK plant model; 4) the 

designed system performance improvement in sense of 

reduced settling time, overshoot and control effort and 

increased system robustness and control smoothness is 

assessed in real time control on a pilot plant in 

environment close to the industrial via comparison of the 

GA optimized FLC system and the empirically tuned 

FLC system.  

The main problems to be solved in the present 

investigation are: 

1. Derivation of a TSK plant model via GA 

optimization of the parameters of an accepted structure - 

MFs and dynamic models parameters, and model 

validation using data from level real time control on the 

basis of empirically designed model-free PI/PI-FLC. 

2. GA optimization of the parameters of the pre- and 

post-processing of the PI/PID-FLC using the multi-

objective fitness function (1) and simulations of the level 

control system with the derived TSK plant model. 

3. Real time control of level with GA optimized and 

with empirically tuned PI/PID-FLC and estimation of 

improvements by comparison of the two control systems 

performances – settling time, overshoot, control effort 

and smoothness, system robustness, etc. 

 

III.  TSK PLANT MODELING 

The laboratory-scale pilot plant, in which the level H 

of liquid is to be controlled by the flow rate of a pump via 

a controller, embedded on a computer in a Simulink 

model, is shown in Fig. 1. It consists of a tank, a 

collective tank, a sunk level transducer on the basis of a 

differential pressure cell for measuring of level H in the 

range [0.3, 50], cm with normalized output [0, 10], V, 

connected to an analog-to-digital converter (ADC) on a 

data acquisition board (DAQ), a tap for manual fixing of 

the tank outflow flow rate, a DC pump for input [0, 12], 

V, controlled by the Simulink controller via a digital-to-

analog converter (DAC) on the DAQ and a pump power 

amplifier. At each sample time tk the measured level 

signal at the output of the level transducer is passed to the 

ADC of the DAQ board and read by the Analog Input 

(the corresponding driver) block in the Simulink model. 

There, it is converted into level Hk, plotted via the graph-

recorder, compared with the current reference Hrk and the 

error ek is processed by the Simulink blocks that comprise 

the controller to compute the corresponding control 

action uk, which is limited in the range [0, 10] and via 

Analog Output (driver) block passed onto DAC and the 

pump power amplifier, connected to the pump input. 

Thus the flow rate of the inflow liquid to the tank is 

changed by pumping into the tank more or less of the 

liquid from the collective tank.  
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DC 

pump 
 

Fig.1. Laboratory-scale pilot plant for level control 

A model-free PI-FLC is empirically designed on the 

basis of standard MFs and rules and the ranges of the 

error, the derivative of error and the control. The 

designed closed loop system is shown in Fig. 2, where the 

PI-FLC parameters are qPI-FLC=[ Ke=0.2; Kd.Kde=1; 

Td=(310)dt=2; Kdu=0.5].  

The necessary data for the TSK plant modeling is the 

plant output ye (He), recorded in the real time control of 

level with the designed PI-FLC for typical step changes 
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of the closed loop system reference yr (Hr).  

The TSK plant model accepted is shown in Fig. 3 and 

is based on the structure, suggested in [21]. It assumes 

that the plant in the closed loop system operates in three 

overlapping linear domains for all possible reference 

changes and disturbances and the dynamics of the local 

linear plants can be represented by a series connection of 

two time-lags, the second is common for the three 

parallel channels, unlike the dynamic models in [21]. 
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Fig.2. PI-FLC closed loop system 
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Fig.3. TSK fuzzy plant model 

The TSK plant model consists of a zero-order Sugeno 

Model with fuzzy rules:  

 

  If (yTSK is Small) then u1 is 1 

  If (yTSK is Medium) then u2 is 1 

  If (yTSK is Big) then u3 is 1 . 

 

The terms Small, Medium and Big, represented by 
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Gaussian MFs with parameters (sigma, mean) in Fig. 3, 

are associated with three expected linearization domains, 

which are recognized by the TSK plant model output yTSK. 

The Sugeno Model via the inference mechanism and the 

weighted average defuzzification serves as a dependent 

on yTSK fuzzy blender of the outputs of the parallel linear 

dynamic models for the linearization domains.  

