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Abstract— In this paper, a novel signal processing method is 

suggested for classifying epileptic seizures. To this end, first the 

Tangent and Hyperbolic Tangent of signals are calculated and 

then are classified into two classes: normal (or interictal) and 

ictal, using a proposed classifier. The results of this method 
show that the classification accuracy of normal and ictal classes 

(97.41%) has been higher than interictal and ictal classes 

(92.83%) and generally, it has a good potential to become a 

useful tool for physicians. 

 
Index Terms— Electroencephalogram (EEG), Epileptic seizure, 

Tangent, Hyperbolic Tangent 

 

I.  INTRODUCTION 

Controlling the biological act ivities and information  

transferring inside body of a living organis m is a main  

origin of producing bioelectrical and bio-magnetic signals. 

Hence, any change or abnormality in the structure or 

function of these mechanisms significantly changes the 

output signals of the overall system. Then, detection of 

the modifications and disturbances will be an important 

factor for diagnosis.  

One of the bioelectrical signals is  the 

Electroencephalogram (EEG), which provides a suitable 

representation of the brain disorders and can be used 

particularly in ep ileptic disorders. For this reason, 

researchers [1, 2] believe that pseudo-epileptic discharge 

detection in EEG signals is an important index for the 

diagnosis of epileptic seizures. Hence, many studies have 

been conducted to diagnose epileptic seizures using linear 

and nonlinear methods such as Statistic Analyzers [1, 2], 

Frequency Analyzers [3, 4], Discrete Wavelet Transform 

[5-11], Model-based methods [12, 13], Phase-Plane 

Trajectories [14, 15], Lyapunov Exponents [16-19], 

Correlation Dimension [20-22] and Fractal Dimension 

[23-26]. 

But, almost none of the above methods offer a 

significant visual separation to diagnose epileptic seizures. 

On the other hand, some of the mentioned methods need 

to a large feature space and complex classifiers for 

classification. Therefore, the aim of this study is to offer a 

special map using Tangent and Hyperbolic Tangent 

functions, so that it is able to increases the diagnosing 

epileptic seizures as visual and machine. In fact, it seems 

that this map can generates different patterns for EEG 

segments of epileptic and normal.  

Aim of this study development a two-class classifiers 

using the Hyperbolic Tangent and Tangent functions  are 

to separated the classes: normal (or interictal) and ictal.  

To this end, first the EEG segments are transformed to a 

new space by the Hyperbolic Tangent and Tangent 

functions (i.e. the HT-T space). Then, the EEG segments 

are classified into two classes of normal (or interictal) and 

ictal, using the proposed classifiers with the specified 

thresholds in the HT-T plots. 

 

II.  MATERIALS AND METHODS  

A.  Subjects and Data Recording 

The publicly available data described by Andrzejak, et al. 

[27] is employed in the present study. The complete data 

consists of five sets from A to E, that each has 100 single-

channel EEG segments. As a typical case shown in Fig. 1, 

sets A and B consist of segments taken from surface EEG 

recordings that were carried out on five healthy volunteers 

using a standardized electrode placement scheme. The 

volunteers were relaxed  in an awake state with eyes open 

(A), and eyes closed (B), respectively. Sets C, D, and E are 

originated from the EEG archive of pre-surgical diagnosis. 

The EEG signals of five patients were selected. All of the 

patients had achieved complete seizure control after 

resection of one of the hippocampal formations, which was 

correctly diagnosed to be the epileptogenic zone. Segments 

in set D were recorded from within the epileptogenic zone 

and segments in set C from the hippocampal formation of 

the opposite hemisphere of the brain. While sets C and D 

contained only activity measured during seizure free 

intervals (interictal), set E only contained seizure activity 

(ictal). All EEG signals were recorded with the same 128-

channel amplifier system, using an average common 

reference. The data were digitized at 173.61 samples per 

second using 12-bit  resolution. Band-pass filter settings 

were 0.53–40 Hz (12 dB/oct). In this study, we use every 

five sets. As such, sets A and B represent the normal class, 

sets C and D the interictal class, and set E the ictal class. 

