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Abstract— Particle Swarm Optimization is swarm based 

optimization technique. Swarm consists of particles and the 

particles fly through the problem space in Particle Swarm 

Optimization (PSO). Confinement methods and parameters such 

as Inertia Weight, Neighborhood of the particle have major 

impact on PSO performance.   The paper presents variations of 

the PSO with adaptive random link neighborhood. The work 

carried out considers linearly decreasing inertia weight and 

different confinement methods. The performance of adaptive 

random link PSO by geometrical updation of velocity with 

confinement methods is tested here.  

 

Index Terms—Adaptive Random Link, Confinement, Inertia 

Weight, Neighborhood, SPSO 

 

I. INTRODUCTION 

Particle Swarm Optimization (PSO) is an optimization 

technique developed by Dr. Eberhart and Dr. Kennedy in 

1995 [1][2][3]. The swarm is analogous to social 

interaction. The particle in swarm is a learner as well as a 

guide. Every particle interacts and changes its position 

dynamically. The particles fly through problem space. A 

particle can be repositioned or its velocity can be 

modified to prevent it from leaving the search space. The 

repositioning of particle is done by using position 

confinement approach. Velocity of the particle is 

restricted in search space by using different velocity 

confinement methods.  

Computational behavior of PSO is affected by 

parameter modification. Parameters include swarm size, 

acceleration coefficient and inertia weight or constriction 

coefficient. The parameters of the PSO are revised by 

parameter modification. Parameter setting is important as 

the performance of PSO is sensitive to the parameter 

settings.  

Section II explains particle swarm optimization while 

section III and IV describe highlights on confinement 

methods and adaptation. Parameter control and 

Benchmark functions are briefly described in section V 

and VI respectively.  Section VII focuses on experimental 

set up. Section VIII experimentally validates the 

correlation. The paper closes with conclusions in section 

IX. 

 

II. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization is swarm or population 

based optimization technique. The first version of the 

PSO was published by Kennedy and Eberhart in 1995 

[1][2]and it has rapidly progressed in recent years since 

then. The particles move iteratively within the search 

space. Two main versions of PSO namely Global Best 

version and Local best version were introduced in early 

phase of PSO research. Global best is the best position 

achieved by any of the particle in the swarm. Global best 

particle is influential and influences to update position of 

all particles.  Local best is the best position achieved in 

the neighborhood of a particle. 

Swarm of N particles is represented as- 

S = {x1,x2,...,xN} 

For a D-dimensional search space, the position of the 

ith particle is represented as: 

xi = (xi1,xi2,...,xiD)T     where i = 1,2,...,N 

Let t denote iteration counter. So xi(t) and vi(t) denote 

current position and velocity of ith particle respectively. 

The position of each particle is updated using a proper 

position shift. This is called velocity and is denoted as 

vi = (vi1,vi2,...,viD)T     where i = 1,2,...,N 

A. Algorithm of Global Best version of PSO 

- Initialize the population of particles randomly Do  

- Calculate fitness values of each particle as per 

objective function  

- Update particle's best position if the current fitness 

value is better than earlier best position  

- Determine the best fitness value in the swarm  

- Update velocity of each particle using (1) 

     𝑣𝑖(𝑡 + 1) =   𝑣𝑖(𝑡) +  𝑐1 ∗  𝑟1 ∗  (𝑝𝑖  – 𝑥𝑖 ) + 𝑐2 ∗  𝑟2 ∗

     (𝑝𝑔  – 𝑥𝑖 )                                                                           (1) 

- Update position of particle using equation (2) 

      𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) +  𝑣𝑖(𝑡 + 1)                                  (2) 

While maximum number of iterations or criterion is 

not attained 
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B. Algorithm of Local best version of PSO 

- Initialize the population of particles randomly Do  

- Calculate fitness values of each particle as per 

objective function  

- Update particle's best position if the current fitness 

value is better than earlier best position  

- Determine the best fitness value in the swarm  

- Update velocity of each particle using (3) 

𝑣𝑖(𝑡 + 1) =  𝑣𝑖(𝑡) +  𝑐1 ∗  𝑟1 ∗  (𝑝𝑖  –  𝑥𝑖𝑑 ) +  

𝑐2 ∗  𝑟2 ∗  (𝑝𝑙  –  𝑥𝑖 )                        (3) 

- Update position of particle using equation (2) 

While maximum number of iterations or criterion is 

not attained 

 

C. Standard  PSO 2011 

Three Standard PSO algorithms have been defined in 

the literature of PSO [4], [5], [6], [7], [8], [9]. Until 2007, 

the velocity update was carried out dimension by 

dimension method. It is known that dimension by 

dimension method is biased [10].  When the optimum 

point lies on an axis, on a diagonal or on the centre of the 

system of coordinates then it is easy to find it for PSO.  