The TSK plant model tuning parameters qp=[K1 K2 K3 

T1 T2 T3 T4 y(0) S_sigma S_mean M_sigma M_mean 

B_sigma B_mean] are to be GA optimized via 

minimization of the integral squared relative error as a 

fitness function:  
 

Fp=[E(t)/ye(t)]
2.dt                           (2) 

 

where E(t)=yTSK(t)-ye(t) is the relative error, defined as 

the difference between the outputs of two closed loop 

systems - yTSK(t) from the simulated with the TSK plant 

model, and ye(t) from the real time control of the real 

world plant. Both systems have the same empirically 

tuned PI-FLC and are subjected to the same step 

reference changes.  

Unlike [21] the experimental data ye(t) used in 

computing of (2) is recorded from the real time control of 

the plant in a closed loop system with empirically 

designed PI-FLC and step-wise changing references with 

random magnitudes and duration, covering the whole 

range of the input signals, in order the TSK plant model 

to learn the real plant nonlinearity while in [21] ye(t) are 

the real plant responses from plant identification to more 

restricted in character step input u(t). If more realistic 

random input is used, it can still be far from the plant 

input in real time control in a closed loop system. Besides, 

such experiments take a long time. 

The ready TSK plant model is validated by comparing 

its response to the real plant response in identification 

with input signals, different from the used in TSK plant 

modeling. The real plant and the TSK plant model step 

responses to the given plant input signals are very close 

as seen in Fig. 4, where also the TSK plant model optimal 

parameters are presented. Then the Sugeno model of the 

validated TSK plant model is completed in a Simulink 

Fuzzy Logic Controller block as shown in Fig. 5 to make 

the model compact and convenient for use. 

 

 

Fig.4. Validation of TSK fuzzy plant model from plant identification 

input-output data 

 

Fig.5. GA optimized TSK plant model with compact FLC block in 

Simulink for the Sugeno Model 

Further this compact and precise TSK plant model is 

implemented in the Simulink simulation model of the 

closed loop system employed in the GA optimization of 

the FLC parameters. 

 

IV.  PROCEDURE FOR OFF-LINE GA OPTIMIZATION OF 

FLC PARAMETERS 

The simulation model of the closed loop system is 

shown in Fig. 6. It consists of the TSK plant model, 

controlled by the PI/PID-FLC which parameters have to 

be off-line GA optimized. For PI/PID-FLC tuning 

parameters are selected the parameters qPI/PID-FLC of the 

pre- and post-processing ScFs and dynamic components, 

since their tuning enables by simple means effective 

shaping of the control surface, equivalent to the more 

sophisticated techniques of tuning of rules and MFs [24]. 

The fitness function is (1). The GA optimization is 

carried out using MATLABTM genetic algorithms [20]. 

The procedure concludes in the following steps. 

 

1. Input data – number of generations G, size of 

population N in a generation, fitness function, initial 

upper and lower bound for the tuning parameters taken 

from the empirical tuning of the FLC, end condition 

(reached number of generations G or minimal value of 

the fitness function), selection method, crossover rate and 

method, mutation rate and method  

2. Generation of a random initial population of 

individuals (chromosomes), each chromosome presenting 

an ordered array of coded tuning parameters. 

3. Running of simulations of the closed loop system 

model for all individuals - PI/PID-FLC tuning parameters, 

and recording the necessary data used to evaluate the 

fitness function.  

4. Evaluation of the fitness of each individual and 

ranking of individuals with respect to their fitness value. 

5. Check for met end conditions. If ―Yes‖ – the optimal 

parameters of the PI/PID FLC are found and the 

procedure terminates, else – step 6. 

6. Selection of survivors - mate parents from the 
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population with probabilities proportional to their fitness 

values – basic methods are roulette wheel selection, 

uniform, stochastic uniform, normalized geometric 

selection, remainder, tournament selection. 

7. Creation of an offspring (a couple of new 

chromosomes) by randomly varying individuals – parents 

applying: 

7. a. Crossover over selected parents with a probability 

equal to the crossover rate. Basic crossover methods are 

single point – an exchange of genes (a gene is a bit or a 

parameter) between parents after a given single point 

(location), multipoint, uniform, scattered.  