Meanwhile, each of the segments 23.6s of the above sets 

have been divided to two segments 11.8s. 
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Fig. 1. Five typical EEG signals of the different datasets 
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Fig. 2. Typical plots of the hyperbolic tangent - tangent plot of five EEG 

signals of the different sets 

 

B.  Hyperbolic Tangent - Tangent plot (HT-T)  

The Hyperbolic Tangent – Tangent (HT-T) plot is a 

nonlinear process generated by plotting the hyperbolic 

tangent (x-axis) and the tangent (y-axis) of data. Th is plot 

produces unique (regular and symmetric) and 

approximately  constant patterns for segments of the sets 

A to E, so that the change in structure (amplitude and 

location of activity) of productive resources of the data is 

lead to the change in the HT-T plot. In addition, it seems 

that the HT-T p lot quantifies the ratio  changes of signal 

sine and cosine (the signal tangent). So, this technique is 

a signal processing method of BIOS domain [28]. 

 

 

 
Fig. 3. The effects of α parameter on the classification accuracy of the 

train sets: A) Normal and ictal class, B) Interictal and ictal class 

 

Fig. 2 shows the HT-T p lots of five EEG s ignals of the 

five different sets. These plots indicate that the EEG 

generally has a specific pattern, so that the change in 

structure of its productive resources is lead to the change 

in the EEG pattern (see Fig 2-E). In  fact, the changes in 

the HT-T p lot are concepts from the system dynamic, 

which usually are affected by amplitude and frequency of 

the signal. These effects are appeared as distance from 

the origin of coordinates (y-axis) and deformation. 

C.  Classifier 

The HT-T plots in Fig. 2 show samples of the EEG 

segments for epileptic phases: normal, interictal and ictal, 

which can easily distinguish from each other. In fact, the 

proposed classifier only checks the points availab le at  the 

X area (Fig. 2-E). Then, these points are the main  

indicators for diagnosis. Hence, if each of these points in 

the HT-T plot is observed in the EEG sample, the ictal is 

diagnosed; otherwise, the diagnosis is normal (or 

interictal). So, the classifier algorithm can is summarized 

as follows: 

Classifier algorithm: 

If tanh(xEEG[n]) = 1 and tan(xEEG[n]) > α then, the 

EEG sample is ictal. 

If tanh(xEEG[n]) = -1 and tan(xEEG[n]) < -α then, the 

EEG sample is ictal. 

Otherwise, the EEG sample is normal (or interictal) 

Where xEEG is an EEG segment and α is a separation 

threshold on the y-axis of the HT-T plot. Th is threshold is 

a very important factor in the proposed technique. Hence, 

to find the optimal alpha has been investigated the effects 

of the alpha parameter on classification  accuracy for the 

ten sets of train d ivided by 10-fo ld cross-validation 

method. Fig. 3-A shows the effects of α parameter on the 

classification accuracy of the train sets for two classes: 

normal and ictal. Similarly, Fig. 3-B shows the effects of 

α parameter on the classificat ion accuracy of the train sets 
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for two classes: interictal and ictal. As can be seen in Fig. 

3, the accuracy of the proposed classifier for two classes: 

normal and ictal in the neighborhood of α = 40 and for 

two classes: interictal and ictal in the neighborhood of α = 

55 has been maximum. Therefore, these values can be the 

optimal values for the separation thresholds. 

 

III.  EXPERIMENTAL RESULTS 

Identifying Epilepsy seizure via the EEG is a pattern 

recognition concept, which includes data acquisition, 

signals processing, feature extraction and finally epilepsy 

seizure detection. Thus, the revision of the above parts 

can improve the epilepsy diagnostic methods. In this 

study, first the EEG segments are transformed to a new 

space by the Hyperbolic Tangent and Tangent functions 

(i.e . the HT-T space). Then, the EEG segments are 

classified into two  classes of normal (or interictal) and 

ictal, using the proposed classifiers with the specified 

thresholds (α = 40 and α = 55) in section 2.2. Fig. 4 

shows the proposed classification process, and Table 1 

shows the distribution of the training and testing sets for 

each fold of the 10-fold cross-validation. 

In this respect, Table 2 shows the evaluation results of 

the two classifiers for test sets of a 10-fold cross-

validation. As seen in this table, the accuracy of the 

normal and ictal classifier (97.41%) is higher than the 

accuracy of the interictal and ictal classifier (92.83%). 

The reason for this decline of accuracy is the existence of 

spikes in the interictal phase. Nonetheless, the proposed 

classifier has a good ability to separate the mentioned 

classes. 