Spear analyzed this in 2010 [11]. Clerc proposed 

SPSO2011 as a solution to this bias [5]. Standard PSO 

(SPSO-2011) [8], [9] exploits the idea of rotational 

invariance. SPSO-2011 modifies velocity in geometrical 

way. 

Let Gi (t) be the centre of gravity of the current 

position, a point a bit beyond the best previous position 

and a point a bit beyond the best previous position in the 

neighborhood.   

Center of gravity is calculated using (4)-  

𝐺𝑖(𝑡) =  𝑥𝑖 +  𝑐 ∗
𝑝𝑖+ 𝑙𝑖− 2∗𝑥𝑖

3
                                       (4) 

Let xi’ be random point defined using uniform 

distribution in the hypersphere of radius Gi and center 

(Gi-xi) that is    𝐻𝑖(𝐺𝑖 , ‖𝐺𝑖 − 𝑥𝑖‖) 

Velocity of the particle is then calculates using (5) 

𝑣𝑖(𝑡 + 1) =  𝜔 ∗ 𝑣𝑖(𝑡) +  𝑥′
𝑖(𝑡) − 𝑥𝑖(𝑡)                 (5) 

Position of the particle is calculates using (2). 

 

III. PARAMETERS OF PSO 

 Swarm Size : 

The Swarm size is a size of the population. The swarm 

consists of particles. Swarm size varies from 20 to 60. 

Ideally swarm size is considered as 40. The swarm size 

can also be computed using (6) – 

𝑠 = 10 +  [2 ∗ 𝑠𝑞𝑟𝑡(𝐷)]                                                      (6) 

 Velocity Threshold 

The first issue observed and addressed by researchers 

is swarm explosion. Solution put forth by researcher was 

velocity clamping. Velocity clamping prevents particles 

uncontrolled increase of magnitude from current 

positions. Whenever velocity goes beyond threshold 

bound it is directly set to closest bound or threshold. 

Details of velocity confinement are discussed in section 

IV.  

 Inertia Weight 

Inertia weight was not used in the first version of PSO 

developed by Eberhart.  As swarm was not able to 

converge towards promising position with velocity 

clamping, a new parameter inertia weight ω was 

introduced [12] in the equation (1) as shown in (7) 

𝑣𝑖𝑑(𝑡 + 1) =  𝜔 ∗  𝑣𝑖𝑑(𝑡) +  𝑐1 ∗  𝑟1 ∗  (𝑝𝑖𝑑  –  𝑥𝑖𝑑 ) +  

𝑐2 ∗  𝑟2 ∗  (𝑝𝑔𝑑  –  𝑥𝑖𝑑 )                          (7) 

The inertia weight defines the impact of previous 

velocity of each particle to the current one and controls 

the scope of search. Poli et al. [13] interpreted it as the 

fluidity of the medium in which particles move. 

Many variations of PSO were proposed based on 

inertia weight. The Linearly Decreasing[12][14], Linearly 

increasing [15] , Nonlinear [16], Sigmoid decreasing 

[17] , Adaptive [18], Random [19], Chaotic [20], 

Oscillating [21], Logarithmic decreasing [22] , Exponent 

Decreasing inertia weight strategies [23], [24], [25] and 

Fuzzy Adaptive Inertia Weight [26] were used in the 

literature. The Linearly Decreasing strategy improves the 

efficiency and performance of PSO. 

 Acceleration Coefficient 

Acceleration coefficients c1 and c2 indicate cognitive 

and social influence values respectively.  

 Neighborhood Topology 

Neighborhood topology is a scheme to determine the 

neighbors of particles in a swarm. Information exchange 

among the particles is related to exploration capability of 

the swarm. Each particle may have set of other particles 

as neighbors. 

The actual distance of the particles can be calculated to 

form neighborhood. But this requires (N (N+1))2 

computations at each iteration, if N is size of the swarm. 

Simple alternate solution to this is to use indices of 

particles to decide neighborhood. The cardinality of 

neighborhood called neighborhood size depends on type 

of neighborhood topology. 

In PSO, each particle has communication 

neighborhood so several studies were performed in order 

to determine effect of the neighborhood topology on the 

convergence.  

The performance of PSO can be improved by selecting 

proper neighborhood topology. 

The neighborhood topology can be classified as [27],  

[28]- 

 gbest Topology 

 Ring  Topology 

 Adaptive Random 

 Mesh Topology 

 Tree or hierarchical Topology 

 Toroidal Topology 

 Dynamic Topology 
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 lbest Ring Lattice with dynamic increment 

neighborhood 

 Fitness Distance Ratio 

 Random Edge Migration 

 Dynamic Hierarchy 

 TRIBES 

Some topologies are good for global optimization 

while some topologies are good for local optimization. 