7. b. Mutation with a probability equal to the mutation 

rate. Basic mutation methods are Gaussian (Gaussian 

selection of the bit to be changed), uniform, adaptive 

feasible (in one or more bits). 
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Fig.6. Off-line GA optimization of PI/PID-FLC tuning parameters 

8. Running of simulations of the closed loop system 

model with the new parameters of the offspring, 

evaluation of the fitness function and acceptance in the 

new generation if better than the parents, else repeatition 

from step 6 to step 8. 

Some of the individuals in the current population that 

have the best fitness can be chosen as elite to pass 

directly to the next generation. 

8. a. Repetition of step 6 to step 8 until the next 

generation is filled with N members. 

8. b. Repetition from step 5 till the accepted end 

condition is fulfilled. 

The fitness function (1) is evaluated after collecting the 

necessary data as shown in Fig. 6 during the closed loop 

system model simulation with the GA determined values 

for the chromosome (set of controller’s parameters). 

Parameter GA optimization employing simulation is a 

fast and more realistic approach with experiments under 

full control (no random disturbances or noise effect) and 

safe for the plant. It also ensures the best solution without 

restrictions on parameters and signals, their gradual 

changes, or changes only in steady state for system 
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stability and safety reasons. The simulation can consider 

various inputs – references changes and disturbances with 

different magnitude and frequency that cover the realistic 

industrial environment impact range. However, a reliable 

plant model is required for the whole range of operation 

conditions, which can be obtained on the basis of 

intelligent approaches and experimental data.  

The procedure is applied for the off-line GA 

optimization of the parameters qPI-FLC=[Ke Kd Kde Td Kdu] 

of the PI-FLC for level control, using Fig. 6 with the 

developed compact TSK plant model from Fig. 5. The 

input data are the parameters of the GA - population size 

N=20, number of generations G=20, elite - 2, crossover 

rate - 0.8 and method – single point, mutation operator – 

adapt feasible, fitness scaling – rank based, selection – 

roulette wheel, binary coding. The optimal PI-FLC 

parameters computed are:  

 

qPI-FLC
opt=[Ke=0.12; (Kd.Kde)=3.8; Td=2; Kdu=0.53]. 

 

V.  REAL TIME CONTROL OF LEVEL AND SYSTEMS 

PERFORMANCE ASSESSMENT 

The real time level control is performed using the 

experimental setup, depicted in Fig. 1, on which the 

closed loop system in Fig. 2 for PI-FLC with the optimal 

parameters qPI-FLC
opt is completed. The Simulink model of 

the control algorithm is shown in Fig. 7. 

 

 

Fig.7. Simulink PI-FLC algorithm for real time control 

 

Fig.8. Level from Simulink real time level control and simulations with empirically and GA tuned PI-FLCs 

 

Fig.9. Control action from Simulink real time level control and simulations with empirically and GA tuned PI-FLCs 

A number of reference step responses in real time 

control are studied in two systems – with the GA 

optimized (Fig. 7) and with the empirical tuned PI-FLC - 

qPI-FLC=[Ke=0.2; Kd.Kde=1; Td=2; Kdu=0.5], in order to 

compare their performance indices and assess the 

expected improvement as a result of the GA optimization. 
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The performance is estimated by the settling time ts, 

the overshoot , the control action maximum Umax and 

smoothness (magnitude A of the control oscillations) as 

measures for the control effort and the energy efficiency - 

control oscillations especially with big magnitude A mean 

low energy efficiency. The reference changes are typical 

stepwise from different operation points, covering the 

range of operation of the plant. This allows assessing 

both the system robustness, expressed as preservation of 

the system performance indices in different operation 

points despite the different plant model parameters there, 

and the impact of the system nonlinearity on the system 

performance. 

The level step responses of the two systems - Hemp with 

the empirically tuned and HGA with the GA tuned PI-FLC, 

from real time control and simulations are overlaid to 

ease comparison and depicted in Fig. 8. In Fig. 9 the 

corresponding control actions are presented.  