 
Table 1.The distribution of the training and testing sets for each fold 

of the 10 fold cross validation  

Classes  Sets Train set Test set Total  

Normal 
Interictal 
Ictal 

A, B 
C, D 
E 

240 
240 
120 

160 
160 
80 

400 
400 
200 

Total All 600 400 1000 

 

 

 

Fig. 4. Classification process 

 

Table 2. Evaluation results of two classifiers for test set of a 10 fold 

cross validation 

Classes Accuracy Specificity 
Sensitivity 

to Ictal 

Normal and Ictal 97.41 94.63 98.81 

Classes Accuracy 
Sensitivity to 

Interictal  
Sensitivity 

to Ictal 

Interictal and Ictal 92.83 94.25 92.13 

 

IV.  DISCUSSION 

Many studies have been done on detection of epilepsy 

phases. But, based on the findings of the present study 

and the experiences in  the EEG signal classification, we 

intend to emphasize the following: 

1) Nigam, et al. [29] used the sets A and E with  

different features and ANNs showed an accuracy of 

97.2% and claimed  that the ANNs are highly  

efficient to classify the normal and ictal. 

2) Subasi [30] used the sets A and E and applied the 

DWT on them to extract the features such as mean 

and standard deviation each sub-band and ratio of 

adjacent sub-bands. Then, using a MENN (which  

was included three expert networks and a gaiting  

network) and a standalone MLP classified  sets A 

and E into two classes: normal and ictal. Finally, he 

declared the accuracy for the MENN was as 94.5% 

and for the standalone MLP was as 93.2%. 

3) Übeyli [31] presented a MENN using wavelet  

coefficients for the classifying of the EEG sets: A, 

D and E. The total classification accuracy obtained 

by the ME network structure was 93.17%. 

4) Übeyli [32] presented an integrated view of the 

automated diagnostic systems combined with  

spectral analysis techniques in the classification of 

the same EEG signals consisted of five sets (s ets 

A–E). The paper includes illustrative and detailed 

informat ion about implementation of automated 

diagnostic systems and feature extraction/selection 

from the EEG signals. 

5) Übeyli [33] used a PNN using wavelet coefficients 

for classification of the same EEG s ignals consisted 

of five sets (sets A to E). The drawn conclusions 

indicated the PNN trained with wavelet  coefficients 

achieved high classification accuracies (97.63% 

accuracy). 

6) Subasi, et al. [9] used a combination of different  

classifiers on the datasets A and E with the 

following results: SVM+PCA (98.75% accuracy), 

SVM+ICA (99.5% accuracy) and SVM+LDA (100% 

accuracy). Although, the above methods can find  

the optimal features  but those changes the 

classifiers as an offline classifier. Then, these 

feature extract ion methods (such as Principal 

Component Analysis (PCA), Independent 

Component Analysis (ICA) and Linear 

Discriminant Analysis (LDA)) have not 

compatibility with quasi-real time algorithms, and 

are incompatible with the diagnostic system. 

Data 

Andrzejak (2001) 

Sets: A, B, C, D, E 

Fs: 173.61 Hz 

Sets 

Total samples: 1000 

Train samples: 600 

Test samples: 400 

Calculation 

tan(xEEG) 

tanh(xEEG) 

 

Classification 

Two classes 

 

Evaluation 

Accuracy 

Specificity 

Sensitivity 
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Because, a d iagnostic system receives only a single 

sample (i.e. features of an EEG segment) of the 

testing data and distinguishes the normal data from 

abnormal ones, while in a diagnostic system using 

the feature extraction methods; several samples of 

the testing data has needed. This structure is 

considered as a disadvantage because the scatter 

matrix in PCA, ICA and LDA algorithms is zero  

for a single sample. 

7) In this sense, using the same sets (A and E) and 

extracted features (11 d imensions) from 

autoregressive (AR) models and a LS-SVM 

classifier, Übeylï [12] shows classification  

accuracy of 99.56%. 