 

IV. CONFINEMENTS OF PSO 

A particle tends to leave the search space in Particle 

Swarm Optimization.  A particle can be repositioned or 

velocity can be modified to prevent it from leaving the 

search space [29]. These two types of confinement are 

discussed here. 

A. Prevention  

Whenever velocity goes beyond threshold bound one 

of the following confinement is used for Velocity of 

Particle in the literature-  

1. Absorb or Zero 

𝑖𝑓 𝑣(𝑡 + 1) > 𝑣𝑚𝑎𝑥     𝑜𝑟 𝑣(𝑡 + 1) < 𝑣𝑚𝑎𝑥   
𝑡ℎ𝑒𝑛 𝑣(𝑡 + 1) = 0 

(8) 

2. Deterministic Back 

𝑖𝑓 𝑣(𝑡 + 1) > 𝑣𝑚𝑎𝑥     𝑜𝑟 𝑣(𝑡 + 1) < 𝑣𝑚𝑎𝑥   
𝑣(𝑡 + 1) = − 𝜆 ∗ 𝑣(𝑡 + 1) 

(9) 

Where 𝛌 can be a predefined value.  

3. Random back 

If velocity goes beyond threshold bound the velocity is 

reversed back by multiplying with random value drawn 

from uniform distribution [0 1] 

4. Adjust 

If velocity goes beyond threshold bound it is adjusted 

using position of the particle- 

v(t + 1) = x(t + 1) −  x(t)                                     (10) 

5. Hyperbolic 

If velocity goes beyond threshold bound it is 

normalized as  

𝑣(𝑡 + 1) =  
𝑣(𝑡 + 1)

1 + |
𝑣(𝑡 + 1)

𝑥𝑚𝑎𝑥 −  𝑥(𝑡)
|

  𝑖𝑓 𝑣(𝑡 + 1) > 0 

 (11) 

𝑣(𝑡 + 1) =  
𝑣(𝑡 + 1)

1 + |
𝑣(𝑡 + 1)

𝑥(𝑡) −  𝑥𝑚𝑖𝑛
|

  𝑖𝑓 𝑣(𝑡 + 1) < 0 

(12) 

B. Repositioning Particle 

Whenever position of the particle goes beyond 

threshold bound one of the following confinement is used 

-  

1. Nearest 

When the position of the particle moves away from the 

boundary the particle is adjusted using (13)(14)  

𝑖𝑓 𝑥(𝑡 + 1) > 𝑥𝑚𝑎𝑥     𝑡ℎ𝑒𝑛 𝑥(𝑡 + 1) = 𝑥𝑚𝑎𝑥           (13) 

𝑖𝑓 𝑥(𝑡 + 1) < 𝑥𝑚𝑖𝑛    𝑡ℎ𝑒𝑛 𝑥(𝑡 + 1) = 𝑥𝑚𝑖𝑛           (14) 

2. Do not Change  

When the position of the particle moves away from the 

boundary the particle is adjusted using (15) 

𝑖𝑓 𝑥(𝑡 + 1) > 𝑥𝑚𝑎𝑥  𝑜𝑟  𝑥(𝑡 + 1) <  𝑥𝑚𝑖𝑛   𝑡ℎ𝑒𝑛  
𝑥(𝑡 + 1) =   𝑥(𝑡 + 1) −  𝑣(𝑡 + 1)                   (15) 

3. Reflex  

When the position of the particle moves away from the 

boundary the particle is adjusted using (16)(17) 

𝑖𝑓 𝑥(𝑡 + 1) > 𝑥𝑚𝑎𝑥     𝑡ℎ𝑒𝑛 𝑥(𝑡 + 1) = 𝑥𝑚𝑎𝑥 −
 (𝑥𝑚𝑎𝑥 −  𝑥(𝑡 + 1))                                                                   (16) 

𝑖𝑓 𝑥(𝑡 + 1) < 𝑥𝑚𝑖𝑛    𝑡ℎ𝑒𝑛 𝑥(𝑡 + 1) = 𝑥𝑚𝑖𝑛 +
 (𝑥𝑚𝑖𝑛 −  𝑥(𝑡 + 1))                                                         (17) 

 

V. PARAMETER CONTROL 

The parameter control can be used depending on how 

and what is changed. Parameters can be controlled using 

deterministic rule or by adaptation. The deterministic rule 

is used to control the parameter value for all iterations. 

This gives better performance for some cases but not in 

all cases. Hence the parameter control can be done using 

current state of the search. 