The performance indices of the systems with GA-tuned 

and empirically-tuned PI-FLC, estimated from real time 

control and simulations, are presented in Table 1. The 

system robustness is assessed by the introduced 

―Robustness index‖, evaluated from the real time control 

by the greatest relative deviation of the current 

performance index value |P-Pmin|/Pmax from the smallest 

possible value Pmin (the desired performance value) with 

respect to the maximal value Pmax (the worst index) 

achieved in both systems with and without GA 

optimization of the PI-FLC. The comparison of the 

systems performance indices shows: 

Table 1. Comparison of PI-FLC Systems Performance Indices 

Experiment System 

performance 

index P 

Empirical tuned PI-FLC GA optimized PI-FLC 

Hr=0-3 

cm 

Hr=3-6 

cm 

Hr=6-9 

cm 

Robustness 

index 

Hr=0-3  

cm 

Hr=3-6  

cm 

Hr=6-9  

cm 

Robustness 

index 

Real time 

control 

ts,
 s  120 130 200=max 0.7 120 60=min 170 0.55 

, % 23 45=max 40 1 0=min 0 23 0.51 

Umax 6.2 8.9 10=max 0.62 3.8=min 6.3 8.8 0.5 

A oscillations 3.2 6 6.5=max 0.6 0.5=min 1.7 4.1 0.55 

Simulations 

ts,
 s  140 300 180 - 140 200 150 - 

, % 45 40 10 - 0 10 0 - 

Umax 9.8 10 10 - 5.5 8.1 10 - 

A oscillations 8.3 7.8 2.5 - 1.5 4.3 1.8 - 

 

- performance indices of simulated and real time step 

responses are relatively close for each of the systems 

which confirms the precision of the derived TSK plant 

model and of the derived on its basis GA optimized PI-

FLC parameters  

- in real time control the GA-tuned system outperforms 

the empirically tuned system reducing: 1) the overshoot 

to zero for the first two references and twice for the third 

reference; 2) the total settling time 1.3 times; 3) the total 

control effort estimated by Umax - 1.33 times; 4) the 

magnitude of control oscillations - 2.6 times 

- in real time control the GA-tuned system has for each 

performance index P a smaller robustness index – 

deviation from achieved desired index Pmin with respect 

to its achieved maximal value Pmax (the worst index for 

both systems), than the robustness index of the 

empirically tuned system. This determines the FLC GA-

optimization as a tool for making the system more robust 

– with reference responses less sensitive to the changes of 

the nonlinear plant parameters in the different operation 

points, defined by Hr. 

 

VI.  CONCLUSION AND FUTURE WORK 

The main results of the present research conclude in 

the following.  

1. An easy for engineering applications procedure for 

off-line GA optimization of the parameters of the pre- 

and post-processing of a model-free FLC is suggested. It 

is demonstrated for the parameter tuning of a PI/PID-FLC 

with a widely spread structure of a fuzzy unit with 

normalized inputs - the system error e and derivative-of-

error e , and an output - the rate of control du, where the 

post-processing is integral for PI-FLC and proportional-

plus-integral for PID-FLC respectively. The procedure is 

based on real time control data from initially empirically 

designed FLC system, a derived TSK plant model and a 

suggested multi-objective fitness function, defined on 

system performance and energy efficiency measures and 

computed via system simulation. 

2. A TSK plant model of an accepted modified 

structure, consisting of a Sugeno zero order model and 

parallel branches of dynamic elements, is GA parameter 

optimized using real plant input-output data from its real 

time control by an empirically designed FLC in a closed 

loop system for different references. The TKS plant 

model is validated on real plant identification data, 

different from the used in modeling. 

3. The developed GA optimization procedure is 

applied for the real time control in MATLABTM of the 

liquid level in a laboratory-scale pilot tank, equipped with 

industrial actuator (pump, amplifier) and measuring 

transducer (pressure difference level transducer and 

transmitter), in an environment close to the industrial. 

The compared performances of the closed loop systems 

with the empirically tuned FLC and the GA optimized 

FLC show that GA optimization leads to a significant 

reduction of settling time, overshoot, control effort and 

smoothness and contributes to the increase of system 

energy efficiency and robustness. 

Future work will focus on GA optimization of a FLC 
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for the real time control of a multivariable plant – the 

levels in a coupled-tank laboratory system. 
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