8) Gandhi, et al. [10] used the sets A and E. They  

extracted energy, entropy, standard deviation, mean, 

kurtosis, skewness and entropy estimation at each 

node of the decomposition tree of the discrete 

wavelet transform. Then,  with a probabilistic  

neural network (PNN) classified sets A and B using 

energy features, entropy features, energy and 

entropy features, all the features and the selected 

features of discrete harmony search with  modified  

differential mutation operator (DHS-MD). The 

results of these work show that the probabilistic  

neural network and the discrete harmony search 

with modified d ifferential mutat ion operator have a 

good ability to classification of these sets, so that 

they can give as average  99.67% , 99.67%, 

99.70%, 99.18% and 100% accuracy for energy 

features, entropy features, energy and entropy 

features, all the features and the selected features of 

discrete harmony search with modified d ifferential 

mutation operator, respectively. 

9) Nicolaou, et al.  [2] using the extracted features of  

Permutation Entropy (PE) and classifiers of  

Support Vector Machine classified the five sets (A 

to E) into five class. Finally, the maximum overall 

classification obtained was 93.55%, 82.88%, 

88.83%, and 83.13% for sets A to D respectively. 

10) Hosseini, et al. [18] by an Neuro-Fuzzy Inference 

System (ANFIS) classified the five sets (A to E) 

using extracted features of Hurst exponent and 

Lyapunov exponent  into two classes: Normal (or 

interictal) and ictal. They could  give 96.9% 

accuracy for the classes of the normal and the ictal, 

and 96.5% for the classes of the interictal and the 

ictal. Ultimately, they claimed that non-linear 

analysis could give a promising tool for detecting 

relative changes in the complexity of brain  

dynamics, which may not detect by conventional 

linear analysis. 

11) Joshi, et al. [34] using the modeling error and  

signal energy of Fractional linear predict ion model 

(FLPM) have  develop a  Support vector machine 

(SVM) for classifying of classes interictal (C and D 

set) and ictal (E set). Eventually, they claim that  

FLPM is a powerful and effective method for 

modeling of EEG signals and the classification of 

EEG data using error energy and signal energy as 

parameters to the SVM has proved to be successful 

with  a maximum classification accuracy  of 95.33%.  

 

Although the results of above research showed 

promising performance for classifying of Ep ileptic EEG 

signals. Nevertheless, some of the mentioned methods 

due to use of a large feature space and or the complex 

structures are the time consuming. On the other, some of 

the used classifiers find the local minimum in the error 

function, while we tend to find the global minimum. In  

addition, some of the feature extraction methods are 

incompatib le with quasi-real time algorithms, while the 

used algorithms for clinical systems are usually the quasi 

-real t ime. In  contrast to the findings of this study show 

that the proposed technique not only can reduce the 

mentioned weaknesses (esp. the time consumption, the 

computational load, find the global minimum in the error 

function and the compatib ility with quasi-real t ime 

algorithms), but also it argues that such the HT-T p lot can 

provide an appropriate visual view for the separation of 

epilepsy signals. Generally, the proposed technique due 

to use of the two-dimensional feature space and the 

simplicity classifier is included a low computational load. 

Also, since there is only a separation threshold (alpha) in 

the proposed classifier, therefore using a full search 

method in the thresholding range can be used to 

determine the threshold value with the highest accuracy 

(the global minimum in error function). 

 

V.  CONCLUSION 

Ep ilepsy is a neurological disorder caused by sudden 

changes in the brain electrical balance that is usually due 

to various disorders such as infections, trauma and head 

trauma, tumors, brain  damages from infancy or hereditary  

diseases. Hence, to diagnose epilepsy, we need to check 

the patient history, physical examinations, interpretation 

of electroencephalogram records and supplementary 

clin ical informat ion such as CT-SCAN, PET, MRI and 

FMRI. Of course, due to the simplicity of brain signal 

recording, EEG analyzers, and interpreters often are used, 

which are helpfu l to diagnose epilepsy. So, in the current 

study has been developed a classifier using the extracted 

features of the HT-T plot (calculated from the EEG signal) 

for the diagnosis of epilepsy seizures. In sum, the 

findings of this research show that the proposed method 

(in addition to its simplicity, it has a low computational 

load and its compatibility with quasi-real time algorithms) 

provides the appropriate representation of epilepsy 

seizures and can open a new way to detect this disease. 

Thus, it is hoped that further research will be conducted 

in this field, which may consequently provide more 

efficient processing methods for EEG s ignal 

classification. 

ACKNOWLEDGMENT  

The authors are thankful o f the R.G. Andrzejak and h is 

colleagues for publicly availab le database, described in 

Andrzejak et al. (2001). 