Adaptation used here is based on two parameters- 

1. Inertia Weight 

The searching varies from exploratory phase, towards 

the refinement of local search at the end. Hence 

deterministic approach is used for inertia weight. A 

linearly decreasing inertia weight strategy decreases the 

value of inertia weight with generation number. An 

inertia weight value is set to 0.9 initially during 

explorative stage and linearly decremented to 0.4.   

2. Population structure 

Adaptive Random topology has been defined in [30] 

informs K randomly chosen particles in swarm. . 

Generally K is set to 3. Link modification is adaptive and 

depends on the fitness values at swarm level. The 

information links that is K particles are selected at the 

beginning, and after unsuccessful iteration. Variation of 

this adaptive random link is tested here. Instead of 

changing informants after unsuccessful iteration, 

informants are changed after some threshold number of 

unsuccessful iterations. 

 

VI. BENCHMARK FUNCTIONS 

Both unimodal as well as multimodal benchmark 

functions [9] are chosen for experimentation and are 

listed below-  

 The Sphere Function 
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The Sphere function is Continuous, Differentiable, 

Separable, Scalable and Multimodal, defined as follows- 

𝑓1 =  ∑ 𝑥𝑖
2𝐷

𝑖=1                                                           (18) 

 Rastrigin Function 

Rastrigin is  highly multimodal and the location of the 

minima are regularly distributed. It is defined as - 

 𝑓2 =  ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]𝐷

𝑖=1                      (19) 

 Step Function  

Step function is Discontinuous, Non-Differentiable, 

Separable, Scalable and Unimodal, , defined as follows - 

 𝑓3 = ∑ (⌊𝑥𝑖 + 0.5⌋)2       𝐷
𝑖=1                                      (20) 

 Rosenbrock’s Function 

Rosenbrock’s function is Continuous, Differentiable, 

Non-Separable, Scalable and Unimodal, defined as 

follows: 

𝑓4 =  ∑ [100(𝑥𝑖
2 − 𝑥𝑖+1)2 + (1 − 𝑥𝑖)

2]𝐷
𝑖=1              (21) 

Where D is the dimension and  

𝑥 = (𝑥 1, 𝑥 2, ···, 𝑥 D) is D-dimensional row vector. 

 

VII. EXPERIMENTAL SETUP 

The local best PSO is used for experimental tests and 

parameters are set as discussed below -  

 Initial population 

The positions for a particle in the swarm are initialized 

using uniform distribution along each dimension of the 

problem space.  

 Swarm Size 

Swarm size is considered as 40. 

 Inertia Weight 

An inertia weight value starting from 0.9 linearly 

decreasing to 0.4 improves the performance [12], [14]. 

 Velocity 

Initially velocity is set to zero 

 Acceleration coefficient 

c1 and c2 are set to 1.4. 

 Neighborhood Topologies 

In PSO, each particle has communication 

neighborhood. Following neighborhood topologies are 

used - 

o Adaptive Random Link 

o Adaptive Random Link with link change after 

threshold number of unsuccessful iterations. 

 Bound Handling  

As discussed by Clerc Hyperbolic and random back 

give better results. Hence the work considers these two 

prevention methods and all repositioning methods are 

verified with these two prevention methods for adaptive 

random link. 

Velocity Bound Handling  

1: Random back  

2: Hyperbolic 

Position Bound Handling  

1: Nearest  

2: Do not change position 

3: Reflex 

 

The variants used for experiments are – 

1. Adaptive random link(RL) with link change 

after unsuccessful iterations 

Adaptive random link(RL) with links change after 10, 

20, 30,…., 100 unsuccessful iterations lc10, lc20, …, 

lc100 represents Link Change after 10 unsuccessful 

iterations, 20 unsuccessful iterations,…., 100 

unsuccessful iterations respectively.  

 
Table 1. The variants used for experiments 

 
Neighbourhood 

Topologies 
Velocity 

confinement 
Position 

confinement 

RL11 

Adaptive 

 random link 

Random back 

Nearest 

RL12 Do not change 

RL13 Reflex 

RL21 

Hyperbolic 

Nearest 

RL22 Do not change 

RL23 Reflex 

 

The procedure is iterative. Stopping criteria is 

maximum number of iterations (5000) or acceptable error 

between optimal solution known and calculated as 10E-

20. 

 

VIII. RESULTS AND DISCUSSION 

The experiments are carried out on both unimodal and 

multimodal functions. Ten runs are taken for each. 

Average number of iterations required to obtain 

acceptable solution are summarized in table 2, 3, 4, 5, 6 

and 7. Bold faced values represent minimum number of 

iterations required for link change after threshold number 

of unsuccessful iterations (Row minimum). 