44 Classification of EEG signals using Hyperbolic Tangent-Tangent Plot  

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 08, 39-45 

REFERENCES 

[1] Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in 

an epileptic patient using wavelet transform. Journal of 
Neuroscience Methods, 2003, 123(1): 69-87. 

[2] Subasi A. EEG signal classification using wavelet feature 

extraction and a mixture of expert model. Expert Systems 

with Applications, 2007, 32(4): 1084-1093. 

[3] Mashakbeh A. Analysis electroencephalogram detect 
epilepsy. International Journal of Academic Research, 

2010, 2(3): 342-348. 

[4] Nicolaou N and Georgiou J. Detection of epileptic 

electroencephalogram based on Permutation Entropy and 

Support Vector Machines. Expert Systems with 
Applications, 2012, 39(1): 202-209. 

[5] Alessandro M, Esteller R, Vachtsevanos G, et al. Epileptic 

seizure prediction using hybrid feature selection over 

multiple intracranial eeg electrode contacts: a report of four 

patients. Biomedical Engineering, IEEE Transactions on, 
2003, 50(8): 1041-1041. 

[6] Yamaguchi C. Fourier and Wavelet Analyses of Normal 

and Epileptic Electroencephalogram. Memoirs of the Fukui 

Institute of Technology, 2003, 33: 305-312. 

[7] Latka M, Was Z, Kozik A. et al., Wavelet analysis of 
epileptic spikes. Physical Review E, 2003, 67(5): 

052902.1-052902.4. 

[8] Subasi A, Ercelebi E. Epileptic seizure detection using 

dynamic wavelet network. Expert Systems with 

Applications, 2005, 29(2): 343-355. 
[9] Subasi A, Ercelebi E. Classification of EEG signals using 

neural network and logistic regression. Computer Methods 

and Programs in Biomedicine, 2005, 78(2): 87-99. 

[10] Subasi A, I Gursoy M. EEG signal classification using 
PCA, ICA, LDA and support vector machines. Expert 

Systems with Applications, 2010, 37(12): 8659-8666. 

[11] Gandhi T K, Chakraborty P, Roy G G, et al. Discrete 

harmony search based expert model for epileptic seizure 

detection in electroencephalography . Expert Systems with 
Applications, 2012, 39(4): 4055-4062. 

[12] Aliabadi R, Keynia F, Abdali M. Epilepsy Seizure 

Diagnosis in EEG by Artificial Neural Networks. Journal 

of Multimedia Processing, 2013,  2(2): 1-5. 

[13] Khan Y U, Farooq O, Tripathi M, et al. Automatic 
detection of non-convulsive seizures using AR modeling. 

Power, Control and Embedded Systems (ICPCES), 2012 

2nd International Conference on, 2012: 1-4. 

[14] Übeyli E D. Least squares support vector machine 

employing model-based methods coefficients for analysis 
of EEG signals. Expert Systems with Applications, 2010, 

37(1): 233-239. 

[15] Babloyantz A, Destexhe A. Low-dimensional chaos in an 

instance of epilepsy. Proceedings of the National Academy 

of Sciences, 1986, 83(10): 3513-3517. 
[16] Collura T F, Morris H H, et al. Phase-plane trajectories of 

EEG seizure patterns in epilepsy. The American journal of 

EEG technology, 1992, 32: 295-307. 

[17] Güler N F, Übeyli E D, and Güler İ. Recurrent neural 

networks employing Lyapunov exponents for EEG signals  
classification. Expert Systems with Applications, 2005, 

29(3): 506-514. 

[18] Lai Y C, Harrison M A F, Frei M G, et al. Inability of 

Lyapunov Exponents to Predict Epileptic Seizures. 

Physical Review Letters, 2003, 91(6): 068102-1 - 068102-
4. 

[19] Hosseini S A, Akbarzadeh M R, Naghibi-Sistani M B. 

Qualitative and Quantitative Evaluation of EEG Signals in 

Epileptic Seizure Recognition. I.J. Intelligent Systems and 

Applications, 2013, 6: 41-46. 

[20] Goshvarpour A, Ebrahimnezhad H, and Goshvarpou A. 

Classification of Epileptic EEG Signals using Time-Delay 

Neural Networks and Probabilistic Neural Networks I.J. 
Information Engineering and Electronic Business, 2013, 1: 

59-67. 

[21] Lai Y C, Osorio I,  Harrison, M A, et al. Correlation-

dimension and autocorrelation fluctuations in epileptic 

seizure dynamics. Physical review. E, Statistical, nonlinear, 
and soft matter physics, 2002, 65(3 Pt 1): 031921. 

[22] Osorio I, Harrison MA, Lai Y C,  et al. Observations on the 

Application of the Correlation Dimension and Correlation 

Integral to the Prediction of Seizures. Journal of Clinical 

Neurophysiology, 2001, 18(3): 269 -274. 
[23] Pijn J, Velis D, Heyden M, DeGoede J, et al. Nonlinear 

dynamics of epileptic seizures on basis of intracranial EEG 

recordings. Brain Topography, 1997. 9(4): 249-270. 

[24] Esteller R, Vachtsevanos G, Echauz J, et al. Fractal 

dimension characterizes seizure onset in epileptic patients. 
1999, 4: 2343-2346. 

[25] Esteller R, Echauz J, Tcheng T, et al. Line length: an 

efficient feature for seizure onset detection. in Engineering 

in Medicine and Biology Society, 2001. Proceedings of the 

23rd Annual International Conference of the IEEE. 2001: 
1-4. 

[26] Xiaoli L, Polygiannakis J, Kapiris P, et al. Fractal spectral 

analysis of pre-epileptic seizures in terms of criticality. 

Journal of Neural Engineering, 2005, 2(2): 11-16. 

[27] Kim S H, Faloutsos C, Yang, H J, et al. Coercively 
adjusted auto regression model for forecasting in epilepsy 

EEG. Computational and Mathematical Methods in 

Medicine, 2013: 1-12. 

[28] Andrzejak R G, Lehnertz K, Mormann F, et al.  Indications 

of nonlinear deterministic and finite-dimensional structures 
in time series of brain electrical activity: Dependence on 

recording region and brain state. Physical Review E, 2001, 

64(6): 0619071-0619078. 

[29] Sabelli H. BIOS: A Study Of Creation. World Scientific, 

2005. 
[30] Nigam, V P, Graupe D, A neural-network-based detection 

of epilepsy. Journal of Neurology Research, 2004, 26: 55 -

60  

[31] Übeyli  E D, Wavelet/mixture of experts network structure 

for EEG signals classification. Expert Systems with 
Applications, 2008. 34(3): p. 1954-1962. 

[32] Übeyli E D, Decision support systems for time-varying 

biomedical signals: EEG signals classification. Expert 

Systems with Applications, 2009, 36(2, Part 1): 2275-2284.  

[33] Übeyli E D, Lyapunov exponents/probabilistic neural 
networks for analysis of EEG signals. Expert Systems with 

Applications, 2010,  37(2):  985-992. 

[34] Joshi V, Pachori R B, Vijesh A, Classification of ictal and 

seizure-free EEG signals using fractional linear prediction. 

Biomedical Signal Processing and Control. 2014, 9(0): p. 
1-5. 

 

 

Authors’ Profiles 
Reza Yaghoobi Karimoi He received the B.S. degree in 

electronics engineering from the Islamic Azad University, Yazd 

Branch, Iran, in 2009, the M.S. degree at biomedical 

engineering from the University of Islamic Azad University, 
Mashhad Branch, Mashhad, Iran, in 2011.  

His research interests include modeling of biological systems, 

biofeedback and neurofeedback, linear and non-linear 

computing, machine learning and neural networks. 



 Classification of EEG signals using Hyperbolic Tangent-Tangent Plot 45 

Copyright © 2014 MECS                                                           I.J. Intelligent Systems and Applications, 2014, 08, 39-45 

Azra Yaghoobi Karimoi  She received the B.S. degree in 

electronics engineering from the International University of 

Imam Reza, Mashhad, Iran, in 2013. Currently, she is a M.S. 

student at Sadjad University, Mashhad, Iran.  

Her research interests include evolutionary algorithms, 
machine learning and image processing. 

 

 

 

How to cite this paper: Reza Yaghoobi Karimoi, Azra 
Yaghoobi Karimoi,"Classification of EEG signals using 

Hyperbolic Tangent-Tangent Plot", International Journal of 

Intelligent Systems and Applications(IJISA), vol.6, no.8, pp.39-

45, 2014. DOI: 10.5815/ijisa.2014.08.04 