 
Table 2. Average number of iterations for random link Threshold 

(threshold ranging from 10 to 100) for two dimensional Sphere function 

Link 

change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 573 536 547 575 537 571 

10 564 527 535 571 549 524 

20 599 552 557 547 534 541 

30 557 580 603 592 563 593 

40 553 560 549 578 576 559 

50 611 574 581 552 624 564 

60 529 596 562 563 560 573 

70 566 626 534 579 555 535 

80 559 594 592 608 565 563 

90 607 582 599 611 585 580 

100 594 593 574 574 616 553 
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Table 3. Average Number Of Iterations For Random Link Threshold 

(Threshold Ranging From 10 To 100) For Two Dimensional Rastrigin  

Function 

Link 
change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 1846 1957 1959 2021 2087 2046 

10 1970 1815 1800 1761 1867 1746 

20 1944 1946 1988 1760 1804 1669 

30 2013 1627 1888 1542 1852 1827 

40 979 1418 1126 1133 1092 1209 

50 1001 1301 921 1137 994 967 

60 1055 1081 857 1103 943 954 

70 1019 1020 993 1021 1007 1100 

80 1056 1034 1081 815 877 985 

90 938 1059 1069 969 1027 935 

100 1066 962 869 1134 1045 1049 

 

Table 4. Average number of iterations for random link Threshold 

(threshold ranging from 10 to 100) for two dimensional Step function 

Link 

change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 37 38 41 48 44 46 

10 47 46 44 37 49 40 

20 54 38 44 48 46 46 

30 51 47 35 47 46 57 

40 47 37 45 53 47 36 

50 43 50 42 42 38 45 

60 43 40 45 44 49 37 

70 56 52 49 42 41 47 

80 49 47 45 48 45 38 

90 45 47 53 56 45 43 

100 48 43 31 43 43 37 

 

Table 5. Average number of iterations for random link Threshold 

(threshold ranging from 10 to 100) for two dimensional Rosenbrock 
function 

Link 
change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 3471 3427 3418 3239 3311 3480 

10 3540 3589 3447 3371 3457 3372 

20 3425 3327 3416 3425 3477 3484 

30 3181 3401 3015 3159 3097 3191 

40 2509 2485 2843 2859 2870 3040 

50 2504 2077 2179 2029 2372 2153 

60 1944 2207 2075 1948 2077 2089 

70 2087 2081 2136 2138 2166 2131 

80 2206 2065 2043 2087 2040 2037 

90 2127 2191 2031 2224 2112 2151 

100 2196 2069 2182 2271 2213 2182 

 

The variations in the average number of iterations 

required for adaptive random link variants with threshold 

ranging from 1 to 100 is shown in fig. 1.  

 

Fig.1. Average number of iterations for random link Threshold 

(threshold ranging from 10 to 100) for ten dimensional Sphere function 

 

Table 6. Average number of iterations for random link Threshold 

(threshold ranging from 10 to 100) for ten dimensional Sphere function 

Link 
change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

lc1 1746 1753 1763 1745 1756 1744 

lc10 1738 1780 1754 1750 1756 1765 

lc20 1773 1763 1769 1770 1773 1786 

lc30 1915 1909 1900 1896 1892 1884 

lc40 1899 1903 1924 1891 1897 1941 

lc50 1917 1892 1942 1938 1925 1934 

lc60 1912 1937 1885 1933 1953 1952 

lc70 1931 1883 1937 1913 1901 1963 

lc80 1932 1904 1927 1926 1907 1927 

lc90 1896 1941 1928 1940 1911 1936 

lc100 1901 1907 1914 1927 1903 1925 

 

Table 7. Average number of iterations for random link Threshold 

(threshold ranging from 10 to 100) for ten dimensional Step function 

Link 

Change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

lc1 772 768 721 798 778 786 

lc10 792 758 789 828 747 804 

lc20 729 783 794 759 762 779 

lc30 864 794 849 822 841 808 

lc40 823 865 847 859 837 850 

lc50 944 900 946 937 891 873 

lc60 851 932 864 877 862 926 

lc70 896 869 867 899 929 941 

lc80 907 929 909 939 943 890 

lc90 957 943 988 908 901 873 

lc100 915 939 916 917 955 902 

 

Table 8 and 9 focuses on minimum value obtained for 

benchmark function. Standard deviation shows variation 

for type of functions and link change threshold. Tables 10, 

11, 12 and 13 Statistical evaluation. 
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Table 8. Min Value Obtained (Threshold Ranging From 1 To 100) For Ten Dimensional Sphere Function 

Link change threshold RLT11 RLT12 RLT13 RLT21 RLT22 RLT23 

1 8.84E-21 7.9E-21 6E-21 8.41E-21 2.1E-21 6.6E-21 

10 8.24E-21 6.1E-21 6.3E-21 4.96E-21 5.9E-21 4.6E-21 

20 5.11E-21 6.5E-21 6.3E-21 7.06E-21 6.6E-21 7.1E-21 

30 6.54E-21 4.5E-21 5.9E-21 6.85E-21 4.7E-21 7.6E-21 

40 7.6E-21 8.3E-21 7.2E-21 5.47E-21 5.5E-21 7.1E-21 

50 5.11E-21 7.1E-21 7.9E-21 5.98E-21 5.6E-21 7.1E-21 

60 5.95E-21 2.7E-21 4.9E-21 5.54E-21 4.4E-21 5.7E-21 

70 5.21E-21 8.1E-21 7.3E-21 4.9E-21 7.3E-21 6.5E-21 

80 4.36E-21 5.7E-21 5.3E-21 6.21E-21 5.8E-21 8.5E-21 

90 3.85E-21 4.7E-21 7.1E-21 4.19E-21 3.1E-21 7.5E-21 

100 7.59E-21 7.5E-21 4.8E-21 7.67E-21 6.2E-21 7.8E-21 

 

Table 9. Min Value Obtained (Threshold Ranging From 1 To 100) For 

Ten Dimensional Step Function 

Link change 

threshold 

RLT 

11 

RLT 

12 

RLT 

13 

RLT 

21 

RLT 

22 

RLT 

23 

1 0 0 0 0 0 0 

10 0 0 0 0 0 0 

20 0 0 0 0 0 0 

30 0 0 0 0 0 0 

40 0 0 0 0 0 0 

50 0 0 0 0 0 0 

60 0 0 0 0 0 0 

70 0 0 0 0 0 0 

80 0 0 0 0 0 0 

90 0 0 0 0 0 0 

100 0 0 0 0 0 0 

 

Table 10. Statistical Evaluation for Two Dimensional Sphere Function 

Based On Average Number for Iterations 

Link change 

threshold 
Min. Median Mean Max. 

Std. 

Deviation 

1 536 559 557 575 19 

10 524 542 545 571 20 

20 534 550 555 599 23 

30 557 586 581 603 18 

40 549 560 563 578 12 

50 552 578 584 624 28 

60 529 563 564 596 22 

70 534 561 566 626 34 

80 559 579 580 608 20 

90 580 592 594 611 13 

100 553 584 584 616 22 

 

Interpretation of correlation coefficient –  

Correlation analysis is used to study the 

interdependence of two variables. If large (small) values 

are associated with large (small) values of other variable 

then there exists strong positive correlation. If large 

(small) values are associated with small (large) values of 

other variable then there exists strong negative correlation.  

1. If correlation coefficient is 1 then perfect positive 

linear relationship exists between two variables.  

2. If correlation coefficient is -1 then perfect negative 

linear relationship exists between two variables 

3. If correlation coefficient  is greater than or equal to 0.7 

and less than or equal to 1 then strong positive linear 

relationship exists between two variables 

4. If correlation coefficient is greater than or equal to -1 

and less than or equal to -0.7 then strong negative 

linear relationship exists between two variables 

5. If correlation coefficient  is  0 then no linear 

relationship between two variables exists between two 

variables 

Table 11. Statistical evaluation  for two dimensional Rastrgin function 

based on average number for iterations 

Link change 

threshold 
Min. Median Mean Max. 

std 

dev 

1 536 559 557 575 85 

10 524 542 545 571 82 

20 534 550 555 599 127 

30 557 586 581 603 175 

40 549 560 563 578 147 

50 552 578 584 624 141 

60 529 563 564 596 96 

70 534 561 566 626 38 

80 559 579 580 608 106 

90 580 592 594 611 60 

100 553 584 584 616 92 

 

Table 12. Statistical Evaluation for Two Dimensional Step Function 
Based On Average Number for Iterations 

Link change 
threshold 

Min. Median Mean Max. 
Std. 

Deviation 

1 37 43 42 48 4 

10 37 45 44 49 5 

20 38 46 46 54 5 

30 35 47 47 57 7 

40 36 46 44 53 7 

50 38 43 43 50 4 

60 37 44 43 49 4 

70 41 48 48 56 6 

80 38 46 45 49 4 

90 43 46 48 56 5 

100 31 43 41 48 6 
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Table 13. Statistical evaluation for two dimensional Rosenbrock 

function based on average number for iterations 

Link change 

threshold 
Min. Median Mean Max. 

std 

dev. 

1 3239 3422 3391 3480 96 

10 3371 3452 3463 3589 88 

20 3327 3425 3426 3484 56 

30 3015 3170 3174 3401 129 

40 2485 2851 2768 3040 222 

50 2029 2166 2219 2504 183 

60 1944 2076 2057 2207 99 

70 2081 2134 2123 2166 33 

80 2037 2054 2080 2206 65 

90 2031 2139 2139 2224 67 

100 2069 2189 2186 2271 66 

 

Table 14. Correlation For Two Dimensional Sphere  Function With 

Link Change From 1 To 100. 

Link 

change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 1.00 1.00 1.00 1.00 1.00 1.00 

10 0.99 0.86 0.98 0.89 0.96 0.88 

20 -0.10 0.76 0.61 -0.03 0.89 0.41 

30 0.59 0.27 0.02 0.31 -0.44 -0.24 

40 0.28 0.89 -0.13 0.71 0.44 0.32 

50 0.25 0.16 0.12 0.68 0.38 0.82 

60 0.61 -0.22 -0.18 -0.37 0.52 0.51 

70 0.15 0.25 0.06 0.60 -0.01 -0.23 

80 0.26 0.26 -0.58 NA NA 0.05 

90 0.13 0.01 -0.15 NA 0.55 0.63 

100 NA 0.22 NA -0.05 NA 0.15 

 
Fig. 2. Average number of iterations vs Number of times link changed 
for sphere Function D2 link change after every unsuccessful iteration 

 

Figures 2 to 12 show plots of average number of 

iterations against number of times link changed for 

benchmark functions depending on iterations. 

 
Fig.3. Average number of iterations vs Number of times link changed 

for sphere Function D2 link change after 10 unsuccessful iteration 

 

Table 15. Correlation For Two Dimensional Rastrigin Function With 

Link Change From 1 To 100. 

Link 

change 
threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 1.00 1.00 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 1.00 

20 1.00 0.98 0.99 1.00 1.00 0.99 

30 0.99 1.00 1.00 0.99 0.99 0.99 

40 0.83 0.99 0.96 0.86 0.90 0.92 

50 0.98 0.92 0.91 0.89 0.86 0.92 

60 0.84 0.93 0.74 0.94 0.83 0.84 

70 0.85 0.86 0.93 0.88 0.62 0.74 

80 0.81 0.85 0.08 0.82 0.63 0.95 

90 0.89 0.63 0.60 0.92 0.91 0.80 

100 0.82 0.76 0.90 0.77 0.88 0.34 

 
Fig. 4. Average number of iterations vs Number of times link changed 

for Rastrigin Function D2 link change after every unsuccessful iteration 
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Fig. 5. Average number of iterations vs Number of times link changed 

for two dimensional Rastrigin Function  link change after 10 

unsuccessful iteration 

 

Table 16. Correlation for Two Dimensional Step Function 

Link 

change 
threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 1.00 1.00 1.00 1.00 1.00 1.00 

10 0.89 0.79 0.88 0.93 0.97 0.98 

20 0.66 0.48 0.93 0.85 0.92 0.75 

30 0.65 0.84 NA 0.95 0.71 0.73 

40 NA NA 0.79 0.64 NA 0.83 

50 NA 0.71 NA NA NA NA 

60 NA NA NA NA NA NA 

70 NA NA NA NA NA NA 

80 NA NA NA NA NA NA 

90 NA NA NA NA NA NA 

100 NA NA NA NA NA NA 

 
Fig. 6. Average number of iterations vs Number of times link changed 

for Step Function D2 link change after every unsuccessful iteration 

 
Fig.7. Average number of iterations vs Number of times link changed 

for Step Function D2 Link change  =10 
 

Table 17. Correlation for Two Dimensional Rosenbrock Function 

Link 
change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 1.00 1.00 1.00 1.00 1.00 1.00 

10 0.91 1.00 1.00 1.00 1.00 1.00 

20 0.99 1.00 1.00 0.97 0.99 0.96 

30 0.86 0.93 0.98 0.95 0.99 0.97 

40 0.98 0.97 0.97 0.90 0.97 0.94 

50 0.96 0.80 0.92 0.76 0.98 0.89 

60 0.64 0.76 0.64 0.64 0.13 0.80 

70 0.60 0.57 0.74 0.77 0.98 0.48 

80 0.88 0.92 0.68 0.31 0.55 0.40 

90 0.62 0.59 0.59 0.89 0.80 0.73 

100 0.45 0.57 0.65 0.30 0.60 0.73 

 
Fig. 8. Average number of iterations vs Number of times link changed 

for Rosenbrock Function D2 Link change  =1 
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Fig.9. Average number of iterations vs Number of times link changed 

for Rosenbrock Function D2 with link change threshold=10 
 

Table 18. Correlation For Ten Dimensional Sphere Function With Link 

Change From 20 To 100 

Link 

Change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 1.00 1.00 1.00 1.00 1.00 1.00 

10 0.95 0.87 0.90 0.65 0.98 0.79 

20 0.47 0.29 0.41 0.32 0.30 0.47 

30 0.09 -0.21 0.18 0.20 0.78 -0.31 

40 0.07 0.37 -0.02 -0.45 0.09 -0.44 

50 0.16 -0.55 0.06 -0.27 0.27 -0.47 

60 0.22 -0.15 -0.28 -0.15 0.56 -0.55 

70 0.79 0.48 0.17 -0.08 0.32 0.69 

80 0.25 0.27 0.55 0.59 0.02 0.16 

90 0.35 0.81 0.01 -0.49 -0.44 -0.06 

100 0.51 0.73 -0.63 -0.32 0.49 NA 

 

Fig. 10 Average number of iterations vs Number of times link changed 
for Sphere Function D10 with link change threshold=10 

 

Fig. 11. Average number of iterations vs Number of times link changed 

for Sphere Function D10 with link change threshold=1 
 

Table 19. Correlation For Ten Dimensional Step Function With Link 

Change From1 To 100 

Link 

change 

threshold 

RL11 RL12 RL13 RL21 RL22 RL23 

1 1.00 1.00 1.00 1.00 1.00 1.00 

10 0.98 0.99 0.98 0.97 0.97 0.99 

20 0.78 0.75 0.87 0.77 0.86 0.61 

30 0.74 0.78 0.51 0.38 0.75 0.55 

40 0.74 0.75 0.23 0.75 0.64 0.88 

50 0.79 0.75 0.39 0.60 0.54 0.67 

60 0.73 0.88 0.40 0.71 0.74 0.49 

70 0.36 0.83 0.60 0.10 0.64 0.70 

80 0.77 0.92 0.38 0.49 0.46 0.45 

90 0.59 0.61 0.42 0.73 -0.01 0.53 

100 0.37 0.89 0.13 0.42 0.47 0.55 

 

Fig. 12 Average number of iterations vs Number of times link changed 

for Step Function D10 with link change threshold=1 
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Fig.13. Average number of iterations vs Number of times link changed 

for Sphere Function D10 with link change threshold=10 

 

Correlation is calculated using “Pearson” method for 

Link changes and all variants. Tables 14, 15, 16 17, 18 

and 19 show correlation calculated using “Pearson” 

method. Bold faced values represent perfect or strong 

correlation. 

NA:  Not Applicable (As number of times link changed 

during progress is 0 for some threshold values,  So if all 

values are same then the mean value is same and there is 

no deviation obviously).   
 

Table 20. Correlation Observations 

Link 
change 

threshold 

Sphere Rastrigin 

perfect strong weak perfect strong weak 

1 6 0 0 6 0 0 

10 0 6 0 6 0 0 

20 0 2 4 3 3 0 

30 0 0 6 2 4 0 

40 0 2 4 0 6 0 

50 0 1 5 0 6 0 

60 0 0 6 0 6 0 

70 0 0 6 0 5 1 

80 0 0 4 0 4 2 

90 0 0 5 0 4 2 

100 0 0 3 0 5 1 

 

Table 21. Correlation Observations 

Link 
change 

threshold 

Step Rosenbrock 

perfect Strong weak perfect strong weak 

1 6 0 0 6 0 0 

10 0 6 0 5 1 0 

20 0 4 2 2 4 0 

30 0 4 1 0 6 0 

40 0 2 1 0 6 0 

50 0 1 0 0 6 0 

60 0 0 0 0 2 4 

70 0 0 0 0 3 3 

80 0 0 0 0 2 4 

90 0 0 0 0 3 3 

100 0 0 0 0 1 5 

If the link is updated after unsuccessful iteration then 

number of iterations required versus number of times link 

changed has perfect correlation over runs. Other findings 

are listed in table 20 and 21. 

 

IX. CONCLUSION 

Particle Swarm Optimization is swarm or population 

based optimization technique. To handle position and 

velocity confinement, different bound handling methods 

are used. Fixed pattern for average number of iterations 

required for type of bound handling methods and link 

change variations is not observed. But the standard 

deviation is more when link is changed after 30 to 50 

unsuccessful iterations. Adaptive random neighborhood 

PSO with varying link structure after threshold number of 

unsuccessful iterations is tested. The experiments carried 

out using benchmark functions comprising of unimodal, 

multimodal, separable and non separable functions. The 

perfect positive correlation is observed in all variations 

for Adaptive random neighborhood PSO with varying 

link structure after unsuccessful iteration while the strong 

positive correlation is observed in all variations for 

Adaptive random neighborhood PSO with varying link 

structure after ten unsuccessful iterations.  When the 

threshold number of unsuccessful iterations increases, 

correlation value moves towards weak.   
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